Unravelling the Biological Potential of Pinus pinaster Bark Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Raw Material Preparation and Characterization
2.3. Extraction Conditions and Extracts Preparation
2.4. Chemical Analysis of Extracts
2.4.1. Total Phenolic Content (TPC)
2.4.2. Total Flavonoid Content (TFC)
2.4.3. UPLC Chromatography
2.4.4. ATR-Fourier Transform Infrared Spectroscopy
2.5. Evaluation of in Vitro Bioactivities
2.5.1. Antioxidant Activity
2.5.2. Antihyperglycemic Activity
2.5.3. Antimicrobial Activity
2.5.4. Cell Viability
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of PB
3.2. Solid–Liquid Extraction
Influence of Variables on the TPC and Antioxidant Activity
3.3. Phenolic and Flavonoid Contents of PBE
3.4. ATR-FTIR Spectra Analysis
3.5. Antioxidant Activity of PBE
3.6. Antihyperglycemic Activity
3.7. Antimicrobial Activity
3.8. Cell Viability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Raza, W.; Lee, J.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J. Removal of phenolic compounds from industrial waste water based on membrane-based technologies. J. Ind. Eng. Chem. 2019, 71, 1–18. [Google Scholar] [CrossRef]
- Mark, R.; Lyu, X.; Lee, J.J.L.; Parra-Saldívar, R.; Chen, W.N. Sustainable production of natural phenolics for functional food applications. J. Funct. Foods 2019, 57, 233–254. [Google Scholar] [CrossRef]
- Calvo Torras, M.A.; Faura, C.A.; Schönlau, F.; Rohdewald, P. Antimicrobial activity of Pycnogenol. Phyther. Res. 2005, 19, 647–648. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, R.; Sharma, L. Potential biological efficacy of Pinus plant species against oxidative, inflammatory and microbial disorders. BMC Complement. Altern. Med. 2016, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira-Santos, P.; Genisheva, Z.; Pereira, R.N.; Teixeira, J.A.; Rocha, C.M.R. Moderate Electric Fields as a Potential Tool for Sustainable Recovery of Phenolic Compounds from Pinus pinaster Bark. ACS Sustain. Chem. Eng. 2019, 7, 8816–8826. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Vlaisavljevic, S.; Adetunji, C.O.; Adetunji, J.B.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Devkota, H.P.; et al. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Lee, K.J.; Baek, D.; Lee, G.; Cho, G.; So, Y.; Lee, J. Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces. Antioxidants 2020, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Mármol, I.; Quero, J.; Jiménez-Moreno, N.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci. Technol. 2019, 88, 558–566. [Google Scholar] [CrossRef]
- Maimoona, A.; Naeem, I.; Saddiqe, Z.; Jameel, K. A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. J. Ethnopharmacol. 2011, 133, 261–277. [Google Scholar] [CrossRef]
- Rohdewald, P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int. J. Clin. Pharmacol. Ther. 2002, 40, 158–168. [Google Scholar] [CrossRef]
- Iravani, S.; Zolfaghari, B. Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract. Res. Pharm. Sci. 2011, 6, 1–11. [Google Scholar] [PubMed]
- Chupin, L.; Maunu, S.L.; Reynaud, S.; Pizzi, A.; Charrier, B.; Charrier-EL Bouhtoury, F. Microwave assisted extraction of maritime pine (Pinus pinaster) bark: Impact of particle size and characterization. Ind. Crops Prod. 2015, 65, 142–149. [Google Scholar] [CrossRef]
- Braga, M.E.M.; Santos, R.M.S.; Seabra, I.J.; Facanali, R.; Marques, M.O.M.; De Sousa, H.C. Fractioned SFE of antioxidants from maritime pine bark. J. Supercrit. Fluids 2008, 47, 37–48. [Google Scholar] [CrossRef]
- Jerez, M.; Pinelo, M.; Sineiro, J.; Núñez, M.J. Influence of extraction conditions on phenolic yields from pine bark: Assessment of procyanidins polymerization degree by thiolysis. Food Chem. 2006, 94, 406–414. [Google Scholar] [CrossRef]
- Mellouk, H.; Meullemiestre, A.; Maache-Rezzoug, Z.; Bejjani, B.; Dani, A.; Rezzoug, S.A. Valorization of industrial wastes from French maritime pine bark by solvent free microwave extraction of volatiles. J. Clean. Prod. 2016, 112, 4398–4405. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TRAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. Food Eng. Rev. 2019, 12, 83–100. [Google Scholar] [CrossRef]
- Herrero, M.; Ibañez, E. Green extraction processes, biorefineries and sustainability: Recovery of high added-value products from natural sources. J. Supercrit. Fluids 2018, 134, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Barros, L.; Oliveira, S.; Carvalho, A.M.; Ferreira, I.C.F.R. In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Ind. Crops Prod. 2010, 32, 572–579. [Google Scholar] [CrossRef]
- Irondi, E.A.; Akintunde, J.K.; Agboola, S.O.; Boligon, A.A.; Athayde, M.L. Blanching influences the phenolics composition, antioxidant activity, and inhibitory effect of Adansonia digitata leaves extract on α-amylase, α-glucosidase, and aldose reductase. Food Sci. Nutr. 2017, 5, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard, 11th Ed. ed; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, pp. 1–58. [Google Scholar]
- Gontijo, D.C.; Gontijo, P.C.; Brandão, G.C.; Diaz, M.A.N.; De Oliveira, A.B.; Fietto, L.G.; Leite, J.P.V. Antioxidant study indicative of antibacterial and antimutagenic activities of an ellagitannin-rich aqueous extract from the leaves of Miconia latecrenata. J. Ethnopharmacol. 2019, 236, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Helm, K.; Beyreis, M.; Mayr, C.; Ritter, M.; Jakab, M.; Kiesslich, T.; Plaetzer, K. In Vitro Cell Death Discrimination and Screening Method by Simple and Cost-Effective Viability Analysis. Cell. Physiol. Biochem. 2017, 41, 1011–1019. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2015, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Rafińska, K.; Pomastowski, P.; Rudnicka, J.; Krakowska, A.; Maruśka, A.; Narkute, M.; Buszewski, B. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chem. 2019, 289, 16–25. [Google Scholar] [CrossRef]
- Chupin, L.; Motillon, C.; Charrier-El Bouhtoury, F.; Pizzi, A.; Charrier, B. Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Ind. Crops Prod. 2013, 49, 897–903. [Google Scholar] [CrossRef]
- Royer, M.; Prado, M.; García-Pérez, M.E.; Diouf, P.N.; Stevanovic, T. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 2013, 1, 158–167. [Google Scholar] [CrossRef]
- Bocalandro, C.; Sanhueza, V.; Gómez-Caravaca, A.M.; González-álvarez, J.; Fernández, K.; Roeckel, M.; Rodríguez-Estrada, M.T. Comparison of the composition of Pinus radiata bark extracts obtained at bench- and pilot-scales. Ind. Crops Prod. 2012, 38, 21–26. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Tanase, C.; Cosarcă, S.; Muntean, D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantto, T.A.; Dorman, H.J.D.; Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Tikhonov, V.P.; Hiltunen, R.; Raasmaja, A. Chemical composition, antioxidative activity and cell viability effects of a Siberian pine (Pinus sibirica Du Tour) extract. Food Chem. 2009, 112, 936–943. [Google Scholar] [CrossRef]
- Yesil-Celiktas, O.; Otto, F.; Parlar, H. A comparative study of flavonoid contents and antioxidant activities of supercritical CO2 extracted pine barks grown in different regions of Turkey and Germany. Eur. Food Res. Technol. 2009, 229, 671–677. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Stanoeva, J.P.; Stefova, M.; Kulevanova, S. Flavonoids and Other Phenolic Compounds in Needles of Pinus peuce and Other Pine Species from the Macedonian Flora. Nat. Prod. Commun. 2015, 10, 987–990. [Google Scholar] [CrossRef] [Green Version]
- Talmaciu, A.I.; Ravber, M.; Volf, I.; Knez, Ž.; Popa, V.I. Isolation of bioactive compounds from spruce bark waste using sub- and supercritical fluids. J. Supercrit. Fluids 2016, 117, 243–251. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh-Der, P.; Huang, D.W.; Hsu, C.L.; Fu, T.Y.C. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2008, 46, 175–185. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Valenzuela, J.; González-Rojas, Á.; Wisniak, J.; Apelblat, A.; Pérez-Correa, J.R. Solubility of (+)-catechin in water and water-ethanol mixtures within the temperature range 277.6-331.2K: Fundamental data to design polyphenol extraction processes. Fluid Phase Equilib. 2015, 382, 279–285. [Google Scholar] [CrossRef]
- Ko, M.J.; Cheigh, C.I.; Chung, M.S. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 2014, 143, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem. 2006, 10815–10837. [Google Scholar]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Kilmartin, P.A.; Versari, A. Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Characterization of Tannins. Appl. Spectrosc. Rev. 2015, 50, 407–442. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Chen, G.; Zhang, Y.; Nahar, L.; Sarker, S.D.; Hu, G.; Guo, M. Antioxidant and anti-proliferative properties of Hagenia abyssinica roots and their potentially active components. Antioxidants 2020, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gascón, S.; Jiménez-Moreno, N.; Jiménez, S.; Quero, J.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. Nutraceutical composition of three pine bark extracts and their antiproliferative effect on Caco-2 cells. J. Funct. Foods 2018, 48, 420–429. [Google Scholar] [CrossRef]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2019, 308, 125522. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, J.; Huang, S.; Li, X.; Zhang, Y.; Zhang, L.; Wang, F. Analytical profiling of proanthocyanidins from Acacia mearnsii bark and in vitro assessment of antioxidant and antidiabetic potential. Molecules 2018, 23, 2891. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, F.W.A.; Fechine, L.M.U.D.; Lopes, K.P.S.; De Sousa, A.F.; Do Nascimento, G.O.; Amaral, H.H.; Leal, L.K.A.M.; Trevisan, M.T.S.; Ribeiro, M.E.N.P.; Ricardo, N.M.P.S. α-Glucosidase inhibitory activity of mangiferin-loaded F127/PEG micellar system. Mater. Lett. 2019, 255, 126522. [Google Scholar] [CrossRef]
- Schäfer, A.; Högger, P. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol) effectively inhibit α-glucosidase. Diabetes Res. Clin. Pract. 2007, 77, 41–46. [Google Scholar] [CrossRef]
- Liu, X.; Wei, J.; Tan, F.; Zhou, S.; Würthwein, G.; Rohdewald, P. Antidiabetic effect of Pycnogenol® French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004, 75, 2505–2513. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Jeong, Y.K.; Wang, M.H.; Lee, W.Y.; Rhee, H.I. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2005, 21, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, Y.; Padilla-Zakour, O.; Yang, G. Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Ind. Crops Prod. 2015, 74, 803–809. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Delazar, A.; Asnaashari, S.; Nikkhah, E.; Asgharian, P. Phytochemical analysis and antiproliferative activity of the aerial parts of Scrophularia subaphylla. Res. Pharm. Sci. 2019, 14, 263–272. [Google Scholar] [CrossRef]
- Mao, P.; Zhang, E.; Chen, Y.; Liu, L.; Rong, D.; Liu, Q.; Li, W. Pinus massoniana bark extract inhibits migration of the lung cancer A549 cell line. Oncol. Lett. 2017, 13, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Abraham, M.; Augustine, D.; Rao, R.S.; Sowmya, S.V.; Haragannavar, V.C.; Nambiar, S.; Prasad, K.; Awan, K.H.; Patil, S. Naturally Available Extracts Inhibiting Cancer Progression: A Systematic Review. J. Evid. Based Complement. Altern. Med. 2017, 22, 870–878. [Google Scholar] [CrossRef] [Green Version]
- Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 2012, 4, 1679–1691. [Google Scholar] [CrossRef]
- Touriño, S.; Selga, A.; Jiménez, A.; Juliá, L.; Lozano, C.; Lizárraga, D.; Cascante, M.; Torres, J.L. Procyanidin fractions from pine (Pinus pinaster) bark: Radical scavenging power in solution, antioxidant activity in emulsion, and antiproliferative effect in melanoma cells. J. Agric. Food Chem. 2005, 53, 4728–4735. [Google Scholar] [CrossRef]
Runs | Time (min) x1 | Temperature (°C) x2 | Solid-Liquid Ratio (g/mL) x3 | EtOH (v/v) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0% (H2O) | 30% | 50% | 70% | 90% | |||||||||
TPC | FRAP | TPC | FRAP | TPC | FRAP | TPC | FRAP | TPC | FRAP | ||||
1 | 35 (−1) | 38 (−1) | 0.05 (−1) | 18.70 | 0.13 | 20.81 | 0.29 | 68.56 | 0.42 | 60.94 | 0.44 | 59.74 | 0.34 |
2 | 35 (−1) | 38 (−1) | 0.15 (1) | 31.77 | 0.26 | 93.44 | 0.93 | 99.04 | 1.15 | 97.34 | 1.06 | 91.54 | 0.83 |
3 | 35 (−1) | 82 (1) | 0.05 (−1) | 20.18 | 0.17 | 60.94 | 0.35 | 69.04 | 0.48 | 71.04 | 0.50 | 61.74 | 0.34 |
4 | 35 (−1) | 82 (1) | 0.15 (1) | 37.59 | 0.33 | 106.14 | 0.99 | 119.44 | 1.39 | 126.24 | 1.15 | 98.84 | 0.97 |
5 | 115 (1) | 38 (−1) | 0.05 (−1) | 19.86 | 0.16 | 58.14 | 0.32 | 61.34 | 0.43 | 63.44 | 0.45 | 60.64 | 0.37 |
6 | 115 (1) | 38 (−1) | 0.15 (1) | 31.76 | 0.26 | 86.84 | 0.94 | 99.04 | 1.40 | 108.54 | 1.11 | 99.94 | 0.61 |
7 | 115 (1) | 82 (1) | 0.05 (−1) | 22.68 | 0.16 | 75.74 | 0.41 | 93.24 | 0.58 | 82.04 | 0.60 | 62.44 | 0.43 |
8 | 115 (1) | 82 (1) | 0.15 (1) | 48.13 | 0.35 | 120.14 | 1.35 | 163.64 | 1.50 | 136.54 | 1.44 | 123.84 | 1.14 |
9 | 8 (−1.682) | 60 (0) | 0.1 (0) | 5.30 | 0.08 | 72.24 | 0.49 | 77.24 | 0.61 | 76.34 | 0.55 | 75.64 | 0.53 |
10 | 142 (1.682) | 60 (0) | 0.1 (0) | 30.59 | 0.25 | 83.14 | 0.71 | 102.54 | 1.21 | 100.24 | 0.96 | 89.34 | 0.94 |
11 | 75 (0) | 23 (−1.682) | 0.1 (0) | 20.31 | 0.18 | 69.24 | 0.49 | 79.54 | 0.66 | 81.54 | 0.57 | 73.64 | 0.51 |
12 | 75 (0) | 97 (1.682) | 0.1 (0) | 35.61 | 0.29 | 95.14 | 1.08 | 115.94 | 1.07 | 124.34 | 1.43 | 104.24 | 0.96 |
13 | 75 (0) | 60 (0) | 0.016 (−1.682) | 9.08 | 0.09 | 19.38 | 0.17 | 59.69 | 0.21 | 57.64 | 0.38 | 25.35 | 0.17 |
14 | 75 (0) | 60 (0) | 0.184 (1.682) | 36.09 | 0.33 | 118.64 | 1.30 | 138.84 | 1.34 | 133.04 | 1.40 | 115.64 | 1.07 |
15 | 75 (0) | 60 (0) | 0.1 (0) | 27.97 | 0.25 | 83.64 | 1.01 | 92.54 | 1.09 | 106.94 | 0.94 | 89.14 | 0.81 |
16 | 75 (0) | 60 (0) | 0.1 (0) | 29.24 | 0.26 | 94.94 | 0.79 | 92.74 | 0.98 | 99.24 | 1.01 | 85.04 | 0.78 |
17 | 75 (0) | 60 (0) | 0.1 (0) | 28.28 | 0.25 | 91.34 | 1.00 | 94.94 | 1.16 | 95.24 | 0.95 | 79.44 | 0.81 |
18 | 75 (0) | 60 (0) | 0.1 (0) | 27.87 | 0.25 | 86.74 | 0.80 | 94.14 | 1.15 | 103.24 | 1.24 | 80.24 | 0.95 |
Composition (%) | |
---|---|
Cellulosea | 17.39 ± 0.37 |
Hemicellulose | 12.31 ± 0.20 |
Xylose | 10.92 ± 0.19 |
Arabinose + manose | 1.39 ± 0.01 |
Acetyl group | n.d. |
Lignin | 41.65 ± 0.24 |
Klason | 41.05 ± 0.24 |
Acid soluble | 0.60 ± 0.00 |
Fat | 2.54 ± 0.26 |
Protein | 1.64 ± 0.03 |
Ash | 0.87 ± 0.00 |
Moisture | 8.15 ± 0.02 |
Ethanol extractives | 13.20 ± 0.31 |
Inorganic substances | 2.56 ± 0.33 |
Macro minerals (Na, K, Ca, Mg, Fe) | 2.54 ± 0.33 |
Micro minerals (Zn, Mn, Cu) | 0.02 ± 0.00 |
Phenolic Compound (mg/L) | Extracts | ||||
---|---|---|---|---|---|
PB 0% | PB 30% | PB 50% | PB 70% | PB 90% | |
Hydroxycinnamic acids | |||||
caffeic acid | 4.2 ± 0.0 a | 11.5 ± 0.0 b | 13.8 ± 0.6 b | 12.0 ± 0.0 b | 12.0 ± 0.0 b |
ferulic acid | 9.7 ± 0.7 a | 23.2 ± 2.4 b | 24.5 ± 0.1 b | 21.2 ± 0.1 b | 21.3 ± 0.2 b |
cinnamic acid | 5.4 ± 0.6 a | 29.5 ± 0.3 b | 38.1 ± 1.0 c | 53.4 ± 2.5 d | 47.4 ± 0.2 e |
chlorogenic acid | 5.8 ± 1.0 a | 11.0 ± 0.3 b | 15.7 ± 0.1 c | 15.5 ± 0.5 c | 17.2 ± 0.8 d |
p-cumaric acid | n.q. | n.q. | n.q. | n.q. | n.q. |
Hydroxybenzoic acids | |||||
vanillic acid | 3.0 ± 1.0 a | 8.0 ± 1.0 b | 9.5 ± 0.5 c | 10.0 ± 0.0 c | 10.5 ± 0.5 c |
gallic acid | n.q. | n.q. | n.q. | n.q. | n.q. |
3,4 dihydroxybenzoic acid | 29.7 ± 1.3 a | 35.5 ± 1.0 b | 36.0 ± 0.3 b | 47.4 ± 5.1 c | 64.1 ± 1.7 d |
ellagic acid | 53.6 ± 2.0 a | 67.2 ± 0.4 b | 120.6 ± 5.1 c | 122.6 ± 2.1 c | 124.4 ± 16.1 c |
Flavan-3-ols | |||||
catechin | n.d. a | 105.0 ± 1.0 b | 133.5 ± 0.9 c | 135.5 ± 1.0 c | 133.0 ± 2.5 c |
gallocatechin | 149.3 ± 9.0 a | 140.3 ± 7.0 a | n.d. b | n.d. b | n.d. b |
epicatechin | n.q. | n.q. | n.q. | n.q. | n.q. |
Flavonoids | |||||
naringenin | n.d. a | 128.0 ± 19.2 b | 170.5 ± 18.7 c | 249.5 ± 11.0 d | 239.6 ± 4.3 d |
hesperidin | n.q. | n.q. | n.q. | n.q. | n.q. |
quercetin | n.d. a | n.d. a | 10.1 ± 0.1 b | 8.5 ± 0.5 b | 10.9 ± 2.5 b |
apigenin | n.d. a | 1.9 ± 0.3 b | 6.2 ± 0.1 c | 12.4 ± 1.2 d | 5.1 ± 0.0 c |
taxifolin | 73.1 ± 11.6 a | 166.4 ± 33.9 b | 422.9 ± 8.9 c | 463.2 ± 6.4 d | 463.9 ± 4.4 d |
Stilben | |||||
resveratrol | 3.8 ± 0.1 a | 10.9 ± 0.5 b | 13.5 ± 0.0 c | 18.9 ± 0.3 d | 17.5 ± 0.0 d |
Total | 337.6 | 738.5 | 1014.9 | 1171.1 | 1163.9 |
Antioxidant Activity | ||||||
---|---|---|---|---|---|---|
Extract | PB 0% | PB 30% | PB 50% | PB 70% | PB 90% | Trolox |
DPPH IC50 (µg/mL) | 99.96 ± 0.1 a | 73.11 ± 0.0 b | 49.74 ± 0.1 c | 55.04 ± 0.1 c | 100.1 ± 0.1 a | 10.81 ± 0.1 d |
ABTS IC50 (µg/mL) | 106.61 ± 8.0 a | 89.18 ± 0.9 b | 59.41 ± 2.1 c | 65.57 ± 5.0 c | 112.1 ± 9.5 a | 23.15 ± 4.0 d |
FRAP (mmol Fe2+/g PBE) | 101.9 ± 0.3 a | 112.4 ± 1.4 b | 138.5 ± 4.0 c | 122.9 ± 4.6 d | 101.3 ± 1.2 a | 136.1 ± 1.0 c |
Antihyperglycemic Activity | ||||||
Extract | PB 0% | PB 30% | PB 50% | PB 70% | PB 90% | Acarbose |
α-Amylase IC50 (µg/mL) | 531.5 ± 5.4 a | 536.4 ± 7.1 a | 546.3 ± 2.9 a | 254.2 ± 9.2 b | 300.3 ± 3.9 b | 35.42 ± 1.0 c |
α-Glucosidase IC50 (µg/mL) | 166.2 ± 1.1 a | 132.8 ± 10.8 b | 122.7 ± 11.3 b | 138.4 ± 7.4 b | 162.8 ± 3.7 a | 11000 ± 1.0 c |
Antimicrobial Activity (expressed in zone of inhibition, mm) | ||||||
Extract | PB 0% | PB 30% | PB 50% | PB 70% | PB 90% | LX |
A. brasiliensis | n.d. | n.d. | n.d. | n.d. | n.d. | 12.5 ± 1.2 |
S. cerevisiae | n.d. | n.d. | n.d. | n.d. | n.d. | 39.6 ± 4.2 |
C. albicans | n.d. | n.d. | n.d. | n.d. | n.d. | 24.8 ± 0.0 |
C. perfringens | 12.7 ± 0.2 | 13 ± 0.7 | 13.0 ± 0.2 | 13.0 ± 0.2 | 12.7 ± 0.4 | 18.5 ± 0.8 |
B. cereus | 9.6 ± 0.2 | 10.2 ± 0.0 | 9.9 ± 0.1 | 10.8 ± 0.1 | 10.3 ± 0.2 | 12.5 ± 2.6 |
S. aureus | 9.4 ± 0.2 | 10.1 ± 0.1 | 9.7 ± 0.2 | 10.1 ± 0.3 | 10.2 ± 0.1 | 12.5 ± 0.5 |
L. monocytogenes | 7.4 ± 0.0 | 7.8 ± 0.0 | 7.9 ± 0.6 | 8.7 ± 0.7 | 8.3 ± 0.6 | 9.8 ± 0.3 |
E. coli | n.d. | n.d. | n.d. | n.d. | n.d. | 11.4 ± 0.8 |
Salmonella Enteritidis | n.d. | n.d. | n.d. | n.d. | n.d. | 12.3 ± 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the Biological Potential of Pinus pinaster Bark Extracts. Antioxidants 2020, 9, 334. https://doi.org/10.3390/antiox9040334
Ferreira-Santos P, Genisheva Z, Botelho C, Santos J, Ramos C, Teixeira JA, Rocha CMR. Unravelling the Biological Potential of Pinus pinaster Bark Extracts. Antioxidants. 2020; 9(4):334. https://doi.org/10.3390/antiox9040334
Chicago/Turabian StyleFerreira-Santos, Pedro, Zlatina Genisheva, Cláudia Botelho, Joana Santos, Carla Ramos, José A. Teixeira, and Cristina M.R. Rocha. 2020. "Unravelling the Biological Potential of Pinus pinaster Bark Extracts" Antioxidants 9, no. 4: 334. https://doi.org/10.3390/antiox9040334