Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3′-Diindolylmethane in Hepatic Lipid Metabolism
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. DIM Treatment
2.3. Assay of Biochemical Parameters
2.4. Histological Analysis
2.5. Western Blot
2.6. Mouse Primary Hepatocytes Isolation
2.7. Culture of HepG2 Cell
2.8. Cell Treatment
2.9. Cell Viability Assay
2.10. Seahorse Assay
2.11. Lipidomics
2.12. Network Pharmacology
2.13. Molecular Docking
2.14. Statistical Analysis
3. Results
3.1. DIM Ameliorated Metabolic Disturbance Induced by HFD in WT Mice
3.2. DIM Prevented Hepatic Lipid Deposition and Oxidative Stress in WT Mice Fed with HFD
3.3. DIM Mitigated Hepatic Lipid Deposition and Oxidative Stress in Genetically Obese (ob/ob) Mice
3.4. DIM Reshaped the Hepatic Lipid Profile in Mice
3.5. DIM Modulates Hepatic Signaling Pathways Involved in Lipid Metabolism
3.6. DIM Triggered the Hepatic Phosphorylation of AMPKα in Mice
3.7. DIM Mitigated Cellular Lipid Deposition and Oxidative Stress Through AMPKα In Vitro
3.8. DIM Stimulated Lipogenesis and Fatty Acid Oxidation Through AMPK
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MASLD | Metabolic dysfunction-associated steatotic liver disease |
DNL | De novo lipogenesis |
VLDL | Very low-density lipoprotein |
TG | Triglyceride |
HFD | High-fat diet |
DIM | 3,3′-Diindolylmethane |
WT | Wild-type |
SPF | Specific pathogen-free |
CMC-Na | Sodium carboxymethyl cellulose |
NCD | Normal chow diet |
FFA | Free fatty acids |
TC | Total cholesterol |
ROS | Reactive oxygen species |
MDA | Malondialdehyde |
CAT | Catalase |
SOD | Superoxide dismutase |
LDL-c | Low density lipoprotein-cholesterol |
HDL-c | High density lipoprotein-cholesterol |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
H&E | Hematoxylin and eosin |
PVDF | Polyvinylidene difluoride |
BSA | Bovine serum albumin |
MPH | Mouse primary hepatocytes |
FBS | Fetal bovine serum |
PA | Palmitate |
CC | Compound C |
OCR | Oxygen consumption rate |
RP-LC–MS/MS | Reverse-phase liquid chromatography–tandem mass spectrometry |
IDA | Information-dependent acquisition |
SD | Standard deviation |
INSIGG1 | Insulin-induced gene 1 |
SREBP | Sterol-regulatory element binding protein |
ACC1 | Acetyl-CoA Carboxylase 1 |
LXR | Liver X receptors |
PPARα | Peroxisome Proliferator-Activated Receptor α |
AMPK | Adenosine 5‘-monophosphate (AMP)-activated protein kinase |
I3C | Indole-3-carbinol |
ER | Endoplasmic reticulum |
PGC-1α | Peroxisome-proliferator-activated receptor gamma coactivator 1 alpha |
PPRE | Peroxisome proliferator response elements |
PUFA | Polyunsaturated fatty acid |
References
- Hutchison, A.L.; Tavaglione, F.; Romeo, S.; Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J. Hepatol. 2023, 79, 1524–1541. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Sun, Q.; Fu, J. Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease. Autophagy 2024, 20, 221–241. [Google Scholar] [CrossRef]
- Huttasch, M.; Roden, M.; Kahl, S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024, 157, 155937. [Google Scholar] [CrossRef] [PubMed]
- Radosavljevic, T.; Brankovic, M.; Samardzic, J.; Djuretić, J.; Vukicevic, D.; Vucevic, D.; Jakovljevic, V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants 2024, 13, 906. [Google Scholar] [CrossRef]
- Ashrafian, L.; Sukhikh, G.; Kiselev, V.; Paltsev, M.; Drukh, V.; Kuznetsov, I.; Muyzhnek, E.; Apolikhina, I.; Andrianova, E. Double-blind randomized placebo-controlled multicenter clinical trial (phase IIa) on diindolylmethane’s efficacy and safety in the treatment of CIN: Implications for cervical cancer prevention. EPMA J. 2015, 6, 25. [Google Scholar] [CrossRef]
- Castañon, A.; Tristram, A.; Mesher, D.; Powell, N.; Beer, H.; Ashman, S.; Rieck, G.; Fielder, H.; Fiander, A.; Sasieni, P. Effect of diindolylmethane supplementation on low-grade cervical cytological abnormalities: Double-blind, randomised, controlled trial. Br. J. Cancer 2012, 106, 45–52. [Google Scholar] [CrossRef]
- Tian, C.; Deng, S.; Yang, M.; Bai, B.; Pan, Y.; Xie, G.; Zhao, D.; Wei, L. Indole-3-carbinol and its main derivative 3,3′-diindolylmethane: Regulatory roles and therapeutic potential in liver diseases. Biomed. Pharmacother. 2024, 180, 117525. [Google Scholar] [CrossRef]
- Ramakrishna, K.; Singh, N.; Krishnamurthy, S. Diindolylmethane ameliorates platelet aggregation and thrombosis: In silico, in vitro, and in vivo studies. Eur. J. Pharmacol. 2022, 919, 174812. [Google Scholar] [CrossRef]
- Du, H.; Zhang, X.; Zeng, Y.; Huang, X.; Chen, H.; Wang, S.; Wu, J.; Li, Q.; Zhu, W.; Li, H.; et al. A Novel Phytochemical, DIM, Inhibits Proliferation, Migration, Invasion and TNF-α Induced Inflammatory Cytokine Production of Synovial Fibroblasts From Rheumatoid Arthritis Patients by Targeting MAPK and AKT/mTOR Signal Pathway. Front. Immunol. 2019, 10, 1620. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.L.; Xiao, W.; Lei, Y.; Green, A.; Lee, X.; Maradana, M.R.; Gao, Y.; Xie, X.; Wang, R.; Chennell, G.; et al. Aryl hydrocarbon receptor utilises cellular zinc signals to maintain the gut epithelial barrier. Nat. Commun. 2023, 14, 5431. [Google Scholar] [CrossRef]
- Yang, H.; Seo, S.G.; Shin, S.H.; Min, S.; Kang, M.J.; Yoo, R.; Kwon, J.Y.; Yue, S.; Kim, K.H.; Cheng, J.X.; et al. 3,3′-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. Mol. Nutr. Food Res. 2017, 61, 1700119. [Google Scholar] [CrossRef]
- Anderton, M.J.; Manson, M.M.; Verschoyle, R.D.; Gescher, A.; Lamb, J.H.; Farmer, P.B.; Steward, W.P.; Williams, M.L. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin. Cancer Res. 2004, 10, 5233–5241. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Meng, Q.; Xu, J.; Jiao, Y.; Zhao, L.; Zhang, X.; Sarkar, F.H.; Brown, M.L.; Dritschilo, A.; Rosen, E.M. DIM (3,3′-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 18650–18655. [Google Scholar] [CrossRef] [PubMed]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Reed, G.A.; Sunega, J.M.; Sullivan, D.K.; Gray, J.C.; Mayo, M.S.; Crowell, J.A.; Hurwitz, A. Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3′-diindolylmethane in healthy subjects. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2619–2624. [Google Scholar] [CrossRef]
- Heath, E.I.; Heilbrun, L.K.; Li, J.; Vaishampayan, U.; Harper, F.; Pemberton, P.; Sarkar, F.H. A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′-Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am. J. Transl. Res. 2010, 2, 402–411. [Google Scholar] [PubMed]
- Li, X.; Zhuang, R.; Lu, Z.; Wu, F.; Wu, X.; Zhang, K.; Wang, M.; Li, W.; Zhang, H.; Zhu, W.; et al. Nobiletin promotes lipolysis of white adipose tissue in a circadian clock-dependent manner. J. Nutr. Biochem. 2024, 132, 109696. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, M.; Gao, L.; Yuan, H.; Chong, B.; Liu, Y.; Zhang, R.; Gong, Y.; Du, D.; Zhang, Y.; et al. Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut. Signal Transduct. Target. Ther. 2025, 10, 8. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Chen, J.; Miao, X.; Li, G.; He, Q.; Xu, H.; Li, H.; Wei, Y. Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. Sci. Total Environ. 2020, 723, 138180. [Google Scholar] [CrossRef]
- Shou, J.W.; Ma, J.; Wang, X.; Li, X.X.; Chen, S.C.; Kang, B.H.; Shaw, P.C. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. Adv. Sci. 2025, 12, e2406191. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Xia, M.; Vale, G.; Wang, S.; Kim, C.W.; Li, S.; McDonald, J.G.; Radhakrishnan, A.; Horton, J.D. DGAT2 inhibition blocks SREBP-1 cleavage and improves hepatic steatosis by increasing phosphatidylethanolamine in the ER. Cell Metab. 2024, 36, 617–629.e7. [Google Scholar] [CrossRef]
- Amarakoon, D.; Lee, W.J.; Tamia, G.; Lee, S.H. Indole-3-Carbinol: Occurrence, Health-Beneficial Properties, and Cellular/Molecular Mechanisms. Annu. Rev. Food Sci. Technol. 2023, 14, 347–366. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Yanagawa, Y.; Kim, S.; Park, T. Involvement of SIRT1-AMPK signaling in the protective action of indole-3-carbinol against hepatic steatosis in mice fed a high-fat diet. J. Nutr. Biochem. 2013, 24, 1393–1400. [Google Scholar] [CrossRef]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Hardie, D.G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 2023, 24, 255–272. [Google Scholar] [CrossRef]
- Palomer, X.; Wang, J.R.; Escalona, C.; Wu, S.; Wahli, W.; Vázquez-Carrera, M. Targeting AMPK as a potential treatment for hepatic fibrosis in MASLD. Trends Pharmacol. Sci. 2025, 46, 551–566. [Google Scholar] [CrossRef]
- Lee, J.; Yue, Y.; Park, Y.; Lee, S.H. 3,3′-Diindolylmethane Suppresses Adipogenesis Using AMPKα-Dependent Mechanism in 3T3-L1 Adipocytes and Caenorhabditis elegans. J. Med. Food 2017, 20, 646–652. [Google Scholar] [CrossRef]
- Su, J.; Fang, H.; Lin, Y.; Yao, Y.; Liu, Y.; Zhong, Y.; Li, X.; Sun, S.; Huang, B.; Yang, G.; et al. 3,3′-Diindolylmethane Ameliorates Metabolism Dysfunction-Associated Fatty Liver Disease via AhR/p38 MAPK Signaling. Nutrients 2025, 17, 1681. [Google Scholar] [CrossRef]
- Barbhuiya, P.A.; Yoshitomi, R.; Pathak, M.P. Understanding the Link Between Sterol Regulatory Element Binding Protein (SREBPs) and Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD). Curr. Obes. Rep. 2025, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.; et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Zhang, S.; Chellian, J.; Mohd, Z.; Epemolu, O.; Dinkova-Kostova, A.T.; Balijepalli, M.K.; Pichika, M.R. Swietenine Alleviates Nonalcoholic Fatty Liver Disease in Diabetic Mice via Lipogenesis Inhibition and Antioxidant Mechanisms. Antioxidants 2023, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Shang, Y.; Hegmar, H.; Nasr, P. Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol. Hepatol. 2024, 9, 944–956. [Google Scholar] [CrossRef]
- Han, Y.; Hu, Z.; Cui, A.; Liu, Z.; Ma, F.; Xue, Y.; Liu, Y.; Zhang, F.; Zhao, Z.; Yu, Y.; et al. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat. Commun. 2019, 10, 623. [Google Scholar] [CrossRef]
- Qian, L.; Zhu, Y.; Deng, C.; Liang, Z.; Chen, J.; Chen, Y.; Wang, X.; Liu, Y.; Tian, Y.; Yang, Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct. Target. Ther. 2024, 9, 50. [Google Scholar] [CrossRef]
- Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 2007, 104, 12017–12022. [Google Scholar] [CrossRef]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef]
- Dahlhoff, C.; Worsch, S.; Sailer, M.; Hummel, B.A.; Fiamoncini, J.; Uebel, K.; Obeid, R.; Scherling, C.; Geisel, J.; Bader, B.L.; et al. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels. Mol. Metab. 2014, 3, 565–580. [Google Scholar] [CrossRef]
- López-Vicario, C.; Sebastián, D.; Casulleras, M.; Duran-Güell, M.; Flores-Costa, R.; Aguilar, F.; Lozano, J.J.; Zhang, I.W.; Titos, E.; Kang, J.X.; et al. Essential lipid autacoids rewire mitochondrial energy efficiency in metabolic dysfunction-associated fatty liver disease. Hepatology 2023, 77, 1303–1318. [Google Scholar] [CrossRef]
- Dixon, E.D.; Claudel, T.; Nardo, A.D.; Riva, A.; Fuchs, C.D.; Mlitz, V.; Busslinger, G.; Scharnagl, H.; Stojakovic, T.; Senéca, J.; et al. Inhibition of ATGL alleviates MASH via impaired PPARα signalling that favours hydrophilic bile acid composition in mice. J. Hepatol. 2025, 82, 658–675. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lin, Y.; Niu, R.; Chen, S.; Pan, J.; Zhong, Y.; Du, J.; Dong, Q.; Zhang, H.; Fang, H.; et al. Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3′-Diindolylmethane in Hepatic Lipid Metabolism. Antioxidants 2025, 14, 1093. https://doi.org/10.3390/antiox14091093
Li X, Lin Y, Niu R, Chen S, Pan J, Zhong Y, Du J, Dong Q, Zhang H, Fang H, et al. Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3′-Diindolylmethane in Hepatic Lipid Metabolism. Antioxidants. 2025; 14(9):1093. https://doi.org/10.3390/antiox14091093
Chicago/Turabian StyleLi, Xudong, Yunfeng Lin, Ruomei Niu, Siyuan Chen, Jingyun Pan, Yuquan Zhong, Junqiang Du, Qiuxia Dong, Hongfeng Zhang, Heng Fang, and et al. 2025. "Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3′-Diindolylmethane in Hepatic Lipid Metabolism" Antioxidants 14, no. 9: 1093. https://doi.org/10.3390/antiox14091093
APA StyleLi, X., Lin, Y., Niu, R., Chen, S., Pan, J., Zhong, Y., Du, J., Dong, Q., Zhang, H., Fang, H., Zhu, H., & Zhu, W. (2025). Integrated Lipidomics and Network Pharmacology Reveal the AMPK-Mediated Therapeutic Mechanism of 3,3′-Diindolylmethane in Hepatic Lipid Metabolism. Antioxidants, 14(9), 1093. https://doi.org/10.3390/antiox14091093