Oxidative Stress and Inflammation in Uterine–Vascular Adaptation During Pregnancy
Abstract
1. Introduction
2. Physiology of Uterine–Vascular Adaptation
3. Origin of Reactive Oxygen Species in the Uterine Vasculature
3.1. NADPH Oxidase Family (NOX1–5)
3.2. Mitochondria
3.3. Xanthine Oxidase (XO)
4. Antioxidant Systems
4.1. Enzymatic Antioxidants
4.2. Non-Enzymatic Antioxidants
5. Inflammatory and Immune-Mediated Mechanisms
5.1. Endothelial Activation and Leukocyte Recruitment
5.2. Decidual Natural Killer (uNK) Cells and Macrophages
5.3. Inflammasome Activation
5.4. Lipid Mediators
6. Crosstalk Between Oxidative Stress and Inflammation
6.1. ROS-Mediated Activation of NF-kB
6.2. eNOS Uncoupling and Peroxynitrite Formation
6.3. Matrix Remodeling and Fibrosis
6.4. Translational Evidence (Human Trials)
7. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
Abbreviations
Ang-1/2 | Angiopoietin1–2 |
BH2 | Dihydrobiopterin |
BH4 | Tetrahydrobiopterin |
CAT | Catalase |
COX | Cyclooxygenases |
CTGF | Connective tissue growth factor |
CysLT1 | Cysteinyl Leukotriene 1 |
ECM | Extracellular matrix |
ECs | Endothelial Cells |
EDCF | Endothelium-derived contracting factors |
EDHF | Endothelium-derived hyperpolarizing factor |
eNOS | Endothelial nitric oxide synthase |
ET-1 | Endothelin 1 |
GPx | Glutathione peroxidases |
GSH | Glutathione |
GSR | Glutathione reductase |
GSSG | Oxidized glutathione |
H2O2 | Hydrogen peroxide |
HIF-1α | Hypoxia-Inducible Factor 1-alpha |
ICAM-1 | Intercellular adhesion molecule-1 |
IFN-γ | Interferon-gamma |
IKKβ | IκB kinase beta |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
iNOS | Inducible nitric oxide synthase |
IUGR | Intra-uterine growth restriction |
KCas | Potassium calcium channels |
LOX | Lysyl oxidase |
LTB4 | Leukotriene B4 |
MMPs | Matrix-metalloproteinases |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NF-κB | Nuclear factor-kappa B |
NK | Natural killer |
NLRP3 | NOD-like receptor family pyrin domain-containing 3 |
NO | Nitric oxide |
NOX | NADPH oxidase |
NRF2 | Nuclear Factor, Erythroid 2-Like 2 |
3-NT | 3-Nitrotyrosine |
O2•– | Superoxide |
ONOO− | Peroxynitrite |
PGE2 | Prostaglandin E2 |
PGF2α | Prostaglandin F2α |
PGI2 | Prostacyclin I2 |
PlGF | Placental growth factor |
ROS | Reactive oxygen species |
sFlt-1 | Soluble fms-like tyrosine kinase-1 |
SMCs | Smooth muscle cells |
SOD | Superoxide dismutases |
TGF-β | Transforming growth factor-beta |
TIMP | Tissue inhibitor of metalloproteinase |
TLRs | Toll-like receptors |
TNF-α | Tumor necrosis factor-alpha |
TP | Thromboxane–prostaglandin |
TRX | Thioredoxin |
TXA2 | Thromboxane A2 |
VCAM-1 | Vascular cell adhesion molecule-1 |
VEGF-A | Vascular endothelial growth factor A |
XDH | Xanthine dehydrogenase |
XO | Xanthine oxidase |
References
- Moore, L.G.; Wesolowski, S.R.; Lorca, R.A.; Murray, A.J.; Julian, C.G. Why Is Human Uterine Artery Blood Flow during Pregnancy so High? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 323, R694–R699. [Google Scholar] [CrossRef]
- Mandala, M.; Osol, G. Physiological Remodelling of the Maternal Uterine Circulation during Pregnancy. Basic Clin. Pharmacol. Toxicol. 2012, 110, 12–18. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Yang, Y.; Du, Z.; Fan, Y.; Zhao, Y.; Yuan, S. Oxidative Stress on Vessels at the Maternal-Fetal Interface for Female Reproductive System Disorders: Update. Front. Endocrinol. 2023, 14, 1118121. [Google Scholar] [CrossRef]
- Hu, X.-Q.; Song, R.; Zhang, L. Effect of Oxidative Stress on the Estrogen-NOS-NO-KCa Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. Oxidative Med. Cell. Longev. 2019, 2019, 9194269. [Google Scholar] [CrossRef]
- Burtenshaw, D.; Hakimjavadi, R.; Redmond, E.M.; Cahill, P.A. Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants 2017, 6, 90. [Google Scholar] [CrossRef]
- Goulopoulou, S. Maternal Vascular Physiology in Preeclampsia. Hypertension 2017, 70, 1066–1073. [Google Scholar] [CrossRef]
- Guerby, P.; Tasta, O.; Swiader, A.; Pont, F.; Bujold, E.; Parant, O.; Vayssiere, C.; Salvayre, R.; Negre-Salvayre, A. Role of Oxidative Stress in the Dysfunction of the Placental Endothelial Nitric Oxide Synthase in Preeclampsia. Redox Biol. 2021, 40, 101861. [Google Scholar] [CrossRef]
- Shirasuna, K.; Karasawa, T.; Takahashi, M. Role of the NLRP3 Inflammasome in Preeclampsia. Front. Endocrinol. 2020, 11, 80. [Google Scholar] [CrossRef]
- Guedes-Martins, L.; Silva, E.; Gaio, A.R.; Saraiva, J.; Soares, A.I.; Afonso, J.; Macedo, F.; Almeida, H. Fetal-Maternal Interface Impedance Parallels Local NADPH Oxidase Related Superoxide Production. Redox Biol. 2015, 5, 114–123. [Google Scholar] [CrossRef]
- Osol, G.; Moore, L.G. Maternal Uterine Vascular Remodeling during Pregnancy. Microcirculation 2014, 21, 38–47. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Feng, X.; Lash, G.E. Unraveling the Mysteries of Spiral Artery Remodeling. Placenta 2023, 141, 51–56. [Google Scholar] [CrossRef]
- Hale, S.A.; Weger, L.; Mandala, M.; Osol, G. Reduced NO Signaling during Pregnancy Attenuates Outward Uterine Artery Remodeling by Altering MMP Expression and Collagen and Elastin Deposition. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1266–H1275. [Google Scholar] [CrossRef]
- Kelly, B.A.; Bond, B.C.; Poston, L. Gestational Profile of Matrix Metalloproteinases in Rat Uterine Artery. Mol. Hum. Reprod. 2003, 9, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Almog, B.; Shehata, F.; Aljabri, S.; Levin, I.; Shalom-Paz, E.; Shrim, A. Placenta Weight Percentile Curves for Singleton and Twins Deliveries. Placenta 2011, 32, 58–62. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.A.; Li, H.-Y.; Lee, S.-J.; Seok, Y.S.; Kim, T.H.; Han, K.-H.; Park, M.H.; Cho, G.J.; Suh, S.H. Altered Redox State Modulates Endothelial KCa2.3 and KCa3.1 Levels in Normal Pregnancy and Preeclampsia. Antioxid. Redox Signal. 2019, 30, 505–519. [Google Scholar] [CrossRef]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative Stress: Normal Pregnancy versus Preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
- Hernandez, I.; Fournier, T.; Chissey, A.; Therond, P.; Slama, A.; Beaudeux, J.-L.; Zerrad-Saadi, A. NADPH Oxidase Is the Major Source of Placental Superoxide in Early Pregnancy: Association with MAPK Pathway Activation. Sci. Rep. 2019, 9, 13962. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Khotina, V.; Ivanova, E.A.; Orekhov, A.N. NADPH Oxidases and Their Role in Atherosclerosis. Biomedicines 2020, 8, 206. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Saredy, J.; Yuan, Z.; Yang, X.; Wang, H. Innate-Adaptive Immunity Interplay and Redox Regulation in Immune Response. Redox Biol. 2020, 37, 101759. [Google Scholar] [CrossRef]
- Griendling, K.K. Differential Roles of NADPH Oxidases in Vascular Physiology and Pathophysiology. Front. Biosci. 2012, S4, 1044–1064. [Google Scholar] [CrossRef]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef]
- Hu, X.-Q.; Zhang, L. Hypoxia and Mitochondrial Dysfunction in Pregnancy Complications. Antioxidants 2021, 10, 405. [Google Scholar] [CrossRef]
- Xiao, D.; Hu, X.-Q.; Huang, X.; Zhou, J.; Wilson, S.M.; Yang, S.; Zhang, L. Chronic Hypoxia during Gestation Enhances Uterine Arterial Myogenic Tone via Heightened Oxidative Stress. PLoS ONE 2013, 8, e73731. [Google Scholar] [CrossRef]
- Fike, C.D.; Slaughter, J.C.; Kaplowitz, M.R.; Zhang, Y.; Aschner, J.L. Reactive Oxygen Species from NADPH Oxidase Contribute to Altered Pulmonary Vascular Responses in Piglets with Chronic Hypoxia-Induced Pulmonary Hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295, L881–L888. [Google Scholar] [CrossRef]
- Matsubara, K.; Matsubara, Y.; Hyodo, S.; Katayama, T.; Ito, M. Role of Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia. J. Obs. Gynaecol. 2010, 36, 239–247. [Google Scholar] [CrossRef]
- Elbatreek, M.H.; Sadegh, S.; Anastasi, E.; Guney, E.; Nogales, C.; Kacprowski, T.; Hassan, A.A.; Teubner, A.; Huang, P.-H.; Hsu, C.-Y.; et al. NOX5-Induced Uncoupling of Endothelial NO Synthase Is a Causal Mechanism and Theragnostic Target of an Age-Related Hypertension Endotype. PLoS Biol. 2020, 18, e3000885. [Google Scholar] [CrossRef]
- Hu, X.; Huang, X.; Xiao, D.; Zhang, L. Direct Effect of Chronic Hypoxia in Suppressing Large Conductance Ca2+-activated K+ Channel Activity in Ovine Uterine Arteries via Increasing Oxidative Stress. J. Physiol. 2016, 594, 343–356. [Google Scholar] [CrossRef]
- Hu, X.-Q.; Song, R.; Romero, M.; Dasgupta, C.; Min, J.; Hatcher, D.; Xiao, D.; Blood, A.; Wilson, S.M.; Zhang, L. Gestational Hypoxia Inhibits Pregnancy-Induced Upregulation of Ca2+ Sparks and Spontaneous Transient Outward Currents in Uterine Arteries Via Heightened Endoplasmic Reticulum/Oxidative Stress. Hypertension 2020, 76, 930–942. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.A.; Na, H.-Y.; Kim, J.-E.; Park, S.; Han, K.-H.; Kim, Y.J.; Suh, S.H. NADPH Oxidase 2-Derived Superoxide Downregulates Endothelial KCa3.1 in Preeclampsia. Free Radic. Biol. Med. 2013, 57, 10–21. [Google Scholar] [CrossRef]
- Dasinger, J.H.; Abais-Battad, J.M.; Walton, S.D.; Burns-Ray, E.C.; Cherian-Shaw, M.; Baldwin, K.E.; Fehrenbach, D.J.; Mattson, D.L. Intact NOX2 in T Cells Mediates Pregnancy-Induced Renal Damage in Dahl SS Rats. Hypertension 2024, 81, 2357–2367. [Google Scholar] [CrossRef]
- Gray, S.P.; Jha, J.C.; Kennedy, K.; Van Bommel, E.; Chew, P.; Szyndralewiez, C.; Touyz, R.M.; Schmidt, H.H.H.W.; Cooper, M.E.; Jandeleit-Dahm, K.A.M. Combined NOX1/4 Inhibition with GKT137831 in Mice Provides Dose-Dependent Reno- and Atheroprotection Even in Established Micro- and Macrovascular Disease. Diabetologia 2017, 60, 927–937. [Google Scholar] [CrossRef]
- Murata, M.; Fukushima, K.; Takao, T.; Seki, H.; Takeda, S.; Wake, N. Oxidative Stress Produced by Xanthine Oxidase Induces Apoptosis in Human Extravillous Trophoblast Cells. J. Reprod. Dev. 2013, 59, 7–13. [Google Scholar] [CrossRef]
- Vaka, V.R.; McMaster, K.M.; Cunningham, M.W.; Ibrahim, T.; Hazlewood, R.; Usry, N.; Cornelius, D.C.; Amaral, L.M.; LaMarca, B. Role of Mitochondrial Dysfunction and Reactive Oxygen Species in Mediating Hypertension in the Reduced Uterine Perfusion Pressure Rat Model of Preeclampsia. Hypertension 2018, 72, 703–711. [Google Scholar] [CrossRef]
- Li, H.; Gu, B.; Zhang, Y.; Lewis, D.F.; Wang, Y. Hypoxia-Induced Increase in Soluble Flt-1 Production Correlates with Enhanced Oxidative Stress in Trophoblast Cells from the Human Placenta. Placenta 2005, 26, 210–217. [Google Scholar] [CrossRef]
- Kane, A.D.; Camm, E.J.; Richter, H.G.; Lusby, C.; Tijsseling, D.; Kaandorp, J.J.; Derks, J.B.; Ozanne, S.E.; Giussani, D.A. Maternal-to-Fetal Allopurinol Transfer and Xanthine Oxidase Suppression in the Late Gestation Pregnant Rat. Physiol. Rep. 2013, 1, e00156. [Google Scholar] [CrossRef]
- Crouwel, F.; Simsek, M.; De Boer, M.A.; Van Asseldonk, D.P.; Bhalla, A.; Weusthuis, A.L.M.; Gilissen, L.P.L.; Verburg, R.J.; Mares, W.G.N.; Jharap, B.; et al. Multicentre Study and Systematic Review: Allopurinol Exposure during Pregnancy. Aliment. Pharmacol. Ther. 2024, 60, 503–518. [Google Scholar] [CrossRef]
- Hu, X.; Song, R.; Dasgupta, C.; Blood, A.B.; Zhang, L. TET2 Confers a Mechanistic Link of microRNA-210 and mtROS in Hypoxia-suppressed Spontaneous Transient Outward Currents in Uterine Arteries of Pregnant Sheep. J. Physiol. 2023, 601, 1501–1514. [Google Scholar] [CrossRef]
- Chan, S.Y.; Zhang, Y.-Y.; Hemann, C.; Mahoney, C.E.; Zweier, J.L.; Loscalzo, J. MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. Cell Metab. 2009, 10, 273–284. [Google Scholar] [CrossRef]
- Bakrania, B.A.; Hall, M.E.; Shahul, S.; Granger, J.P. The Reduced Uterine Perfusion Pressure (RUPP) Rat Model of Preeclampsia Exhibits Impaired Systolic Function and Global Longitudinal Strain during Pregnancy. Pregnancy Hypertens. 2019, 18, 169–172. [Google Scholar] [CrossRef]
- Vaka, V.R.; McMaster, K.M.; Cornelius, D.C.; Ibrahim, T.; Jayaram, A.; Usry, N.; Cunningham, M.W.; Amaral, L.M.; LaMarca, B. Natural Killer Cells Contribute to Mitochondrial Dysfunction in Response to Placental Ischemia in Reduced Uterine Perfusion Pressure Rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, R441–R447. [Google Scholar] [CrossRef]
- Deer, E.; Reeve, K.E.; Amaral, L.; Vaka, V.R.; Franks, M.; Campbell, N.; Fitzgerald, S.; Herrock, O.; Ibrahim, T.; Cornelius, D.; et al. CD4+ T Cells Cause Renal and Placental Mitochondrial Oxidative Stress as Mechanisms of Hypertension in Response to Placental Ischemia. Am. J. Physiol. Ren. Physiol. 2021, 320, F47–F54. [Google Scholar] [CrossRef]
- Wang, Z.; Camm, E.J.; Nuzzo, A.M.; Spiroski, A.; Skeffington, K.L.; Ashmore, T.J.; Rolfo, A.; Todros, T.; Logan, A.; Ma, J.; et al. In Vivo Mitochondria-targeted Protection against Uterine Artery Vascular Dysfunction and Remodelling in Rodent Hypoxic Pregnancy. J. Physiol. 2024, 602, 1211–1225. [Google Scholar] [CrossRef]
- Vaka, R.; Deer, E.; LaMarca, B. Is Mitochondrial Oxidative Stress a Viable Therapeutic Target in Preeclampsia? Antioxidants 2022, 11, 210. [Google Scholar] [CrossRef]
- Matsubara, K.; Higaki, T.; Matsubara, Y.; Nawa, A. Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia. Int. J. Mol. Sci. 2015, 16, 4600–4614. [Google Scholar] [CrossRef]
- Annesi, L.; Tossetta, G.; Borghi, C.; Piani, F. The Role of Xanthine Oxidase in Pregnancy Complications: A Systematic Review. Antioxidants 2024, 13, 1234. [Google Scholar] [CrossRef]
- Corominas, A.I.; Medina, Y.; Balconi, S.; Casale, R.; Farina, M.; Martínez, N.; Damiano, A.E. Assessing the Role of Uric Acid as a Predictor of Preeclampsia. Front. Physiol. 2022, 12, 785219. [Google Scholar] [CrossRef]
- Chatzakis, C.; Sotiriadis, A.; Fatouros, I.G.; Jamurtas, A.Z.; Deli, C.K.; Papagianni, M.; Dinas, K.; Mastorakos, G. The Effect of Physical Exercise on Oxidation Capacity and Utero-Placental Circulation in Pregnancies with Gestational Diabetes Mellitus and Uncomplicated Pregnancies, a Pilot Study. Diagnostics 2022, 12, 1732. [Google Scholar] [CrossRef]
- El-Sherbiny, H.R.; Samir, H.; Youssef, F.S.; Mohamed, G.G.; Ismail, S.H.; El-Shahat, K.H.; Aboelmaaty, A.M.; Mahrous, K.F.; Al Syaad, K.M.; Ahmed, A.E.; et al. Maternal Supplementation of Curcumin-olive Oil Nanocomposite Improves Uteroplacental Blood Flow, Placental Growth and Antioxidant Capacity in Goats. Anim. Physiol. Nutr. 2024, 108, 839–853. [Google Scholar] [CrossRef]
- Elmetwally, M.A.; Elshopakey, G.E.; Eldomany, W.; Eldesouky, A.; Samy, A.; Lenis, Y.Y.; Chen, D. Uterine, Vaginal and Placental Blood Flows Increase with Dynamic Changes in Serum Metabolic Parameters and Oxidative Stress across Gestation in Buffaloes. Reprod. Domest. Anim. 2021, 56, 142–152. [Google Scholar] [CrossRef]
- Rashdan, N.A.; Lloyd, P.G. Fluid Shear Stress Upregulates Placental Growth Factor in the Vessel Wall via NADPH Oxidase 4. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1655–H1666. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.A.; Oh, S.; Park, M.H.; Cho, G.J.; Suh, S.H. Internalization and Transportation of Endothelial Cell Surface KCa 2.3 and KCa 3.1 in Normal Pregnancy and Preeclampsia. Oxidative Med. Cell. Longev. 2019, 2019, 5820839. [Google Scholar] [CrossRef]
- Arenas, G.A.; Lorca, R.A. Effects of Hypoxia on Uteroplacental and Fetoplacental Vascular Function during Pregnancy. Front. Physiol. 2024, 15, 1490154. [Google Scholar] [CrossRef]
- Peng, X.; Lin, Y.; Li, J.; Liu, M.; Wang, J.; Li, X.; Liu, J.; Jia, X.; Jing, Z.; Huang, Z.; et al. Evaluation of Glutathione Peroxidase 4 Role in Preeclampsia. Sci. Rep. 2016, 6, 33300. [Google Scholar] [CrossRef]
- Bok, R.; Guerra, D.D.; Lorca, R.A.; Wennersten, S.A.; Harris, P.S.; Rauniyar, A.K.; Stabler, S.P.; MacLean, K.N.; Roede, J.R.; Brown, L.D.; et al. Cystathionine γ-Lyase Promotes Estrogen-Stimulated Uterine Artery Blood Flow via Glutathione Homeostasis. Redox Biol. 2021, 40, 101827. [Google Scholar] [CrossRef]
- Mandalà, M. Influence of Estrogens on Uterine Vascular Adaptation in Normal and Preeclamptic Pregnancies. Int. J. Mol. Sci. 2020, 21, 2592. [Google Scholar] [CrossRef]
- Oliveira, T.S.; Campos, H.M.; Costa, R.M.; Georg, R.C.; Leite, J.A.; Tostes, R.C.; Costa, E.A.; Santos, F.C.A.; Lobato, N.S.; Filgueira, F.P.; et al. Estrone-Mediated Lowering of ROS and NOX4 Improves Endothelial Function in Ovariectomized Wistar Rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 7103–7115. [Google Scholar] [CrossRef]
- Vanderlelie, J.; Gude, N.; Perkins, A. Antioxidant Gene Expression in Preeclamptic Placentae: A Preliminary Investigation. Placenta 2008, 29, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, Y.; Lewis, D.F.; Wang, Y. Reduced Cellular Glutathione Reductase Activity and Increased Adhesion Molecule Expression in Endothelial Cells Cultured With Maternal Plasma From Women With Preeclampsia. J. Soc. Gynecol. Investig. 2006, 13, 412–417. [Google Scholar] [CrossRef]
- Tateaki, Y.; Ogawa, T.; Kawada, N.; Kohashi, T.; Arihiro, K.; Tateno, C.; Obara, M.; Yoshizato, K. Typing of Hepatic Nonparenchymal Cells Using Fibulin-2 and Cytoglobin/STAP as Liver Fibrogenesis-Related Markers. Histochem. Cell Biol. 2004, 122, 41–49. [Google Scholar] [CrossRef]
- Pozzan, T.; Rizzuto, R. The Renaissance of Mitochondrial Calcium Transport. Eur. J. Biochem. 2000, 267, 5269–5273. [Google Scholar] [CrossRef]
- Langston-Cox, A.; Leo, C.H.; Tare, M.; Wallace, E.M.; Marshall, S.A. Sulforaphane Improves Vascular Reactivity in Mouse and Human Arteries after “Preeclamptic-like” Injury. Placenta 2020, 101, 242–250. [Google Scholar] [CrossRef]
- Pregnant eNOS–/– Mice. Front. Physiol. 2020, 11, 588000. [CrossRef]
- Zejnullahu, V.A.; Zejnullahu, V.A.; Kosumi, E. The Role of Oxidative Stress in Patients with Recurrent Pregnancy Loss: A Review. Reprod. Health 2021, 18, 207. [Google Scholar] [CrossRef]
- Alice, R.; Lelia, D.; Caroline, C.; Ross, H. Antioxidants for Preventing Pre-Eclampsia. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2003; p. CD004227. [Google Scholar] [CrossRef]
- Jorquera, G.; Fornes, R.; Cruz, G.; Thomas-Valdés, S. Association of Polyphenols Consumption with Risk for Gestational Diabetes Mellitus and Preeclampsia: A Systematic Review and Meta-Analysis. Antioxidants 2022, 11, 2294. [Google Scholar] [CrossRef]
- Cohen, J.M.; Beddaoui, M.; Kramer, M.S.; Platt, R.W.; Basso, O.; Kahn, S.R. Maternal Antioxidant Levels in Pregnancy and Risk of Preeclampsia and Small for Gestational Age Birth: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0135192. [Google Scholar] [CrossRef]
- Nacka-Aleksić, M.; Pirković, A.; Vilotić, A.; Bojić-Trbojević, Ž.; Jovanović Krivokuća, M.; Giampieri, F.; Battino, M.; Dekanski, D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022, 14, 5246. [Google Scholar] [CrossRef]
- Ashkar, A.A.; Di Santo, J.P.; Croy, B.A. Interferon γ Contributes to Initiation of Uterine Vascular Modification, Decidual Integrity, and Uterine Natural Killer Cell Maturation during Normal Murine Pregnancy. J. Exp. Med. 2000, 192, 259–270. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, T.; Lin, Y.; Chen, B.; Ruan, Y.; Cao, Y.; Qiao, Y.; Man, Y.; Wang, S.; Li, J. Astragalus Polysaccharides Suppress ICAM-1 and VCAM-1 Expression in TNF-α-Treated Human Vascular Endothelial Cells by Blocking NF-κB Activation. Acta Pharmacol. Sin. 2013, 34, 1036–1042. [Google Scholar] [CrossRef]
- Takacs, P.; Kauma, S.W.; Sholley, M.M.; Walsh, S.W.; Dinsmoor, M.J.; Green, K. Increased Circulating Lipid Peroxides in Severe Preeclampsia Activate NF-κΒ and Upregulate ICAM-1 in Vascular Endothelial Cells. FASEB J. 2001, 15, 279–281. [Google Scholar] [CrossRef]
- Basuroy, S.; Bhattacharya, S.; Leffler, C.W.; Parfenova, H. Nox4 NADPH Oxidase Mediates Oxidative Stress and Apoptosis Caused by TNF-α in Cerebral Vascular Endothelial Cells. Am. J. Physiol. Cell Physiol. 2009, 296, C422–C432. [Google Scholar] [CrossRef]
- McElwain, C.J.; Tuboly, E.; McCarthy, F.P.; McCarthy, C.M. Mechanisms of Endothelial Dysfunction in Pre-Eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front. Endocrinol. 2020, 11, 655. [Google Scholar] [CrossRef]
- Bezemer, R.E.; Faas, M.M.; Van Goor, H.; Gordijn, S.J.; Prins, J.R. Decidual Macrophages Hofbauer Cells Fetal Growth Restriction. Front. Immunol. 2024, 15, 1379537. [Google Scholar] [CrossRef]
- Hanna, J.; Wald, O.; Goldman-Wohl, D.; Prus, D.; Markel, G.; Gazit, R.; Katz, G.; Haimov-Kochman, R.; Fujii, N.; Yagel, S.; et al. CXCL12 Expression by Invasive Trophoblasts Induces the Specific Migration of CD16– Human Natural Killer Cells. Blood 2003, 102, 1569–1577. [Google Scholar] [CrossRef]
- Robson, A.; Harris, L.K.; Innes, B.A.; Lash, G.E.; Aljunaidy, M.M.; Aplin, J.D.; Baker, P.N.; Robson, S.C.; Bulmer, J.N. Uterine Natural Killer Cells Initiate Spiral Artery Remodeling in Human Pregnancy. FASEB J. 2012, 26, 4876–4885. [Google Scholar] [CrossRef]
- Lash, G.E.; Schiessl, B.; Kirkley, M.; Innes, B.A.; Cooper, A.; Searle, R.F.; Robson, S.C.; Bulmer, J.N. Expression of Angiogenic Growth Factors by Uterine Natural Killer Cells during Early Pregnancy. J. Leukoc. Biol. 2006, 80, 572–580. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, H. Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications. Front. Immunol. 2021, 12, 728291. [Google Scholar] [CrossRef]
- Yuuki, K. Dynamic and Not Static Change in Ventricular Repolarization Is a Substrate of Ventricular Arrhythmia on Chronic Ischemic Myocardium. Cardiovasc. Res. 2004, 63, 645–652. [Google Scholar] [CrossRef]
- Lash, G.E.; Pitman, H.; Morgan, H.L.; Innes, B.A.; Agwu, C.N.; Bulmer, J.N. Decidual Macrophages: Key Regulators of Vascular Remodeling in Human Pregnancy. J. Leukoc. Biol. 2016, 100, 315–325. [Google Scholar] [CrossRef]
- Deer, E.; Herrock, O.; Campbell, N.; Cornelius, D.; Fitzgerald, S.; Amaral, L.M.; LaMarca, B. The Role of Immune Cells and Mediators in Preeclampsia. Nat. Rev. Nephrol. 2023, 19, 257–270. [Google Scholar] [CrossRef]
- Jiang, L.; Fei, H.; Jin, X.; Liu, X.; Yang, C.; Li, C.; Chen, J.; Yang, A.; Zhu, J.; Wang, H.; et al. Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells. Int. J. Biol. Sci. 2021, 17, 4377–4395. [Google Scholar] [CrossRef]
- Matias, M.L.; Romão, M.; Weel, I.C.; Ribeiro, V.R.; Nunes, P.R.; Borges, V.T.; Araújo, J.P.; Peraçoli, J.C.; De Oliveira, L.; Peraçoli, M.T. Endogenous and Uric Acid-Induced Activation of NLRP3 Inflammasome in Pregnant Women with Preeclampsia. PLoS ONE 2015, 10, e0129095. [Google Scholar] [CrossRef]
- Weel, I.C.; Romão-Veiga, M.; Matias, M.L.; Fioratti, E.G.; Peraçoli, J.C.; Borges, V.T.; Araujo, J.P.; Peraçoli, M.T. Increased Expression of NLRP3 Inflammasome in Placentas from Pregnant Women with Severe Preeclampsia. J. Reprod. Immunol. 2017, 123, 40–47. [Google Scholar] [CrossRef]
- Kohli, S.; Ranjan, S.; Hoffmann, J.; Kashif, M.; Daniel, E.A.; Al-Dabet, M.M.; Bock, F.; Nazir, S.; Huebner, H.; Mertens, P.R.; et al. Maternal Extracellular Vesicles and Platelets Promote Preeclampsia via Inflammasome Activation in Trophoblasts. Blood 2016, 128, 2153–2164. [Google Scholar] [CrossRef]
- Ginnan, R.; Jourd’heuil, F.L.; Guikema, B.; Simons, M.; Singer, H.A.; Jourd’heuil, D. NADPH Oxidase 4 Is Required for Interleukin-1β-Mediated Activation of Protein Kinase Cδ and Downstream Activation of c-Jun N-Terminal Kinase Signaling in Smooth Muscle. Free Radic. Biol. Med. 2013, 54, 125–134. [Google Scholar] [CrossRef]
- Collett, G.P.; Redman, C.W.; Sargent, I.L.; Vatish, M. Endoplasmic Reticulum Stress Stimulates the Release of Extracellular Vesicles Carrying Danger-Associated Molecular Pattern (DAMP) Molecules. Oncotarget 2018, 9, 6707–6717. [Google Scholar] [CrossRef]
- Duttaroy, A.K.; Basak, S. Maternal Fatty Acid Metabolism in Pregnancy and Its Consequences in the Feto-Placental Development. Front. Physiol. 2022, 12, 787848. [Google Scholar] [CrossRef]
- Arosh, J.A.; Banu, S.K.; Chapdelaine, P.; Fortier, M.A. Temporal and Tissue-Specific Expression of Prostaglandin Receptors EP2, EP3, EP4, FP, and Cyclooxygenases 1 and 2 in Uterus and Fetal Membranes during Bovine Pregnancy. Endocrinology 2004, 145, 407–417. [Google Scholar] [CrossRef]
- Goulopoulou, S.; Hannan, J.L.; Matsumoto, T.; Webb, R.C. Pregnancy Reduces RhoA/Rho Kinase and Protein Kinase C Signaling Pathways Downstream of Thromboxane Receptor Activation in the Rat Uterine Artery. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H2477–H2488. [Google Scholar] [CrossRef]
- Mills, J.L.; DerSimonian, R.; Raymond, E.; Morrow, J.D.; Roberts Ii, L.J.; Clemens, J.D.; Hauth, J.C.; Catalano, P.; Sibai, B.; Curet, L.B.; et al. Prostacyclin and Thromboxane Changes Predating Clinical Onset of Preeclampsia: A Multicenter Prospective Study. JAMA 1999, 282, 356–362. [Google Scholar] [CrossRef]
- Woo, C.-H.; Yoo, M.-H.; You, H.-J.; Cho, S.-H.; Mun, Y.-C.; Seong, C.-M.; Kim, J.-H. Transepithelial Migration of Neutrophils in Response to Leukotriene B4 Is Mediated by a Reactive Oxygen Species-Extracellular Signal-Regulated Kinase-Linked Cascade. J. Immunol. 2003, 170, 6273–6279. [Google Scholar] [CrossRef]
- Maekawa, A.; Austen, K.F.; Kanaoka, Y. Targeted Gene Disruption Reveals the Role of Cysteinyl Leukotriene 1 Receptor in the Enhanced Vascular Permeability of Mice Undergoing Acute Inflammatory Responses. J. Biol. Chem. 2002, 277, 20820–20824. [Google Scholar] [CrossRef] [PubMed]
- McKinney, E.T.; Shouri, R.; Hunt, R.S.; Ahokas, R.A.; Sibai, B.M. Plasma, Urinary, and Salivary 8-Epi-Prostaglandin F2α Levels in Normotensive and Preeclamptic Pregnancies. Am. J. Obstet. Gynecol. 2000, 183, 874–877. [Google Scholar] [CrossRef]
- Sousa, L.G.; Correia-da-Silva, G.; Teixeira, N.; Fonseca, B.M. Specialized Pro-Resolving Mediators: Key Regulators in Placental Function and Pregnancy Complications. J. Mol. Med. 2025, 103, 885–897. [Google Scholar] [CrossRef]
- Mao, H.; Zhao, X.; Sun, S. NF-κB in Inflammation and Cancer. Cell. Mol. Immunol. 2025, 22, 811–839. [Google Scholar] [CrossRef] [PubMed]
- Socha, M.W.; Malinowski, B.; Puk, O.; Wartęga, M.; Stankiewicz, M.; Kazdepka-Ziemińska, A.; Wiciński, M. The Role of NF-κB in Uterine Spiral Arteries Remodeling, Insight into the Cornerstone of Preeclampsia. Int. J. Mol. Sci. 2021, 22, 704. [Google Scholar] [CrossRef]
- Manea, S.-A.; Constantin, A.; Manda, G.; Sasson, S.; Manea, A. Regulation of Nox Enzymes Expression in Vascular Pathophysiology: Focusing on Transcription Factors and Epigenetic Mechanisms. Redox Biol. 2015, 5, 358–366. [Google Scholar] [CrossRef]
- Sakowicz, A. The Targeting of Nuclear Factor Kappa B by Drugs Adopted for the Prevention and Treatment of Preeclampsia. Int. J. Mol. Sci. 2022, 23, 2881. [Google Scholar] [CrossRef]
- He, L.; Song, Q.; Hu, J.; Wu, J. Expression of HMGB1-TLR4 in Placentas from Preeclamptic Pregnancies and Its Effect on Proliferation and Invasion of HTR-8/SVneo Cells. Gynecol. Obs. Investig. 2023, 88, 159–167. [Google Scholar] [CrossRef]
- Cindrova-Davies, T. The Therapeutic Potential of Antioxidants, ER Chaperones, NO and H2S Donors, and Statins for Treatment of Preeclampsia. Front. Pharmacol. 2014, 5, 119. [Google Scholar] [CrossRef]
- Chuaiphichai, S.; Yu, G.Z.; Tan, C.M.J.; Whiteman, C.; Douglas, G.; Dickinson, Y.; Drydale, E.N.; Appari, M.; Zhang, W.; Crabtree, M.J.; et al. Endothelial GTPCH (GTP Cyclohydrolase 1) and Tetrahydrobiopterin Regulate Gestational Blood Pressure, Uteroplacental Remodeling, and Fetal Growth. Hypertension 2021, 78, 1871–1884. [Google Scholar] [CrossRef]
- Downing, I.; Shepherd, G.L.; Lewis, P.J. REDUCED PROSTACYCLIN PRODUCTION IN PRE-ECLAMPSIA. Lancet 1980, 316, 8208–8209. [Google Scholar] [CrossRef]
- Myatt, L.; Rosenfield, R.B.; Eis, A.L.W.; Brockman, D.E.; Greer, I.; Lyall, F. Nitrotyrosine Residues in Placenta: Evidence of Peroxynitrite Formation and Action. Hypertension 1996, 28, 488–493. [Google Scholar] [CrossRef]
- Webster, R.P.; Roberts, V.H.J.; Myatt, L. Protein Nitration in Placenta–Functional Significance. Placenta 2008, 29, 985–994. [Google Scholar] [CrossRef]
- Kivimäki, M.; Head, J.; Ferrie, J.E.; Shipley, M.J.; Steptoe, A.; Vahtera, J.; Marmot, M.G. Hypertension Is Not the Link Between Job Strain and Coronary Heart Disease in the Whitehall II Study. Am. J. Hypertens. 2007, 20, 1146–1153. [Google Scholar] [CrossRef]
- Chen, J.; Khalil, R.A. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 148, pp. 87–165. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, Z.; Chen, Q.; Huang, P.; Zhang, H.; Du, S.; Geng, B.; Zhang, C.; Li, K.; Tang, C.; et al. Endogenous Sulfur Dioxide Alleviates Collagen Remodeling via Inhibiting TGF-β/Smad Pathway in Vascular Smooth Muscle Cells. Sci. Rep. 2016, 6, 19503. [Google Scholar] [CrossRef]
- Sugitani, H.; Wachi, H.; Tajima, S.; Seyama, Y. Nitric Oxide Stimulates Elastin Expression in Chick Aortic Smooth Muscle Cells. Biol. Pharm. Bull. 2001, 24, 461–464. [Google Scholar] [CrossRef]
- Ohmaru-Nakanishi, T.; Asanoma, K.; Fujikawa, M.; Fujita, Y.; Yagi, H.; Onoyama, I.; Hidaka, N.; Sonoda, K.; Kato, K. Fibrosis in Preeclamptic Placentas Is Associated with Stromal Fibroblasts Activated by the Transforming Growth Factor-Β1 Signaling Pathway. Am. J. Pathol. 2018, 188, 683–695. [Google Scholar] [CrossRef]
- Roberts, J.M.; Myatt, L.; Spong, C.Y.; Thom, E.A.; Hauth, J.C.; Leveno, K.J.; Pearson, G.D.; Wapner, R.J.; Varner, M.W.; Thorp, J.M.; et al. Vitamins C and E to Prevent Complications of Pregnancy-Associated Hypertension. N. Engl. J. Med. 2010, 362, 1282–1291. [Google Scholar] [CrossRef]
- Roes, E.M.; Raijmakers, M.T.; Boo, T.M.D.; Zusterzeel, P.L.; Merkus, H.M.; Peters, W.H.; Steegers, E.A. Oral N-Acetylcysteine Administration Does Not Stabilise the Process of Established Severe Preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 127, 61–67. [Google Scholar] [CrossRef]
- Teran, E.; Hernandez, I.; Nieto, B.; Tavara, R.; Ocampo, J.E.; Calle, A. Coenzyme Q10 Supplementation during Pregnancy Reduces the Risk of Pre-eclampsia. Int. J. Gynecol. Obs. 2009, 105, 43–45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandalà, M. Oxidative Stress and Inflammation in Uterine–Vascular Adaptation During Pregnancy. Antioxidants 2025, 14, 1051. https://doi.org/10.3390/antiox14091051
Mandalà M. Oxidative Stress and Inflammation in Uterine–Vascular Adaptation During Pregnancy. Antioxidants. 2025; 14(9):1051. https://doi.org/10.3390/antiox14091051
Chicago/Turabian StyleMandalà, Maurizio. 2025. "Oxidative Stress and Inflammation in Uterine–Vascular Adaptation During Pregnancy" Antioxidants 14, no. 9: 1051. https://doi.org/10.3390/antiox14091051
APA StyleMandalà, M. (2025). Oxidative Stress and Inflammation in Uterine–Vascular Adaptation During Pregnancy. Antioxidants, 14(9), 1051. https://doi.org/10.3390/antiox14091051