Lack of Induction of RBD-Specific Neutralizing Antibodies despite Repeated Heterologous SARS-CoV-2 Vaccination Leading to Seroconversion and Establishment of T Cell-Specific Memory in a Patient in Remission of Multiple Myeloma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. T Cell Proliferation Assays
2.3. Whole Blood Cytokine-Secretion and Cellular Activation Assays
2.4. Immunophenotyping of Activated Lymphocytes
2.5. Determination of Cytokines in Cell Culture Supernatants
2.6. SARS-CoV-2-Specific Serology
2.7. Statistics
3. Results
3.1. Repeated Heterologous Immunization with mRNA- Followed by Vector-Based SARS-CoV-2 Vaccines Leads to Seroconversion, However, without Induction of Neutralizing anti-RBD Antibodies
3.2. Induction of SARS-CoV-2 Specific T Cell Responses upon Repeated and Cross-Vaccination
3.3. Analyses of Secreted Cytokines from Proliferation and Whole Blood Assays Point towards the Induction of SARS-CoV-2-Specific Immunity
3.4. Stimulation with S-Protein-Derived Peptide Mix Leads to Specific Activation Induced Marker (AIM) Expression on Patient’s CD4 Helper T Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Heinz, F.X.; Stiasny, K. Distinguishing features of current COVID-19 vaccines: Knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 2021, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Rodriguez-Coira, J.; Sokolowska, M. SARS-CoV-2 candidate vaccines—Composition, mechanisms of action and stages of clinical development. Allergy 2021, 76, 1922–1924. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Gattinger, P.; Tulaeva, I.; Borochova, K.; Kratzer, B.; Trapin, D.; Kropfmuller, A.; Pickl, W.F.; Valenta, R. Omicron: A SARS-CoV-2 variant of real concern. Allergy 2022. [Google Scholar] [CrossRef]
- Marra, A.R.; Kobayashi, T.; Suzuki, H.; Alsuhaibani, M.; Tofaneto, B.M.; Bariani, L.M.; Auler, M.A.; Salinas, J.L.; Edmond, M.B.; Doll, M.; et al. Short-term effectiveness of COVID-19 vaccines in immunocompromised patients: A systematic literature review and meta-analysis. J. Infect. 2022, S0163-4453(21)00658-7. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Freeman, J.A.; Holland, J.; Solterbeck, A.; Naidu, K.; Soosapilla, A.; Downe, P.; Tang, C.; Kerridge, I.; Wallman, L.; et al. COVID-19 vaccine failure in chronic lymphocytic leukaemia and monoclonal B-lymphocytosis; humoural and cellular immunity. Br. J. Haematol. 2021. [Google Scholar] [CrossRef]
- Gagelmann, N.; Passamonti, F.; Wolschke, C.; Massoud, R.; Niederwieser, C.; Adjalle, R.; Mora, B.; Ayuk, F.; Kroger, N. Antibody response after vaccination against SARS-CoV-2 in adults with haematological malignancies: A systematic review and meta-analysis. Haematologica 2021. [Google Scholar] [CrossRef] [PubMed]
- Schiller Salton, N.; Szwarcwort, M.; Tzoran, I.; Horowitz, N.A.; Zuckerman, T.; Horesh, N.; Shachor-Meyouhas, Y.; Hussein, K.; Lavi, N. Attenuated humoral immune response following anti-SARS-CoV-2 vaccine in heavily pretreated patients with multiple myeloma and AL amyloidosis. Am. J. Hematol. 2021, 96, E475–E478. [Google Scholar] [CrossRef] [PubMed]
- Harrison, N.; Grabmeier-Pfistershammer, K.; Graf, A.; Trapin, D.; Tauber, P.; Aberle, J.H.; Stiasny, K.; Schmidt, R.; Greinix, H.; Rabitsch, W.; et al. Tick-Borne Encephalitis Specific Lymphocyte Response after Allogeneic Hematopoietic Stem Cell Transplantation Predicts Humoral Immunity after Vaccination. Vaccines 2021, 9, 908. [Google Scholar] [CrossRef] [PubMed]
- Cossarizza, A.; Chang, H.D.; Radbruch, A.; Acs, A.; Adam, D.; Adam-Klages, S.; Agace, W.W.; Aghaeepour, N.; Akdis, M.; Allez, M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019, 49, 1457–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kratzer, B.; Trapin, D.; Ettel, P.; Kormoczi, U.; Rottal, A.; Tuppy, F.; Feichter, M.; Gattinger, P.; Borochova, K.; Dorofeeva, Y.; et al. Immunological imprint of COVID-19 on human peripheral blood leukocyte populations. Allergy 2021, 76, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Gattinger, P.; Borochova, K.; Dorofeeva, Y.; Henning, R.; Kiss, R.; Kratzer, B.; Muhl, B.; Perkmann, T.; Trapin, D.; Trella, M.; et al. Antibodies in serum of convalescent patients following mild COVID-19 do not always prevent virus-receptor binding. Allergy 2021, 76, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Gattinger, P.; Niespodziana, K.; Stiasny, K.; Sahanic, S.; Tulaeva, I.; Borochova, K.; Dorofeeva, Y.; Schlederer, T.; Sonnweber, T.; Hofer, G.; et al. Neutralization of SARS-CoV-2 requires antibodies against conformational receptor-binding domain epitopes. Allergy 2022, 77, 230–242. [Google Scholar] [CrossRef]
- Bitoun, S.; Henry, J.; Vauloup-Fellous, C.; Dib, N.; Belkhir, R.; Mouna, L.; Joly, C.; Desjardins, D.; Bitu, M.; Le Grand, R.; et al. Response to COVID-19 mRNA vaccination in multiple myeloma is conserved but impaired compared to controls. J. Hematol. Oncol. 2021, 14, 166. [Google Scholar] [CrossRef]
- Ghandili, S.; Schonlein, M.; Lutgehetmann, M.; Schulze Zur Wiesch, J.; Becher, H.; Bokemeyer, C.; Sinn, M.; Weisel, K.C.; Leypoldt, L.B. Post-Vaccination Anti-SARS-CoV-2-Antibody Response in Patients with Multiple Myeloma Correlates with Low CD19+ B-Lymphocyte Count and Anti-CD38 Treatment. Cancers 2021, 13, 3800. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.S.; Ruddy, J.A.; Boyarsky, B.J.; Werbel, W.A.; Garonzik-Wang, J.M.; Segev, D.L.; Imus, P.H. Safety and antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in patients with multiple myeloma. BMC Cancer 2021, 21, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.B.; Wang, C.C.; Ong, C.M.; Lynch, K.L. Adequate Antibody Response to COVID-19 Vaccine in Patients with Monoclonal Gammopathies and Light Chain Amyloidosis. Lab. Med. 2022, lmab113. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Briasoulis, A.; Gumeni, S.; Malandrakis, P.; Fotiou, D.; Papanagnou, E.D.; Migkou, M.; Theodorakakou, F.; et al. The neutralizing antibody response post COVID-19 vaccination in patients with myeloma is highly dependent on the type of anti-myeloma treatment. Blood Cancer J. 2021, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Aleman, A.; Upadhyaya, B.; Tuballes, K.; Kappes, K.; Gleason, C.R.; Beach, K.; Agte, S.; Srivastava, K.; Group, P.V.S.S.; Van Oekelen, O.; et al. Variable cellular responses to SARS-CoV-2 in fully vaccinated patients with multiple myeloma. Cancer Cell 2021, 39, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Jiang, W.; Mukhopadhyay, D.; Mellins, E.D. New insights into B cells as antigen presenting cells. Curr. Opin. Immunol. 2021, 70, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Rijkers, G.T.; Weterings, N.; Obregon-Henao, A.; Lepolder, M.; Dutt, T.S.; van Overveld, F.J.; Henao-Tamayo, M. Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines 2021, 9, 848. [Google Scholar] [CrossRef]
- Dalakas, M.C.; Bitzogli, K.; Alexopoulos, H. Anti-SARS-CoV-2 Antibodies Within IVIg Preparations: Cross-Reactivities With Seasonal Coronaviruses, Natural Autoimmunity, and Therapeutic Implications. Front. Immunol. 2021, 12, 627285. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Emergency Use of REGEN-COVTM for COVID-19 Prevention. Available online: https://www.europeanpharmaceuticalreview.com/news/159504/fda-approve-emergency-use-of-regen-covtm-for-covid-19-prevention/ (accessed on 11 January 2022).
- FDA Authorizes Bamlanivimab and Etesevimab Monoclonal Antibody Therapy for Post-Exposure Prophylaxis (Prevention) for COVID-19. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-authorizes-bamlanivimab-and-etesevimab-monoclonal-antibody-therapy-post-exposure-prophylaxis (accessed on 11 January 2022).
- Gilchuk, P.; Thomsen, I.; Yoder, S.; Brady, E.; Chappell, J.D.; Stevens, L.J.; Denison, M.R.; Sutton, R.E.; Chen, R.E.; VanBlargan, L.A.; et al. Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. iScience 2022, 25, 103602. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Vaccine Tracker and Landscape. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 14 January 2022).
Visit 1 w/Pomalidomide | Visit 2 w/o Pomalidomide | Reference Values | |
---|---|---|---|
Leukocytes, cells/µL | 3300 * | 3400 | 3880–10,640 |
Granulocytes, cells/µL | 1650 | 1730 | 2020–8220 |
Monocytes, cells/µL | 660 | 370 | 220–990 |
Lymphocytes, cells/µL | 990 | 1290 | 1000–2800 |
CD3+ T cells, cells/µL | 630 | 650 | 700–2100 |
CD3+CD4+ T cells, cells/µL | 300 | 260 | 300–1400 |
CD3+CD8+ T cells, cells/µL | 270 | 320 | 200–900 |
CD4/CD8 Ratio | 1.11 | 0.80 | 1.00–3.60 |
CD19+ B cells, cells/µL | 70 | 300 | 100–500 |
CD56+ CD16+ NK cells, cells/µL | 240 | 320 | 90–600 |
Anti-S Protein levels (OD405) | 0.16 | 0.45 | ≥0.3 |
Anti-S Protein levels (BAU/mL) | 1.19 ** | 49.10 *** | ≥15 **; ≥0.8 *** |
Tetanus toxoid antibodies (IU/mL) | 1.08 | 0.94 | 0.05–39.62 |
Diphtheria toxoid antibodies (IU/mL) | 0.15 | 0.08 | >0.01 |
Hemophilus Influenzae B (mg/l) | 1.43 | 1.94 | 0.09–19.5 |
Pneumococcal polysaccharide (mg/mL) | 33.5 | 42.4 | 10–191.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kratzer, B.; Trapin, D.; Gattinger, P.; Oberhofer, T.; Sehgal, A.N.A.; Waidhofer-Söllner, P.; Rottal, A.; Körmöczi, U.; Grabmeier-Pfistershammer, K.; Kopetzky, G.H.; et al. Lack of Induction of RBD-Specific Neutralizing Antibodies despite Repeated Heterologous SARS-CoV-2 Vaccination Leading to Seroconversion and Establishment of T Cell-Specific Memory in a Patient in Remission of Multiple Myeloma. Vaccines 2022, 10, 374. https://doi.org/10.3390/vaccines10030374
Kratzer B, Trapin D, Gattinger P, Oberhofer T, Sehgal ANA, Waidhofer-Söllner P, Rottal A, Körmöczi U, Grabmeier-Pfistershammer K, Kopetzky GH, et al. Lack of Induction of RBD-Specific Neutralizing Antibodies despite Repeated Heterologous SARS-CoV-2 Vaccination Leading to Seroconversion and Establishment of T Cell-Specific Memory in a Patient in Remission of Multiple Myeloma. Vaccines. 2022; 10(3):374. https://doi.org/10.3390/vaccines10030374
Chicago/Turabian StyleKratzer, Bernhard, Doris Trapin, Pia Gattinger, Teresa Oberhofer, Al Nasar Ahmed Sehgal, Petra Waidhofer-Söllner, Arno Rottal, Ulrike Körmöczi, Katharina Grabmeier-Pfistershammer, Gerhard H. Kopetzky, and et al. 2022. "Lack of Induction of RBD-Specific Neutralizing Antibodies despite Repeated Heterologous SARS-CoV-2 Vaccination Leading to Seroconversion and Establishment of T Cell-Specific Memory in a Patient in Remission of Multiple Myeloma" Vaccines 10, no. 3: 374. https://doi.org/10.3390/vaccines10030374
APA StyleKratzer, B., Trapin, D., Gattinger, P., Oberhofer, T., Sehgal, A. N. A., Waidhofer-Söllner, P., Rottal, A., Körmöczi, U., Grabmeier-Pfistershammer, K., Kopetzky, G. H., Tischer, F., Valenta, R., & Pickl, W. F. (2022). Lack of Induction of RBD-Specific Neutralizing Antibodies despite Repeated Heterologous SARS-CoV-2 Vaccination Leading to Seroconversion and Establishment of T Cell-Specific Memory in a Patient in Remission of Multiple Myeloma. Vaccines, 10(3), 374. https://doi.org/10.3390/vaccines10030374