Beyond Antioxidants: How Redox Pathways Shape Cellular Signaling and Disease Outcomes
Abstract
1. Introduction
2. Redox Regulation of Receptor Tyrosine Kinase Signaling
2.1. Redox Control of RTK Signaling Pathways: Mechanisms and Implications
2.2. Redox as a Modulator of RTK Signaling in Disease Contexts
2.3. Redox Regulation of RTK Signaling via PTPs
2.4. Thioredoxin Regulation of RTK Signaling: From Receptor Biogenesis to Downstream Activation
Redox Enzyme/System | RTK Target (Direct or Indirect) | Mechanism of Regulation | Biological/Cellular Context | Disease/Physiological Relevance | Ref. |
---|---|---|---|---|---|
SOD2↑/Catalase ↓ | AXL | SOD2 ↑ + Catalase↓ → H2O2 ↑ → AXL oxidation/phosphorylation → AKT/ERK → survival ↑ | CLL cells exhibiting SOD2–catalase imbalance | Promotes CLL cell survival and proliferation via AXL-mediated prosurvival pathways | [34] |
UV-induced ROS ↑/Cu/Zn-SOD1 ↑ | RET | UV → ROS↑ → RET Cys-ox → autophosphorylation → activation; SOD1 ↑ or Cys → Ser → no activation | Cultured cells exposed to UV light | Demonstrates ROS-driven RET activation mechanism with relevance to UV-induced carcinogenesis | [35] |
Cytosolic SOD1 ↑ | Growth-factor RTKs (e.g., EGFR) | SOD1 ↑ → O2•− → H2O2 ↑ → PTP1B-ox (inactive) → sustained RTK phosphorylation; SOD1 ↓ → H2O2 ↓ → PTP1B active → RTK signaling↓ | Growth-factor-stimulated cells | Controls signaling duration/intensity; relevant to tumor cell proliferation | [36] |
Extracellular SOD3 ↑ | Multiple RTKs | SOD3 ↑ → extracellular O2− → altered redox milieu → ↑phosphorylation of RTKs → Src kinase activation → transcriptional shifts in small GTPase modulators | Anaplastic thyroid cancer cells | Modulates growth-signaling networks in aggressive thyroid cancer, with potential impact on tumor progression and therapy response | [38] |
Mitochondrial SOD2 ↑ | PDGFβ receptor, Src kinase | MnSOD ↑ → H2O2 ↓ → ↓ PDGFRβ & Src phosphorylation → ↓ ERK → reduced apoptosis; Exogenous H2O2 → PDGFRβ/Src activation → Ras–Raf–MEK–ERK → apoptosis | Murine fibroblasts treated with exogenous H2O2 | Protects cells from oxidative stress–induced RTK overactivation and apoptosis; relevant to tissue injury and fibrotic disease models | [39] |
Hyperforin-induced HMOX1 ↑ → lipid peroxidation & autophagy ↑ | AXL | Hyperforin → HMOX1 ↑ → ↑ lipid peroxidation & autophagy → AXL expression ↓ → AKT/ERK signaling ↓ | BRAF-mutant melanoma cells treated with hyperforin | Impairs melanoma cell invasion and metastasis by suppressing AXL-driven survival pathways | [40] |
NRF2 ↑ (GPx4 ↑, SOD2 ↑) → NRF2 silencing/GPx4 inhibition | EGFR | NRF2 ↑ → GPx4 & SOD2 ↑ → ROS ↓ → EGFR inhibitor resistance; GPx4 inhibition → ROS ↑ → restores sensitivity to EGFR inhibitors | Erlotinib/osimertinib-resistant NSCLC cell lines | Overcoming acquired resistance to EGFR-targeted therapies in NSCLC | [41] |
Prx2 oxidation ↓/restoration ↑ | PDGFRβ; VEGFR2 | Prx2 oxidation → impaired VEGFR2 signaling (EC repair); Prx2 restoration → normalization of VEGFR2 signaling | Vascular smooth muscle cells and endothelial cells in balloon-injured rat carotid arteries and human atherosclerotic lesions | Drives pathological neointimal growth and defective repair in vascular injury/atherosclerosis; restoration of Prx2 activity inhibits hyperplasia and promotes healing | [43] |
Selenium supplementation → ↑ plasma GPx activity | sFlt-1 (soluble VEGFR-1) | GPx activity ↑ → oxidative stress ↓; no measurable change in circulating sFlt-1 levels | Pregnant women at high risk for preeclampsia | Shows that boosting antioxidant enzymes does not always alter RTK-derived factors in vivo, underscoring context dependence of redox interventions in preeclampsia | [44] |
GPx1 ↓/restoration ↑ | Multiple RTKs | smoke → GPx1 ↓ → ↑ Tyr phosphorylation → inflammation; GPx1 restoration → GPx1 binds → PTP1B↑→ ↓ RTK phosphorylation → ↓ inflammation | Mouse model of cigarette smoke–induced lung inflammation | Demonstrates GPx1–PTP1B–PP2A axis in suppressing RTK-driven inflammatory signaling and preserving lung structure | [45] |
Mitochondrial SOD2 ↓ | IGF-1R | SOD2 ↓→ O2− ↑ → PTP1B → IGF-1R & PIP3 dephosphorylation → ↓ AKT phosphorylation → ↓ fibroblast proliferation | Fibroblasts from SOD2 knockout mice | Decreased collagen synthesis and age-related skin thinning due to impaired proliferation | [49] |
Cytosolic Trx system (TrxR1/Trx1/TRP14) ↑ | PDGFRβ | TrxR1/Trx1/TRP14 ↑ → reduction PTP1B → PDGFRβ dephos phorylation;TrxR1 inhibition → PTP1B remains inactive → PDGFRβ phosphorylation → ↑ proliferation | PDGF-BB-stimulated cells (e.g., fibroblasts) | Ensures timely termination of PDGFRβ signaling; dysregulation may drive hyperproliferative diseases (e.g., fibrosis, cancer) | [50] |
ER-resident Trx-like AGR2 ↑/loss | EGFR | AGR2 ↑ → mixed-disulfide with nascent EGFR → plasma-membrane trafficking → EGFR expression → EGR activation; AGR2 loss or Cys-active-site mutation → EGFR misfolding → ↓ surface EGFR & signaling | Cultured EGFR-expressing mammalian cells; ER maturation stage | Critical for EGFR-driven proliferation and gene expression in cancers; AGR2 dysfunction impairs EGFR signaling and may affect tumor growth | [53] |
3. mTORC1/AMPK Metabolic Sensing Axis
3.1. Organelle Redox Checkpoints: Peroxisomal and Lysosomal Regulation of mTORC1
3.2. Redox–mTORC1 Crosstalk Across Tissues and Pathologies
3.3. mTORC1 as a Redox Rheostat: From Proliferation to Stress Resistance
3.4. SOD1 Inhibition as a Convergence Point for mTORC1 Suppression and Autophagy
4. Redox-Mediated Regulation of Wnt/β-Catenin Signaling
4.1. Context-Dependent Roles of Glutathione Peroxidases in Wnt Signaling
4.2. Superoxide Dismutases and Thioredoxin Proteins as Redox Checkpoints of Wnt/β-Catenin Signaling
4.3. Peroxiredoxin Family Proteins as Modulators of Wnt/β-Catenin Signaling
4.4. Glutathione Peroxidases as Wnt/β-Catenin-Driven Detoxification Modules
Enzyme (Expression Change) | Wnt/β-Catenin Outcome | Model | Ref. |
---|---|---|---|
GPx3 (knockout; absent) | No change in β-catenin levels or classic Wnt target gene expression | Nkx3.1−/− mice | [74] |
GPx3 (knockout; absent) | ↑ β-catenin, ↑ c-Myc, ↑ Cyclin D1, ↑ FoxA2, ↑ MMP7, ↓ Axin2 | TRAMP prostate cancer model | [75] |
GPx4 (maternal loss; overexpression) | Loss: ↑ nuclear β-catenin & misregulated organizer genes Overexpression: suppressed Wnt reporter activity | Zebrafish embryos | [76] |
SOD (PEG-SOD treatment/systemic SOD↑) | Restores Wnt5a expression, Ser9-GSK-3β phosphorylation, and nuclear β-catenin; prevents apoptosis; reduces proteinuria | High-glucose–treated mesangial cells & STZ-diabetic rats | [77] |
SOD1 (overexpression or Tempol treatment) | Normalizes Dishevelled phosphorylation; restores β-catenin and Wnt5a levels; prevents cardiac malformations | Maternal hyperglycemic mouse embryos | [78] |
SOD2↓ (Inhibition by TMP) | ↓ Wnt3a & total β-catenin; GSK-3β p-Ser9↓ and p-Tyr216↑ → accelerated β-catenin degradation and loss of nuclear β-catenin | HCT-116 colon cancer cells | [79] |
Trx1 (knockdown↓ by siRNA; rescue↑ via rhTrx1) | Knockdown: ↓ Ser9-GSK-3β phosphorylation, ↓ β-catenin & osteogenic markers (ALP, COL1, OPN); Rescue: restores Ser9-GSK-3β/β-catenin signaling and bone repair | PDLSCs under inflammatory/diabetic stress & mouse periodontitis models | [80] |
NRX (overexpression/depletion) | Overexpression inhibited ectopic secondary axis formation; knockdown induced eye-absent head defects (rescued by GSK3β/dnTCF) and elevated Wnt signaling (↑ TCF/LEF reporter activity, c-Myc, Cyclin D1, BrdU incorporation, focus formation) | Xenopus embryos; NIH3T3 fibroblasts | [81] |
TrxR1 (knockdown↓) & Sep15 (knockdown↓; combined) | Combined depletion → up-regulation of Wnt/β-catenin–related genes (Prl2c2, Tnc) | CT26 colon cancer cells | [82] |
PRX5 (knockdown; expression↓) | ↑ ROS → GSK-3β inhibition (Ser9-p) → nuclear β-catenin accumulation; ↑ cyclin D1 & MMP13; ↑ Wnt4 & Frizzled-2 feed-forward amplification of Wnt signaling | Osteoarthritic chondrocytes | [83] |
PRX2 (silenced; expression↓) | ↑ ROS → GSK-3β activation → ↑ β-catenin Ser33/37 phosphorylation → ↓ nuclear β-catenin → suppressed c-Myc & Survivin; slowed tumor growth | CRC cells in mouse xenografts | [84] |
PRX1 (knockdown; expression↓) | ↓ Total β-catenin; ↑ E-cadherin; ↓ vimentin; slowed proliferation, migration, and invasion (EMT suppression) | Caov-3 ovarian cancer cells | [86] |
PRX5 (overexpression; expression↑) | ROS scavenging → ↑ Ser9-GSK-3β phosphorylation → β-catenin stabilization → protection from apoptosis & pro-survival Bcl-2 shift | SW480 CRC cells treated with β-lapachone | [87] |
PRX6 (up in CSCs; knockdown↓) | Knockdown: ↓ CD133 & ABCG2 (CSC markers) and ↓ β-catenin | Cisplatin-resistant NSCLC cancer stem cells | [88] |
PRX2 (depletion; expression↓) | ↑ β-catenin proteasomal degradation → ↓ Wnt reporter activity → ↓ proliferation & invasion (rescued by proteasome blocker or GSK-3β inhibitor) | Gastric cancer cells (siRNA/conoidin A) | [89] |
PRX2 (knockdown↓; rescue via miR-122 (microRNA-122)↑) | PRX2 knockdown: ↑ ROS & apoptosis; ↓ proliferation, sphere-formation, migration, invasion, angiogenesis; no significant Wnt/Hedgehog/Notch inhibition. miR-122 silencing of PRX2: further ↑ ROS & apoptosis; strong suppression of Wnt/β-catenin, Hedgehog, and Notch pathways; abrogated CSC traits and in vivo tumor growth | Gefitinib-resistant NSCLC CSCs | [90] |
PRX2 (knockdown; expression↓) | ↑ ROS; ↓ nuclear β-catenin and Wnt target expression; impaired migration, invasion, and metastatic potential | CD133+/CD44+ colon cancer stem cells | [91] |
PRX2 (overexpression ↑; knockdown ↓) | Overexpression increased TOPflash reporter activity; knockdown reduced cyclin D1 and c-Myc expression, induced senescence (↑ β-galactosidase), inhibited tumor growth; PRX2 binds β-catenin and promotes its nuclear translocation | HCC cells & in vivo tumor model | [92] |
5. Redox Regulation of TGF-β/SMAD Pathways
6. Redox Regulation of NF-κB Signaling: Mechanisms and Therapeutic Insights
6.1. Catalase-Centered Redox Strategies for Modulating NF-κB Signaling
6.1.1. Genetic Catalase Overexpression as a Redox Brake on NF-κB Activation
6.1.2. Catalytic Antioxidant Strategies to Inhibit NF-κB Activation
6.1.3. Localized Catalase Effects on NF-κB Signaling
6.2. Glutathione Peroxidases in NF-κB Regulation
6.2.1. Isoform-Specific and Genetic Dissection of GPx-Mediated NF-κB Regulation
6.2.2. Enhancement of GPx Activity to Suppress NF-κB Signaling
6.3. Peroxidase-Driven NF-κB Modulation
6.4. Context-Dependent Modulation of NF-κB Signaling by SOD
6.5. The Thioredoxin Network in NF-κB Regulation
Intervention | Model/System | NF-κB Read-Out | Ref. |
---|---|---|---|
Cardiomyocyte-specific catalase overexpression | STZ-induced type 1 diabetic mouse heart | ↓ ROS levels; ↓ nuclear NF-κB p65 translocation; ↓ Beclin-1 & LC3-II expression (blunted autophagy) | [113] |
Cardiomyocyte-specific catalase overexpression | STZ-induced type 1 diabetic mouse heart | ↓ reactive nitrogen species; blocked IκBα phosphorylation & p65 nuclear translocation; ↓ IL-6, IL-1β, myeloperoxidase, iNOS; prevented 3-nitrotyrosine modifications on α-KGD & ATP synthase, preserving enzyme activity and cardiac function | [114] |
Forced catalase overexpression | TNF-α–stimulated HepG2, Caco-2, and MCF-7 cancer cells (MCF-7 overexpression) | Converts prolonged p65 nuclear localization into a brief, transient pulse; sensitizes cells to apoptosis | [115] |
Lotus seed protein isolate–mediated catalase activation | Murine RAW264.7 macrophages | Blocked NF-κB p65 nuclear translocation & MAPK phosphorylation; ↓ iNOS, COX-2, TNF-α, IL-6, IL-1β expression | [116] |
Mangiferin-mediated catalase activation | Human U-937 macrophages & HepG2 hepatocytes | Prevented IKK-mediated IκBα degradation & NF-κB p65 nuclear translocation in response to TNF-α, LPS, PMA, or H2O2 | [118] |
EUK-134 dual SOD/catalase mimetic | TNF-α–stimulated breast cancer cells | Clears superoxide & H2O2; inhibits TNF-α–induced NF-κB p65 activation; suppresses tumorigenic behaviors; induces cell-cycle arrest & apoptosis | [119] |
Inhaled recombinant catalase (rhCatalase) | H1N1-infected mouse lungs (in vivo) | ↓ TLR-4, ↓ TLR-7, ↓ NF-κB p65 gene expression (transcriptional suppression of the TLR–NF-κB pathway) | [120] |
Catalase-loaded inhalable nanogels | Neutrophil-driven asthma model (airways) | Normalized phosphorylated/total p65 ratio; inhibited NLRP3 inflammasome; reduced inflammatory cytokines & bacterial burden | [121] |
Mitochondrial-targeted catalase overexpression (mCAT) | LPS-induced lung inflammation in mice | ↑ NF-κB activation via metabolic signaling (raised NADH/NAD+ ratio and ATP production) | [123] |
Catalase inhibition with 3-AT | Peroxisomal ROS accumulation model | Blocked NF-κB nuclear translocation & downstream cytokine expression via 4-HNE–IκBα adducts | [124] |
Exogenous catalase addition | BV2 microglia & RAW264.7 macrophages | Rapid IκBα degradation; NF-κB promoter activation; engagement of PI3K/AKT, p70S6K & JNK signaling; ↑ COX-2 & iNOS mRNA/protein (PI3K blockade halts effect; p70S6K & JNK inhibitors distinguish translational vs. transcriptional control) | [125] |
Exogenous catalase addition | Macrophage-lineage cells | Enhanced iNOS transcription & mRNA stability (abolished by NF-κB or PI3K inhibition); up-regulated COX-2 via NF-κB & PI3K (independent of ERK, p38, or JNK for mRNA stabilization) | [126,127] |
GPx1 knockout | Mice after cerebral ischemia–reperfusion | ↑ p65 Ser536 phosphorylation; ↑ p50/p65 DNA binding (effects reversed by broad-spectrum NF-κB inhibitor) | [128] |
GPx4 & GPx2 isoform activity | Mammalian contexts | GPx4 specifically suppresses cytokine- and stress-induced NF-κB activation; GPx2 (via Nrf2 linkage) helps protect the gut from NF-κB-driven inflammation | [129] |
Selenium deprivation & targeted GPx1/GPx4 knock-down | Human Caco-2 cells | Selenium deprivation ↑ TNF-α–triggered NF-κB activation & IL-8 induction; GPx1 knock-down removes restraint on cytokine-driven NF-κB; GPx4 knock-down enhances flagellin-mediated NF-κB | [130] |
GPx7 reconstitution | Bile-salt-treated or TNF-α-stimulated Barrett’s esophagus esophageal cells | Inhibits NF-κB p65 phosphorylation and downstream cytokine/chemokine up-regulation; clinical samples show inverse correlation between GPx7 levels and pro-inflammatory transcripts | [131] |
GPx7 overexpression (antioxidant-independent mechanism) | Barrett’s esophagus esophageal cells | Accelerated proteasomal degradation of TNFR1 & TRAF2; disassembly of upstream signaling complexes; prevented p65 activation | [132] |
Compound 102 (small-molecule GPx4 activator) | In vitro TNF-α–stimulated cellular NF-κB reporter assay | ↓ TNF-α–induced NF-κB reporter activity; ↑ anti-inflammatory HETEs; ↓ ROS; protection against ferroptosis | [133] |
Adenoviral GPx1 restoration | GPx1−/− mice exposed to methamphetamine | Prevented meth-induced NF-κB activation; preserved striatal dopamine & tyrosine hydroxylase levels; improved motor behavior | [134] |
Ebselen pretreatment (GPx1 mimic) | Cochlear neurons exposed to peroxynitrite | Restored GPx1 levels; ↓ lipid peroxidation; attenuated p65 nuclear translocation; rescued neuronal survival | [135] |
EC-SOD (extracellular SOD) | Skin (keratinocytes/mouse skin) | Prevented p65 phosphorylation & nuclear translocation; ↓ COX-2 and iNOS expression | [143] |
Exogenous SOD addition | Pancreatic cancer cells | ↑ Intracellular H2O2; activated ERK & NF-κB driving EMT, invasion, wound closure (effects reversed by catalase or ERK inhibition) | [144] |
TrxR1 inhibition (curcumin, CDNB, or siRNA) | Cultured cells (NF-κB reporter assay; endogenous IκB-α mRNA) | Inhibits NF-κB reporter activity & IκB-α mRNA induction; no effect on IκB-α degradation, p50/p65 nuclear translocation, or DNA binding—indicating a block at Ser536 phosphorylation–dependent transactivation | [146] |
Mitochondrial Trx2 overexpression | TNF-α-stimulated cells | ↓ ROS accumulation; prevented p65/p50 nuclear translocation; suppressed NF-κB reporter activity | [148] |
Trx2 restoration via lentiviral delivery | Macrophages; septic mice | ↓ IL-6 & TNF-α production by blocking p65 phosphorylation, nuclear translocation & upstream MAPK activation; improved survival and reduced organ injury in vivo | [149] |
H2O2 exposure (±TRX2 manipulation) | Adipocytes | H2O2: ↓ TRX2, ↓ ATP & antioxidant capacity → IκBα degradation, NF-κB phosphorylation & ↑ pro-inflammatory cytokines; reversed by TRX2 OE or NAC | [150] |
Trx release from TXNIP inhibition | Respiratory epithelial cells (in vitro & injured lungs in vivo) | Removal of S-nitrosyl adducts from p65 enabling DNA binding and target-gene induction; blocking TrxR or Trx knockdown prevents p65 denitrosylation and downstream cytokine expression | [151] |
Txl-2b overexpression | Colorectal cancer cells | ↑ IκBα & p65 phosphorylation; ↑ nuclear p65 accumulation; ↑ NF-κB–dependent Cyclin D1, Bcl-2 family, and Survivin expression; silencing Txl-2b reverses these effects, reducing proliferation and chemoresistance | [152] |
Blockade of Trx nuclear entry with cHCEU | Airway epithelial cells | Abolished NF-κB DNA binding and pro-inflammatory cytokine production despite elevated Nrf2 and Trx levels | [153] |
Schisanhenol-induced up-regulation of Trx1 | Neurons exposed to MPP+ toxicity | Prevented ASK1–p38 activation, IκBα degradation, and NF-κB nuclear translocation, thereby blocking apoptosis | [154] |
TXNDC9 knockdown in UV-B–irradiated squamous-cell carcinoma cells | UV-B–irradiated human squamous-cell carcinoma cells | Reduced IκBα phosphorylation and p65 translocation, restoring apoptosis and impairing NF-κB-driven survival signaling | [155] |
7. Redox Modulation of Hedgehog, Notch, and G-Protein-Coupled Receptor Signaling
8. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3-AT | 3-amino-1,2,4-triazole |
4E-BP1 | eIF4E-binding protein 1 |
4-HNE | 4-Hydroxynonenal |
α-KGD | α-ketoglutarate dehydrogenase |
ABCG2 | ATP-binding cassette subfamily G member 2 |
AGR2 | Anterior gradient 2 |
AhR | aryl hydrocarbon receptor |
AKT | Ak strain transforming, aka. protein kinase B |
APC | adenomatous polyposis coli |
ASK1 | apoptosis signal-regulating kinase 1 |
ATM | ataxia-telangiectasia mutated (kinase) |
ATN-224 | tetrathiomolybdate derivative |
AXL | AXL receptor tyrosine kinase |
AMPK | AMP-activated protein kinase |
Bcl-2 | B-cell lymphoma 2 |
BrdU | 5-bromo-2′-deoxyuridine |
CLL | chronic lymphocytic leukemia |
COX-2 | cyclooxygenase-2 |
CRC | colorectal cancer |
CSC | cancer stem–like cell |
Dvl | Dishevelled |
E-selectin | endothelial-leukocyte adhesion molecule-1 |
EC-SOD | extracellular superoxide dismutase |
EGFR | epidermal growth factor receptor |
EGR1 | early growth response 1 |
eIF4E | eukaryotic translation initiation factor 4E |
EMT | epithelial–mesenchymal transition |
ER | endoplasmic reticulum |
ERK/ERK1/2 | extracellular signal-regulated kinase (isoforms 1 and 2) |
FoxA2 | Forkhead box A2 |
GDF15 | growth differentiation factor 15 |
GPCR | G protein-coupled receptor |
GPx | glutathione peroxidases |
Grx3 | glutaredoxin 3 |
GSK-3β | glycogen synthase kinase-3β |
GSTs | glutathione S-transferases |
H1N1 | influenza A virus subtype H1N1 |
H2O2 | hydrogen peroxide |
HCC | hepatocellular carcinoma |
Hh | Hedgehog |
HETEs | hydroxyeicosatetraenoic acids (e.g., 12-/15-HETE) |
HIV-1 | human immunodeficiency virus type 1 |
HMOX1 | heme oxygenase-1 |
IGF-1R | insulin-like growth factor 1 receptor |
IκBα | inhibitor of κB alpha |
IKK | IκB kinase |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
JNK | c-Jun N-terminal kinase |
KEAP1 | Kelch-like ECH-associated protein 1 |
LC3 | microtubule-associated protein 1 light chain 3 |
LPS | lipopolysaccharide |
LSPI | lotus seed protein isolate |
MAPK | mitogen-activated protein kinase |
mCAT | mitochondrial-targeted catalase |
MEK | MAPK/ERK kinase |
miR-122 | microRNA-122 |
MMP | matrix metalloproteinase |
MnSOD | mitochondrial superoxide dismutase |
MPK38 | p38-regulated/activated protein kinase |
MPP+ | 1-methyl-4-phenylpyridinium |
MSCs | mesenchymal stem cells |
mtDNA | mitochondrial DNA |
mTORC1 | mechanistic Target of Rapamycin Complex 1 |
NAC | N-acetylcysteine |
NADH | nicotinamide adenine dinucleotide |
NADPH | nicotinamide adenine dinucleotide phosphate |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
Nkx3.1 | NK3 homeobox 1 |
NMD | nonsense-mediated mRNA decay |
NRF | nuclear factor erythroid |
NRX | nucleoredoxin |
NSCLC | non-small cell lung cancer |
OSCN− | hypothiocyanite |
p70S6K | 70 kDa ribosomal S6 kinase |
PCOS | polycystic ovary syndrome |
PDGFRβ | platelet-derived growth factor receptor-β |
PDGF-BB | platelet-derived growth factor-BB |
PEG-SOD | polyethylene glycol–conjugated superoxide dismutase |
PEX5 | peroxisomal biogenesis factor 5 |
PERK | PKR-like endoplasmic reticulum kinase |
PI3K | phosphoinositide 3-kinase |
PIN | prostatic intraepithelial neoplasia |
PIP3 | phosphatidylinositol-3,4,5-triphosphate |
PP2A | protein phosphatase 2A |
PMA | phorbol 12-myristate 13-acetate |
Prxs | peroxiredoxins |
PTP1B | protein tyrosine phosphatase 1B |
PTPs | protein tyrosine phosphatases |
RET | REarranged during Transfection |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
RTKs | receptor tyrosine kinases |
RXRα | retinoid X receptor alpha |
sFlt-1 | soluble fms-like tyrosine kinase-1, soluble VEGFR-1 |
siRNA | small interfering RNA |
SMO | Smoothened |
SODs | superoxide dismutases |
STAT3 | Signal Transducer and Activator of Transcription 3 |
STZ | streptozotocin |
TCF/LEF | T-cell factor/Lymphoid enhancer factor |
TCGA | The Cancer Genome Atlas |
TGF-β | transforming growth factor beta |
TLR-4; TLR-7 | Toll-like receptor-4/-7 |
TNF-α | tumor necrosis factor-α |
TNFR1 | tumor necrosis factor receptor 1 |
TNKS1 | tankyrase 1 |
TOPflash | TCF/LEF luciferase Wnt reporter assay |
TPx | thioredoxin peroxidase |
TRAF2 | TNF receptor–associated factor 2 |
TRAMP | Transgenic Adenocarcinoma of Mouse Prostate |
TRP14 | thioredoxin-related protein 14 |
Trx | thioredoxin |
TSC | tuberous sclerosis complex |
TXL-2b | thioredoxin-like protein 2b |
TXNDC9 | thioredoxin domain-containing protein 9 |
TXNIP | thioredoxin-interacting protein |
ULK1 | Unc-51-like kinase 1 |
UUO | unilateral ureteral obstruction |
UV | ultraviolet |
VEGF | vascular endothelial growth factor |
VEGFR1/VEGFR2 | vascular endothelial growth factor receptor 1/2 |
Wnt | Wingless/Int |
References
- Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox regulation: Mechanisms, biology and therapeutic targets in diseases. Signal Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef]
- Thénard, L.J. Observations sur des nouvelles combinaisons entre l’oxigène et divers acides. Ann. Chim. Phys. 1818, 8, 306–312. [Google Scholar]
- Schönbein, C.F. Ueber die katalytische Wirksamkeit organischer Materien und deren Verbreitung in der Pflanzen-und Thierwelt. J. Prakt. Chem. 1863, 89, 323–344. [Google Scholar] [CrossRef]
- Loew, O. A new enzyme of general occurrence in organisms. Science 1900, 11, 701–702. [Google Scholar] [CrossRef]
- Zámocký, M.; Koller, F. Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol. 1999, 72, 19–66. [Google Scholar] [CrossRef]
- Gerschman, R.; Gilbert, D.L.; Nye, S.W.; Dwyer, P.; Fenn, W.O. Oxygen poisoning and x-irradiation: A mechanism in common. Science 1954, 119, 623–626. [Google Scholar] [CrossRef]
- Rotruck, J.T.; Pope, A.l.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.C. Hemoglobin catabolism: I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem. 1957, 229, 189–197. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M.; Gregolin, C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1985, 839, 62–70. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef] [PubMed]
- Cozza, G.; Rossetto, M.; Bosello-Travain, V.; Maiorino, M.; Roveri, A.; Toppo, S.; Zaccarin, M.; Zennaro, L.; Ursini, F. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radic. Biol. Med. 2017, 112, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ursini, F.; Maiorino, M.; Valente, M.; Ferri, L.; Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1982, 710, 197–211. [Google Scholar] [CrossRef]
- Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008, 15, 234–245. [Google Scholar] [CrossRef]
- Laurent, T.C.; Moore, E.C.; Reichard, P. Enzymatic synthesis of deoxyribonucleotides: IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J. Biol. Chem. 1964, 239, 3436–3444. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.C.; Reichard, P.; Thelander, L. Enzymatic synthesis of deoxyribonucleotides: V. Purification and properties of thioredoxin reductase from Escherichia coli B. J. Biol. Chem. 1964, 239, 3445–3452. [Google Scholar]
- Griendling, K.K.; Minieri, C.A.; Ollerenshaw, J.D.; Alexander, R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994, 74, 1141–1148. [Google Scholar] [CrossRef]
- Harris, J. Release of a macromolecular protein component from human erythrocyte ghosts. Biochim. Biophys. Acta (BBA)-Biomembr. 1968, 150, 534–537. [Google Scholar] [CrossRef]
- Harris, J.R. Torin and cylindrin, two extrinsic proteins of the erythrocyte membrane: A review. Nouv. Rev. Fr. D’Hematologie 1980, 22, 411–448. [Google Scholar]
- Flohé, L.; Harris, J.R. Introduction: History of the peroxiredoxins and topical perspectives. In Peroxiredoxin Systems: Structures and Functions; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–25. [Google Scholar]
- Neumann, C.A.; Cao, J.; Manevich, Y. Peroxiredoxin 1 and its role in cell signaling. Cell Cycle 2009, 8, 4072–4078. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.B. The phospholipase A2. activity of peroxiredoxin 6. J. Lipid Res. 2018, 59, 1132–1147. [Google Scholar] [CrossRef]
- Lee, Y.J. Knockout Mouse Models for Peroxiredoxins. Antioxidant 2020, 9, 182. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Forstrom, J.W.; Zakowski, J.J.; Tappel, A.L. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 1978, 17, 2639–2644. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Holmgren, A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J. Biol. Chem. 2000, 275, 18121–18128. [Google Scholar] [CrossRef] [PubMed]
- Segal, A.W.; Jones, O.T. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 1978, 276, 515–517. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.; Fieschi, F. NADPH oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef]
- Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 1997, 236, 313–322. [Google Scholar] [CrossRef]
- Leichert, L.I.; Gehrke, F.; Gudiseva, H.V.; Blackwell, T.; Ilbert, M.; Walker, A.K.; Strahler, J.R.; Andrews, P.C.; Jakob, U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 8197–8202. [Google Scholar] [CrossRef]
- Rosenwasser, S.; Graff van Creveld, S.; Schatz, D.; Malitsky, S.; Tzfadia, O.; Aharoni, A.; Levin, Y.; Gabashvili, A.; Feldmesser, E.; Vardi, A. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proc. Natl. Acad. Sci. USA 2014, 111, 2740–2745. [Google Scholar] [CrossRef]
- Jones, D.P.; Sies, H. The redox code. Antioxid. Redox Signal. 2015, 23, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Pulivarthi, C.B.; Choubey, S.S.; Pandey, S.K.; Gautam, A.S.; Singh, R.K. Receptor tyrosine kinases: An overview. In Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders; Academic Press: Cambridge, MA, USA, 2023; pp. 45–77. [Google Scholar]
- Maiti, G.P.; Sinha, S.; Mahmud, H.; Boysen, J.; Mendez, M.T.; Vesely, S.K.; Holter-Chakrabarty, J.; Kay, N.E.; Ghosh, A.K. SIRT3 overexpression and epigenetic silencing of catalase regulate ROS accumulation in CLL cells activating AXL signaling axis. Blood Cancer J. 2021, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Iwashita, T.; Takeda, K.; Akhand, A.A.; Liu, W.; Yoshihara, M.; Asai, N.; Suzuki, H.; Takahashi, M.; Nakashima, I. Ultraviolet Light Induces Redox Reaction–mediated Dimerization and Superactivation of Oncogenic Ret Tyrosine Kinases. Mol. Biol. Cell 2000, 11, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Juarez, J.C.; Manuia, M.; Burnett, M.E.; Betancourt, O.; Boivin, B.; Shaw, D.E.; Tonks, N.K.; Mazar, A.P.; Donate, F. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA 2008, 105, 7147–7152. [Google Scholar] [CrossRef]
- World, C.; Spindel, O.N.; Berk, B.C. Thioredoxin-interacting protein mediates TRX1 translocation to the plasma membrane in response to tumor necrosis factor-α: A key mechanism for vascular endothelial growth factor receptor-2 transactivation by reactive oxygen species. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1890–1897. [Google Scholar] [CrossRef]
- Laukkanen, M.O.; Cammarota, F.; Esposito, T.; Salvatore, M.; Castellone, M.D. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI. PLoS ONE 2015, 10, e0121441. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Cho, H.-N.; Jeoung, D.-I.; Soh, J.-W.; Cho, C.K.; Bae, S.; Chung, H.-Y.; Lee, S.-J.; Lee, Y.-S. HSP25 overexpression attenuates oxidative stress–induced apoptosis: Roles of ERK1/2 signaling and manganese superoxide dismutase. Free Radic. Biol. Med. 2004, 36, 429–444. [Google Scholar] [CrossRef]
- Cardile, A.; Passarini, C.; Zanrè, V.; Fiore, A.; Menegazzi, M. Hyperforin enhances heme oxygenase-1 expression triggering lipid peroxidation in braf-mutated melanoma cells and hampers the expression of pro-metastatic markers. Antioxidants 2023, 12, 1369. [Google Scholar] [CrossRef]
- Ma, C.-S.; Lv, Q.-M.; Zhang, K.-R.; Tang, Y.-B.; Zhang, Y.-F.; Shen, Y.; Lei, H.-M.; Zhu, L. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells. Acta Pharmacol. Sin. 2021, 42, 613–623. [Google Scholar] [CrossRef]
- Tran, T.-V.; Shin, E.-J.; Nguyen, L.T.T.; Lee, Y.; Kim, D.-J.; Jeong, J.H.; Jang, C.-G.; Nah, S.-Y.; Toriumi, K.; Nabeshima, T. Protein kinase Cδ gene depletion protects against methamphetamine-induced impairments in recognition memory and ERK1/2 signaling via upregulation of glutathione peroxidase-1 gene. Mol. Neurobiol. 2018, 55, 4136–4159. [Google Scholar] [CrossRef]
- Kang, D.H.; Lee, D.J.; Kim, J.; Lee, J.Y.; Kim, H.-W.; Kwon, K.; Taylor, W.R.; Jo, H.; Kang, S.W. Vascular injury involves the overoxidation of peroxiredoxin type II and is recovered by the peroxiredoxin activity mimetic that induces reendothelialization. Circulation 2013, 128, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Heidari, E.; Tara, F.; Ghayour-Mobarhan, M.; Tavalaei, S.; Boskabadi, H.; Taghi, S.M.; Yaghoubi, M.A. The effects of selenium supplementation on serum plasminogen activator inhibitor-1/plasminogen activator inhibitor-2 in pregnant women. Clin. Biochem. 2011, 44, S185. [Google Scholar] [CrossRef]
- Geraghty, P.; Hardigan, A.A.; Wallace, A.M.; Mirochnitchenko, O.; Thankachen, J.; Arellanos, L.; Thompson, V.; D’Armiento, J.M.; Foronjy, R.F. The glutathione peroxidase 1–protein tyrosine phosphatase 1B–protein phosphatase 2A Axis. A key determinant of airway inflammation and alveolar destruction. Am. J. Respir. Cell Mol. Biol. 2013, 49, 721–730. [Google Scholar] [CrossRef]
- Duong, C.; Seow, H.J.; Bozinovski, S.; Crack, P.J.; Anderson, G.P.; Vlahos, R. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 299, L425–L433. [Google Scholar] [CrossRef]
- Yao, X.Q.; Zhang, X.X.; Yin, Y.Y.; Liu, B.; Luo, D.J.; Liu, D.; Chen, N.N.; Ni, Z.F.; Wang, X.; Wang, Q.; et al. Glycogen synthase kinase-3β regulates Tyr307 phosphorylation of protein phosphatase-2A via protein tyrosine phosphatase 1B but not Src. Biochem. J. 2011, 437, 335–344. [Google Scholar] [CrossRef]
- Wallace, A.M.; Hardigan, A.; Geraghty, P.; Salim, S.; Gaffney, A.; Thankachen, J.; Arellanos, L.; D’Armiento, J.M.; Foronjy, R.F. Protein phosphatase 2A regulates innate immune and proteolytic responses to cigarette smoke exposure in the lung. Toxicol. Sci. 2012, 126, 589–599. [Google Scholar] [CrossRef]
- Singh, K.; Maity, P.; Krug, L.; Meyer, P.; Treiber, N.; Lucas, T.; Basu, A.; Kochanek, S.; Wlaschek, M.; Geiger, H. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP 1 B and PTEN. EMBO Mol. Med. 2015, 7, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Dagnell, M.; Frijhoff, J.; Pader, I.; Augsten, M.; Boivin, B.; Xu, J.; Mandal, P.K.; Tonks, N.K.; Hellberg, C.; Conrad, M. Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 13398–13403. [Google Scholar] [CrossRef]
- Dagnell, M.; Arnér, E.S. Endogenous electrophiles and peroxymonocarbonate can link tyrosine phosphorylation cascades with the cytosolic TXNRD1 selenoprotein and the KEAP1/NRF2 system. Curr. Opin. Chem. Biol. 2024, 83, 102522. [Google Scholar] [CrossRef]
- Sartelet, H.; Rougemont, A.-L.; Fabre, M.; Castaing, M.; Duval, M.; Fetni, R.; Michiels, S.; Beaunoyer, M.; Vassal, G. Activation of the phosphatidylinositol 3′-kinase/AKT pathway in neuroblastoma and its regulation by thioredoxin 1. Hum. Pathol. 2011, 42, 1727–1739. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Wodziak, D.; Lowe, A.W. Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J. Biol. Chem. 2015, 290, 8016–8027. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122, 3589–3594. [Google Scholar] [CrossRef]
- Waterham, H.R.; Ebberink, M.S. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.L.; Pomatto, L.C.; Tripathi, D.N.; Davies, K.J. Redox regulation of homeostasis and proteostasis in peroxisomes. Physiol. Rev. 2018, 98, 89–115. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, Y.; Cao, Y.; Wang, X.; Guo, Y.; Chen, J.; Horn, J.; Ponomareva, L.V.; Chaiswing, L.; Shaaban, K.A. Frenolicin B targets peroxiredoxin 1 and glutaredoxin 3 to trigger ROS/4E-BP1-mediated antitumor effects. Cell Chem. Biol. 2019, 26, 366–377.e12. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.K.; Lee, J.N.; Maharjan, Y.; Park, C.; Choe, S.-K.; Ho, Y.-S.; Kwon, H.M.; Park, R. Catalase-deficient mice induce aging faster through lysosomal dysfunction. Cell Commun. Signal. 2022, 20, 192. [Google Scholar] [CrossRef]
- Kumar, S.L.; Kushawaha, B.; Mohanty, A.; Kumari, A.; Kumar, A.; Beniwal, R.; Kumar, P.K.; Athar, M.; Rao, D.K.; Rao, H.P. Glutathione peroxidase (GPX1)-Selenocysteine metabolism preserves the follicular fluid’s (FF) redox homeostasis via IGF-1-NMD cascade in follicular ovarian cysts (FOCs). Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2024, 1870, 167235. [Google Scholar]
- Agborbesong, E.; Zhou, J.X.; Li, L.X.; Calvet, J.P.; Li, X. Antioxidant enzyme peroxiredoxin 5 regulates cyst growth and ciliogenesis via modulating Plk1 stability. FASEB J. 2022, 36, e22089. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, T.; Lu, Y.; Zhao, W.; Zhang, J.; Chen, Q.; Ge, G.; Hua, Y.; Chen, K.; Ullah, I. Exosomal thioredoxin-1 from hypoxic human umbilical cord mesenchymal stem cells inhibits ferroptosis in doxorubicin-induced cardiotoxicity via mTORC1 signaling. Free Radic. Biol. Med. 2022, 193, 108–121. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kim, S.; Son, M.-J.; Rou, W.S.; Kim, S.H.; Eun, H.S.; Lee, B.S. Clinical significance of the thioredoxin system and thioredoxin-domain-containing protein family in hepatocellular carcinoma. Dig. Dis. Sci. 2019, 64, 123–136. [Google Scholar] [CrossRef]
- Wong, R.W.; Hagen, T. Mechanistic target of rapamycin (mTOR) dependent regulation of thioredoxin interacting protein (TXNIP) transcription in hypoxia. Biochem. Biophys. Res. Commun. 2013, 433, 40–46. [Google Scholar] [CrossRef]
- Tsang, C.K.; Chen, M.; Cheng, X.; Qi, Y.; Chen, Y.; Das, I.; Li, X.; Vallat, B.; Fu, L.-W.; Qian, C.-N. SOD1 phosphorylation by mTORC1 couples nutrient sensing and redox regulation. Mol. Cell 2018, 70, 502–515.e508. [Google Scholar] [CrossRef]
- Kong, H.; Chandel, N.S. To claim growth turf, mTOR says SOD off. Mol. Cell 2018, 70, 383–384. [Google Scholar] [CrossRef]
- Norambuena, A.; Sun, X.; Wallrabe, H.; Cao, R.; Sun, N.; Pardo, E.; Shivange, N.; Wang, D.B.; Post, L.A.; Ferris, H.A. SOD1 mediates lysosome-to-mitochondria communication and its dysregulation by amyloid-β oligomers. Neurobiol. Dis. 2022, 169, 105737. [Google Scholar] [CrossRef]
- König, S.; Strassheimer, F.; Brandner, N.I.; Schröder, J.-H.; Urban, H.; Harwart, L.F.; Hehlgans, S.; Steinbach, J.P.; Ronellenfitsch, M.W.; Luger, A.-L. Superoxide dismutase 1 mediates adaptation to the tumor microenvironment of glioma cells via mammalian target of rapamycin complex 1. Cell Death Discov. 2024, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, U.; Nagy, M.; Fenton, W.A.; Horwich, A.L. Absence of lipofuscin in motor neurons of SOD1-linked ALS mice. Proc. Natl. Acad. Sci. USA 2014, 111, 11055–11060. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Jin, X.; Yu, G.; Wang, M.; Liu, L.; Zhang, W.; Wu, J.; Wang, F.; Yang, J.; Luo, Q. Oleanolic acid blocks the purine salvage pathway for cancer therapy by inactivating SOD1 and stimulating lysosomal proteolysis. Mol. Ther.-Oncolytics 2021, 23, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Katanaev, V.L.; Baldin, A.; Denisenko, T.V.; Silachev, D.N.; Ivanova, A.E.; Sukhikh, G.T.; Jia, L.; Ashrafyan, L.A. Cells of the tumor microenvironment speak the Wnt language. Trends Mol. Med. 2023, 29, 468–480. [Google Scholar] [CrossRef]
- Larasati, Y.; Boudou, C.; Koval, A.; Katanaev, V.L. Unlocking the Wnt pathway: Therapeutic potential of selective targeting FZD7 in cancer. Drug Discov. Today 2022, 27, 777–792. [Google Scholar] [CrossRef]
- Shaw, H.V.; Koval, A.; Katanaev, V.L. Targeting the Wnt signalling pathway in cancer: Prospects and perils. Swiss Med. Wkly. 2019, 149, w20129. [Google Scholar] [CrossRef]
- Kim, U.; Kim, C.Y.; Lee, J.M.; Ryu, B.; Kim, J.; Bang, J.; Ahn, N.; Park, J.H. Loss of glutathione peroxidase 3 induces ROS and contributes to prostatic hyperplasia in Nkx3. 1 knockout mice. Andrology 2020, 8, 1486–1493. [Google Scholar] [CrossRef]
- Chang, S.N.; Lee, J.M.; Oh, H.; Park, J.H. Glutathione peroxidase 3 inhibits prostate tumorigenesis in TRAMP mice. Prostate 2016, 76, 1387–1398. [Google Scholar] [CrossRef]
- Rong, X.; Zhou, Y.; Liu, Y.; Zhao, B.; Wang, B.; Wang, C.; Gong, X.; Tang, P.; Lu, L.; Li, Y. Glutathione peroxidase 4 inhibits Wnt/β-catenin signaling and regulates dorsal organizer formation in zebrafish embryos. Development 2017, 144, 1687–1697. [Google Scholar]
- Lin, C.-L.; Wang, J.-Y.; Ko, J.-Y.; Surendran, K.; Huang, Y.-T.; Kuo, Y.-H.; Wang, F.-S. Superoxide destabilization of β-catenin augments apoptosis of high-glucose-stressed mesangial cells. Endocrinology 2008, 149, 2934–2942. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Fisher, S.A.; Zhong, J.; Wu, Y.; Yang, P. Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus–induced apoptosis and heart defects through restoration of impaired Wnt signaling. Circ. Cardiovasc. Genet. 2015, 8, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.Y.; Mohan, C.D.; Eng, H.; Narula, A.S.; Namjoshi, O.A.; Blough, B.E.; Rangappa, K.S.; Sethi, G.; Kumar, A.P.; Ahn, K.S. 2, 3, 5, 6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules 2022, 12, 891. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.; Zhan, C.; Chen, L.; Lin, Z.; Song, Z. Thioredoxin-1 promotes the restoration of alveolar bone in periodontitis with diabetes. iScience 2023, 26, 107618. [Google Scholar] [CrossRef] [PubMed]
- Funato, Y.; Michiue, T.; Asashima, M.; Miki, H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt–β-catenin signalling through dishevelled. Nat. Cell Biol. 2006, 8, 501–508. [Google Scholar] [CrossRef]
- Tsuji, P.A.; Carlson, B.A.; Yoo, M.-H.; Naranjo-Suarez, S.; Xu, X.-M.; He, Y.; Asaki, E.; Seifried, H.E.; Reinhold, W.C.; Davis, C.D. The 15kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways. PLoS ONE 2015, 10, e0124487. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, R.; Zhang, Y.; Zhou, L.; Dai, Y. Knockdown of peroxiredoxin 5 inhibits the growth of osteoarthritic chondrocytes via upregulating Wnt/β-catenin signaling. Free Radic. Biol. Med. 2014, 76, 251–260. [Google Scholar] [CrossRef]
- Lu, W.; Fu, Z.; Wang, H.; Feng, J.; Wei, J.; Guo, J. Peroxiredoxin 2 knockdown by RNA interference inhibits the growth of colorectal cancer cells by downregulating Wnt/β-catenin signaling. Cancer Lett. 2014, 343, 190–199. [Google Scholar] [CrossRef]
- Kang, D.H.; Lee, J.H.; Kang, S.W. Survival of APC-mutant colorectal cancer cells requires interaction between tankyrase and a thiol peroxidase, peroxiredoxin II. BMB Rep. 2017, 50, 391–392. [Google Scholar] [CrossRef]
- Zheng, M.-J.; Wang, J.; Wang, H.-M.; Gao, L.-L.; Li, X.; Zhang, W.-C.; Gou, R.; Guo, Q.; Nie, X.; Liu, J.-J. Decreased expression of peroxiredoxin1 inhibits proliferation, invasion, and metastasis of ovarian cancer cell. OncoTargets Ther. 2018, 11, 7745–7761. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kwon, T.; Kim, J.-S.; Chandimali, N.; Jin, Y.-H.; Gong, Y.-X.; Xie, D.-P.; Han, Y.-H.; Jin, M.-H.; Shen, G.-N. Peroxiredoxin V Reduces β-Lapachone-induced apoptosis of colon cancer cells. Anticancer Res. 2019, 39, 3677–3686. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Su, Q.; Gao, M.; Liang, Q.; Li, J.; Chen, X. Differential expression and effects of peroxiredoxin-6 on drug resistance and cancer stem cell-like properties in non-small cell lung cancer. OncoTargets Ther. 2019, 12, 10477–10486. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Jin, J.-O.; Yu, K.J.; Kim, H.S.; Lee, P.C.-W. Inhibition of peroxiredoxin 2 suppresses Wnt/β-catenin signaling in gastric cancer. Biochem. Biophys. Res. Commun. 2019, 512, 250–255. [Google Scholar] [CrossRef]
- Chandimali, N.; Huynh, D.L.; Zhang, J.J.; Lee, J.C.; Yu, D.-Y.; Jeong, D.K.; Kwon, T. MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells. Cancer Gene Ther. 2019, 26, 292–304. [Google Scholar] [CrossRef]
- Peng, L.; Xiong, Y.; Wang, R.; Xiang, L.; Zhou, H.; Fu, Z. The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging 2021, 13, 11170. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, X.; Xu, G.; Zhou, S.; An, T.; Huang, Z. Silencing of peroxiredoxin 2 suppresses proliferation and Wnt/β-catenin pathway, and induces senescence in hepatocellular carcinoma. Oncol. Res. 2023, 32, 213–226. [Google Scholar] [CrossRef]
- Kipp, A.; Banning, A.; Brigelius-Flohé, R. Activation of the glutathione peroxidase 2 (GPx2) promoter by β-catenin. Biol. Chem. 2007, 388, 1027–1033. [Google Scholar] [CrossRef]
- Giera, S.; Braeuning, A.; Köhle, C.; Bursch, W.; Metzger, U.; Buchmann, A.; Schwarz, M. Wnt/β-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol. Sci. 2010, 115, 22–33. [Google Scholar] [CrossRef]
- Braeuning, A. Interplay of β-catenin with xenobiotic-sensing receptors and its role in glutathione S-transferase expression. Curr. Drug Metab. 2012, 13, 203–214. [Google Scholar] [CrossRef]
- Balogun, O.; Shao, D.; Carson, M.; King, T.; Kosar, K.; Zhang, R.; Zeng, G.; Cornuet, P.; Goel, C.; Lee, E. Loss of β-catenin reveals a role for glutathione in regulating oxidative stress during cholestatic liver disease. Hepatol. Commun. 2024, 8, e0485. [Google Scholar] [CrossRef]
- Schmierer, B.; Hill, C.S. TGFβ–SMAD signal transduction: Molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 2007, 8, 970–982. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, J.; Zhou, Q.; Hu, Y.; Wang, Q.; Yang, L.; Chen, H.; An, H.; Zhou, C.; Wang, Y. Glutathione prevents high glucose-induced pancreatic fibrosis by suppressing pancreatic stellate cell activation via the ROS/TGFβ/SMAD pathway. Cell Death Dis. 2022, 13, 440. [Google Scholar] [CrossRef]
- Chang, C.; Cheng, Y.-Y.; Kamlapurkar, S.; White, S.; Tang, P.W.; Elhaw, A.T.; Javed, Z.; Aird, K.M.; Mythreye, K.; Phaëton, R. GPX3 supports ovarian cancer tumor progression in vivo and promotes expression of GDF15. Gynecol. Oncol. 2024, 185, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Cheng, M.; Lian, W.; Leng, Y.; Qin, X.; Wang, Y.; Zhou, P.; Liu, X.; Peng, T.; Wang, R. GPX4 deficiency-induced ferroptosis drives endometrial epithelial fibrosis in polycystic ovary syndrome. Redox Biol. 2025, 83, 103615. [Google Scholar] [CrossRef] [PubMed]
- Buday, A.; Orsy, P.; Godó, M.; Mózes, M.; Kökény, G.; Lacza, Z.; Koller, Á.; Ungvári, Z.; Gross, M.-L.; Benyó, Z. Elevated systemic TGF-β impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE−/− mice. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H386–H395. [Google Scholar] [CrossRef]
- Andrade, B.B.; Araújo-Santos, T.; Luz, N.F.; Khouri, R.; Bozza, M.T.; Camargo, L.; Barral, A.; Borges, V.M.; Barral-Netto, M. Heme impairs prostaglandin E2 and TGF-β production by human mononuclear cells via Cu/Zn superoxide dismutase: Insight into the pathogenesis of severe malaria. J. Immunol. 2010, 185, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Fatma, N.; Kubo, E.; Sharma, P.; Beier, D.; Singh, D. Impaired homeostasis and phenotypic abnormalities in Prdx6−/− mice lens epithelial cells by reactive oxygen species: Increased expression and activation of TGFβ. Cell Death Differ. 2005, 12, 734–750. [Google Scholar] [CrossRef]
- Sun, X.; Mu, Q.; Yang, F.; Liu, M.; Zhou, B. The effects of thioredoxin peroxidase from Cysticercus cellulosae excretory-secretory antigens on TGF-β signaling pathway and Th17 cells differentiation in Jurkat cells by transcriptomics. Parasitol. Res. 2024, 123, 50. [Google Scholar] [CrossRef]
- Choi, H.-I.; Ma, S.K.; Bae, E.H.; Lee, J.; Kim, S.W. Peroxiredoxin 5 protects TGF-β induced fibrosis by inhibiting Stat3 activation in rat kidney interstitial fibroblast cells. PLoS ONE 2016, 11, e0149266. [Google Scholar] [CrossRef]
- Choi, H.-I.; Kim, D.-H.; Park, J.S.; Kim, I.J.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Lee, T.-H.; Kim, S.W. Peroxiredoxin V (PrdxV) negatively regulates EGFR/Stat3-mediated fibrogenesis via a Cys48-dependent interaction between PrdxV and Stat3. Sci. Rep. 2019, 9, 8751. [Google Scholar] [CrossRef]
- Manoharan, R.; Seong, H.-A.; Ha, H. Thioredoxin inhibits MPK38-induced ASK1, TGF-β, and p53 function in a phosphorylation-dependent manner. Free Radic. Biol. Med. 2013, 63, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sun, Y.; Zhu, Y.; Qiao, S.; Cai, J.; Zhang, Z. Melatonin relieves liver fibrosis induced by Txnrd3 knockdown and nickel exposure via IRE1/NF-kB/NLRP3 and PERK/TGF-β1 axis activation. Life Sci. 2022, 301, 120622. [Google Scholar] [CrossRef]
- Ishikawa, F.; Kaneko, E.; Sugimoto, T.; Ishijima, T.; Wakamatsu, M.; Yuasa, A.; Sampei, R.; Mori, K.; Nose, K.; Shibanuma, M. A mitochondrial thioredoxin-sensitive mechanism regulates TGF-β-mediated gene expression associated with epithelial–mesenchymal transition. Biochem. Biophys. Res. Commun. 2014, 443, 821–827. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Schreck, R.; Rieber, P.; Baeuerle, P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991, 10, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.T.; Staal, F.; Gitler, C.; Herzenberg, L.A.; Herzenberg, L.A. Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway. Proc. Natl. Acad. Sci. USA 1994, 91, 11527–11531. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tao, Y.; Huang, Y.; Zhan, K.; Xue, M.; Wang, Y.; Ruan, D.; Liang, Y.; Huang, X.; Lin, J. Catalase ameliorates diabetes-induced cardiac injury through reduced p65/RelA-mediated transcription of BECN1. J. Cell. Mol. Med. 2017, 21, 3420–3434. [Google Scholar] [CrossRef]
- Cong, W.; Ruan, D.; Xuan, Y.; Niu, C.; Tao, Y.; Wang, Y.; Zhan, K.; Cai, L.; Jin, L.; Tan, Y. Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart. J. Mol. Cell. Cardiol. 2015, 89, 314–325. [Google Scholar] [CrossRef]
- Lüpertz, R.; Chovolou, Y.; Kampkötter, A.; Wätjen, W.; Kahl, R. Catalase overexpression impairs TNF-α induced NF-κB activation and sensitizes MCF-7 cells against TNF-α. J. Cell. Biochem. 2008, 103, 1497–1511. [Google Scholar] [CrossRef]
- Moon, S.W.; Ahn, C.-B.; Oh, Y.; Je, J.-Y. Lotus (Nelumbo nucifera) seed protein isolate exerts anti-inflammatory and antioxidant effects in LPS-stimulated RAW264. 7 macrophages via inhibiting NF-κB and MAPK pathways, and upregulating catalase activity. Int. J. Biol. Macromol. 2019, 134, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.-H.; Arshad, M.U.; Sultan, M.T. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.K.; Zaidi, A.H.; Gupta, P.; Mokhamatam, R.B.; Raviprakash, N.; Mahali, S.K.; Manna, S.K. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines. Eur. J. Pharmacol. 2015, 764, 520–528. [Google Scholar] [CrossRef]
- Shah, M.H.; Liu, G.-S.; Thompson, E.W.; Dusting, G.J.; Peshavariya, H.M. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells. Breast Cancer Res. Treat. 2015, 150, 523–534. [Google Scholar] [CrossRef]
- Shi, X.; Shi, Z.; Huang, H.; Zhu, H.; Zhou, P.; Zhu, H.; Ju, D. Ability of recombinant human catalase to suppress inflammation of the murine lung induced by influenza A. Inflammation 2014, 37, 809–817. [Google Scholar] [CrossRef]
- Zuo, X.; Guo, X.; Gu, Y.; Zhao, D.; Zou, Z.; Shen, Y.; He, C.; Rong, Y.; Xu, C.; Wang, F. A novel catalase nanogels for effective treatment of neutrophilic asthma. Adv. Funct. Mater. 2024, 34, 2316496. [Google Scholar] [CrossRef]
- Senger, N.; C Parletta, A.; Marques, B.V.; Akamine, E.H.; Diniz, G.P.; Campagnole-Santos, M.J.; Santos, R.A.; Barreto-Chaves, M.L.M. Angiotensin-(1-7) prevents T3-induced cardiomyocyte hypertrophy by upregulating FOXO3/SOD1/catalase and downregulating NF-ĸB. J. Cell. Physiol. 2021, 236, 3059–3072. [Google Scholar] [CrossRef]
- Han, W.; Fessel, J.P.; Sherrill, T.; Kocurek, E.G.; Yull, F.E.; Blackwell, T.S. Enhanced expression of catalase in mitochondria modulates NF-κB–Dependent lung inflammation through alteration of metabolic activity in macrophages. J. Immunol. 2020, 205, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Maharjan, Y.; Kumar Dutta, R.; Wei, X.; Kim, J.H.; Son, J.; Park, C.; Park, R. Pharmacological inhibition of catalase induces peroxisome leakage and suppression of LPS induced inflammatory response in Raw 264.7 cell. PLoS ONE 2021, 16, e0245799. [Google Scholar] [CrossRef]
- Jang, B.-C.; Paik, J.-H.; Kim, S.-P.; Shin, D.-H.; Song, D.-K.; Park, J.-G.; Suh, M.-H.; Park, J.-W.; Suh, S.-I. Catalase induced expression of inflammatory mediators via activation of NF-κB, PI3K/AKT, p70S6K, and JNKs in BV2 microglia. Cell. Signal. 2005, 17, 625–633. [Google Scholar] [CrossRef]
- Jang, B.-C.; Paik, J.-H.; Kim, S.-P.; Bae, J.-H.; Mun, K.-C.; Song, D.-K.; Cho, C.-H.; Shin, D.-H.; Kwon, T.K.; Park, J.-W. Catalase induces the expression of inducible nitric oxide synthase through activation of NF-κB and PI3K signaling pathway in Raw 264.7 cells. Biochem. Pharmacol. 2004, 68, 2167–2176. [Google Scholar] [CrossRef]
- Jang, B.-C.; Kim, D.-H.; Park, J.-W.; Kwon, T.K.; Kim, S.-P.; Song, D.-K.; Park, J.-G.; Bae, J.-H.; Mun, K.-C.; Baek, W.-K. Induction of cyclooxygenase-2 in macrophages by catalase: Role of NF-κB and PI3K signaling pathways. Biochem. Biophys. Res. Commun. 2004, 316, 398–406. [Google Scholar] [CrossRef]
- Crack, P.J.; Taylor, J.M.; Ali, U.; Mansell, A.; Hertzog, P.J. Potential contribution of NF-κB in neuronal cell death in the glutathione peroxidase-1 knockout mouse in response to ischemia-reperfusion injury. Stroke 2006, 37, 1533–1538. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 2006, 387, 1329–1335. [Google Scholar] [CrossRef]
- Gong, G.; Meplan, C.; Gautrey, H.; Hall, J.; Hesketh, J. Differential effects of selenium and knock-down of glutathione peroxidases on TNFα and flagellin inflammatory responses in gut epithelial cells. Genes Nutr. 2012, 7, 167–178. [Google Scholar] [CrossRef]
- Peng, D.-F.; Hu, T.-L.; Soutto, M.; Belkhiri, A.; El-Rifai, W. Glutathione peroxidase 7 suppresses bile salt-induced expression of pro-inflammatory cytokines in Barrett’s carcinogenesis. J. Cancer 2014, 5, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.-F.; Hu, T.-L.; Soutto, M.; Belkhiri, A.; El-Rifai, W. Loss of glutathione peroxidase 7 promotes TNF-α-induced NF-κB activation in Barrett’s carcinogenesis. Carcinogenesis 2014, 35, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Deng, X.; Xie, X.; Liu, Y.; Friedmann Angeli, J.P.; Lai, L. Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Front. Pharmacol. 2018, 9, 1120. [Google Scholar] [CrossRef]
- Sharma, N.; Shin, E.-J.; Pham, D.T.; Sharma, G.; Dang, D.-K.; Duong, C.X.; Kang, S.W.; Nah, S.-Y.; Jang, C.-G.; Lei, X.G. GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-κB transcription factor. Food Chem. Toxicol. 2021, 154, 112313. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Chen, F.; Wang, M.; Xiao, Y.; Wang, H.; Xu, L.; Liu, W. Glutathione peroxidase 1 protects against peroxynitrite-induced spiral ganglion neuron damage through attenuating NF-κB pathway activation. Front. Cell. Neurosci. 2022, 16, 841731. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, Z.; Cheng, D.; Yao, W.; Li, H.; Zhang, Q.; Guo, R.; Li, K.; Zou, L.; Wang, J.-S. Lepidium meyenii (Maca) polysaccharides mitigate liver toxicity of aflatoxin B1 through activation of NRF-2/GPX and AhR/STAT3 signaling pathways. Toxicon 2024, 250, 108117. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, Z.; Li, L.; Wang, X.; Wei, X.; Gou, S.; Ding, Z.; Cai, Z.; Ling, Q.; Hoffmann, P.R. Mannose coated selenium nanoparticles normalize intestinal homeostasis in mice and mitigate colitis by inhibiting NF-κB activation and enhancing glutathione peroxidase expression. J. Nanobiotechnology 2024, 22, 613. [Google Scholar] [CrossRef] [PubMed]
- Izuhara, K.; Suzuki, S.; Ogawa, M.; Nunomura, S.; Nanri, Y.; Mitamura, Y.; Yoshihara, T. The significance of hypothiocyanite production via the pendrin/DUOX/peroxidase pathway in the pathogenesis of asthma. Oxidative Med. Cell. Longev. 2017, 2017, 1054801. [Google Scholar] [CrossRef]
- Wang, J.-G.; Mahmud, S.A.; Nguyen, J.; Slungaard, A. Thiocyanate-dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: A novel HOSCN-specific oxidant mechanism to amplify inflammation. J. Immunol. 2006, 177, 8714–8722. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-G.; Mahmud, S.A.; Thompson, J.A.; Geng, J.-G.; Key, N.S.; Slungaard, A. The principal eosinophil peroxidase product, HOSCN, is a uniquely potent phagocyte oxidant inducer of endothelial cell tissue factor activity: A potential mechanism for thrombosis in eosinophilic inflammatory states. Blood 2006, 107, 558–565. [Google Scholar] [CrossRef]
- Akasheh, N.; Walsh, M.-T.; Costello, R.W. Eosinophil peroxidase induces expression of cholinergic genes via cell surface neural interactions. Mol. Immunol. 2014, 62, 37–45. [Google Scholar] [CrossRef]
- Jin, D.-Y.; Chae, H.Z.; Rhee, S.G.; Jeang, K.-T. Regulatory role for a novel human thioredoxin peroxidase in NF-κB activation. J. Biol. Chem. 1997, 272, 30952–30961. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B.H.; Lee, H.; Jeon, B.; Lee, Y.S.; Kwon, M.-J.; Kim, T.-Y. Regulation of skin inflammation and angiogenesis by EC-SOD via HIF-1α and NF-κB pathways. Free Radic. Biol. Med. 2011, 51, 1985–1995. [Google Scholar] [CrossRef]
- Li, W.; Cao, L.; Han, L.; Xu, Q.; Ma, Q. Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-κB axis. Int. J. Oncol. 2015, 46, 2613–2620. [Google Scholar] [CrossRef]
- Abu-Zeid, E.H.; El-Hady, E.W.; Ahmed, G.A.; Abd-Elhakim, Y.M.; Ibrahim, D.; Abd-Allah, N.A.; Arisha, A.H.; Sobh, M.S.; Abo-Elmaaty, A.M. Nicotine exacerbates liver damage in a mice model of Ehrlich ascites carcinoma through shifting SOD/NF-κB/caspase-3 pathways: Ameliorating role of Chlorella vulgaris. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 7767–7783. [Google Scholar] [CrossRef] [PubMed]
- Heilman, J.M.; Burke, T.J.; McClain, C.J.; Watson, W.H. Transactivation of gene expression by NF-κB is dependent on thioredoxin reductase activity. Free Radic. Biol. Med. 2011, 51, 1533–1542. [Google Scholar] [CrossRef]
- Sakurai, A.; Yuasa, K.; Shoji, Y.; Himeno, S.; Tsujimoto, M.; Kunimoto, M.; Imura, N.; Hara, S. Overexpression of thioredoxin reductase 1 regulates NF-κB activation. J. Cell. Physiol. 2004, 198, 22–30. [Google Scholar] [CrossRef]
- Hansen, J.M.; Zhang, H.; Jones, D.P. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-α–induced reactive oxygen species generation, NF-κB activation, and apoptosis. Toxicol. Sci. 2006, 91, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xing, Y.; Tang, Z.; Tang, Y.; Shen, J.; Zhang, F. Thioredoxin-2 impacts the inflammatory response via suppression of NF-κB and MAPK signaling in sepsis shock. Biochem. Biophys. Res. Commun. 2020, 524, 876–882. [Google Scholar] [CrossRef]
- Hao, X.; Liu, M.; Zhang, X.; Yu, H.; Fang, Z.; Gao, X.; Chen, M.; Shao, Q.; Gao, W.; Lei, L. Thioredoxin-2 suppresses hydrogen peroxide–activated nuclear factor kappa B signaling via alleviating oxidative stress in bovine adipocytes. J. Dairy. Sci. 2024, 107, 4045–4055. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, Z.T.; Sha, Y.; Foster, M.W.; Foster, W.M.; Forrester, M.T.; Marshall, H.E. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J. Biol. Chem. 2014, 289, 3066–3072. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, X.; Luo, G.; Shen, G.; Li, K.; Ren, G.; Pan, Y.; Wang, X.; Fan, D. Thioredoxin-like protein 2b facilitates colon cancer cell proliferation and inhibits apoptosis via NF-κB pathway. Cancer Lett. 2015, 363, 119–126. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, X.; Sun, J.; Li, Q.; Lian, X.; Li, S.; Wang, Y.; Tian, L. Inhibition of nuclear thioredoxin aggregation attenuates PM2. 5-induced NF-κB activation and pro-inflammatory responses. Free Radic. Biol. Med. 2019, 130, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, L.; Jiao, Y.; Zhang, Y.; Wang, Y.; Zhu, K.; Sun, C. Thioredoxin-1 mediates neuroprotection of Schisanhenol against MPP+-induced apoptosis via suppression of ASK1-P38-NF-κB pathway in SH-SY5Y cells. Sci. Rep. 2021, 11, 21604. [Google Scholar] [CrossRef]
- Xiao, Z.; Xu, Q.; Wang, H.; Zhou, X.; Zhu, Y.; Bao, C.; Chen, L.; Zhang, P.; Lin, M.; Ji, C. Thioredoxin domain-containing protein 9 protects cells against UV-B-provoked apoptosis via NF-κB/p65 activation in cutaneous squamous cell carcinoma. Oncol. Res. 2023, 31, 71–82. [Google Scholar] [CrossRef]
- Tan, W.-H. CHAPTER 1—Human Developmental Genetics. In Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics, 7th ed.; Pyeritz, R.E., Korf, B.R., Grody, W.W., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 1–68. [Google Scholar]
- Wang, R.; Wei, J.; Zhang, S.; Wu, X.; Guo, J.; Liu, M.; Du, K.; Xu, J.; Peng, L.; Lv, Z. Peroxiredoxin 2 is essential for maintaining cancer stem cell-like phenotype through activation of Hedgehog signaling pathway in colon cancer. Oncotarget 2016, 7, 86816–86828. [Google Scholar] [CrossRef]
- Lee, D.H.; Jung, Y.Y.; Park, M.H.; Jo, M.R.; Han, S.B.; Yoon, D.Y.; Roh, Y.S.; Hong, J.T. Peroxiredoxin 6 confers protection against nonalcoholic fatty liver disease through maintaining mitochondrial function. Antioxid. Redox Signal. 2019, 31, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Young, B.; Purcell, C.; Kuang, Y.-Q.; Charette, N.; Dupré, D.J. Superoxide dismutase 1 regulation of CXCR4-mediated signaling in prostate cancer cells is dependent on cellular oxidative state. Cell. Physiol. Biochem. 2015, 37, 2071–2084. [Google Scholar] [CrossRef]
- Schattauer, S.S.; Land, B.B.; Reichard, K.L.; Abraham, A.D.; Burgeno, L.M.; Kuhar, J.R.; Phillips, P.E.; Ong, S.E.; Chavkin, C. Peroxiredoxin 6 mediates Gαi protein-coupled receptor inactivation by cJun kinase. Nat. Commun. 2017, 8, 743. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Localization | Specificity |
---|---|---|
GPx1 | Cytoplasm and mitochondria | Reacts with H2O2, but not with complex lipid hydroperoxides |
GPx2 | Gastrointestinal system | First line of defense against oxidative stress from foods or intestinal flora |
GPx3 | Renal tubules | Abolishes all complex hydroperoxides, circulates in plasma as well as in cytoplasm and mitochondria |
GPx4 | Cytosol, mitochondria, and nucleus | The sole GPx that directly reduces complex lipid hydroperoxides |
GPx5 | Extracellular in epididymis | Protects sperms from hydrogen peroxide toxicity |
GPx6 | Embryonic and olfactory organ epithelial cells | GPx1–4 and GPx6 catalyze reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols, thereby reducing their toxicity and maintaining redox balance |
GPx7 | Endoplasmic reticulum (ER) lumen | Utilizes H2O2 to accelerate oxidative folding process of proteins |
GPx8 | Enriched in mitochondria-associated membranes | Similar to GPx7 because both have low glutathione peroxidase activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaj Sulaiman, A.; Katanaev, V.L. Beyond Antioxidants: How Redox Pathways Shape Cellular Signaling and Disease Outcomes. Antioxidants 2025, 14, 1142. https://doi.org/10.3390/antiox14091142
Alhaj Sulaiman A, Katanaev VL. Beyond Antioxidants: How Redox Pathways Shape Cellular Signaling and Disease Outcomes. Antioxidants. 2025; 14(9):1142. https://doi.org/10.3390/antiox14091142
Chicago/Turabian StyleAlhaj Sulaiman, Abdallah, and Vladimir L. Katanaev. 2025. "Beyond Antioxidants: How Redox Pathways Shape Cellular Signaling and Disease Outcomes" Antioxidants 14, no. 9: 1142. https://doi.org/10.3390/antiox14091142
APA StyleAlhaj Sulaiman, A., & Katanaev, V. L. (2025). Beyond Antioxidants: How Redox Pathways Shape Cellular Signaling and Disease Outcomes. Antioxidants, 14(9), 1142. https://doi.org/10.3390/antiox14091142