Paclitaxel and Cephalomannine Synergistically Induce PANoptosis in Triple-Negative Breast Cancer Through Oxygen-Regulated Cell Death Pathways
Abstract
1. Introduction
2. Materials and Methods
2.1. Network Pharmacology Analysis
2.1.1. SMILES Structure Acquisition, Target Prediction, and Analysis
2.1.2. Protein–Protein Interaction (PPI) Network, Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, and Gene Ontology (GO) Enrichment Analysis
2.1.3. Molecular Docking
2.2. Cells and Reagents
2.3. Cell Culture
2.4. MTT Assay
2.5. Clonogenic Assay
2.6. Cell Migration and Invasion Assays
2.7. Western Blot Analysis
2.8. ELISA
2.9. Cell Cycle and Apoptosis Analysis
2.10. ROS Detection
2.11. Mitochondrial Membrane Potential
2.12. ATP Assays
2.13. Animal Experiments
2.14. HE Staining
2.15. Immunohistochemistry
2.16. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM)
2.17. Statistical Analysis
3. Results
3.1. Network Pharmacology Analysis of Paclitaxel and Cephalomannine
3.2. Molecular Docking of Paclitaxel and Cephalomannine with Core Targets
3.3. Effects of Paclitaxel and Cephalomannine Combination on MDA-MB-231 Cell Proliferation, Apoptosis, and Migration/Invasion
3.4. Ultrastructural Evidence Supporting That Paclitaxel and Cephalomannine Combination Induces Multiple Types of Programmed Cell Death
3.5. Paclitaxel and Cephalomannine Induce Cell Death Signaling via ROS Accumulation-Mediated DNA Damage
3.6. Paclitaxel and Cephalomannine Synergistically Promote Cell Apoptosis Through the p38/Caspase-3 Pathway and Mitochondria-Dependent Apoptotic Pathway
3.7. Paclitaxel and Cephalomannine Synergistically Promote Necroptosis via the RIPK1/RIPK3/MLKL Pathway
3.8. Paclitaxel and Cephalomannine Regulate Cell Death via the NLRP3/Caspase-1/GSDMD Pyroptosis Pathway
3.9. Inhibitor-Based Validation of PANoptosis-Specific Regulatory Effects of Paclitaxel and Cephalomannine
3.10. Validation of the Effects of Combination Treatment in Different TNBC Cell Lines and Normal Mammary Epithelial Cells
3.11. In Vivo Antitumor Effects of Paclitaxel and Cephalomannine Combination Therapy on Tumor Growth in a Xenograft Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katsura, C.; Ogunmwonyi, I.; Kankam, H.K.; Saha, S. Breast cancer: Presentation, investigation and management. Br. J. Hosp. Med. 2022, 83, 1–7. [Google Scholar] [CrossRef]
- Singh, D.D.; Yadav, D.K. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021, 9, 876. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Fei, X.; Chen, L.; Yao, L.; Lei, X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front. Oncol. 2024, 14, 1381251. [Google Scholar] [CrossRef]
- Obidiro, O.; Battogtokh, G.; Akala, E.O. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 2023, 15, 1796. [Google Scholar] [CrossRef]
- Dai, X.; Deng, Z.; Liang, Y.; Chen, L.; Jiang, W.; Zhao, W. Enterococcus faecalis induces necroptosis in human osteoblastic MG63 cells through the RIPK3/MLKL signalling pathway. Int. Endod. J. 2020, 53, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Tsunemitsu, Y.; Kagawa, S.; Tokunaga, N.; Otani, S.; Umeoka, T.; Roth, J.A.; Fang, B.; Tanaka, N.; Fujiwara, T. Molecular therapy for peritoneal dissemination of xenotransplanted human MKN-45 gastric cancer cells with adenovirus mediated Bax gene transfer. Gut 2004, 53, 554–560. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Y.; Meng, X.; Li, J.; Liu, X.; Liu, H. PANoptosis: Mechanisms, biology, and role in disease. Immunol. Rev. 2024, 321, 246–262. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, B.; Luo, J.; Yang, Y.; Weng, Q.; Fang, S.; Zhao, Z.; Tu, J.; Chen, M.; Ji, J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: Culprits or new hope. Mol. Cancer 2024, 23, 255. [Google Scholar] [CrossRef]
- Gao, X.; Guo, Y.; Chen, K.; Wang, H.; Xie, W. Study on the Chemical Constituents, Pharmacological Activities, and Clinical Application of Taxus. Am. J. Chin. Med. 2024, 52, 1329–1357. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, N.; Xie, W. Advancements in the Cultivation, Active Components, and Pharmacological Activities of Taxus mairei. Molecules 2024, 29, 1128. [Google Scholar] [CrossRef]
- Chabner, B. Taxol. In Principles & Practice of Oncology Update; Wolters Kluwer: Singapore, 1991; Volume 5. [Google Scholar]
- Sekar, P.; Ravitchandirane, R.; Khanam, S.; Muniraj, N.; Cassinadane, A.V. Novel molecules as the emerging trends in cancer treatment: An update. Med. Oncol. 2022, 39, 20. [Google Scholar] [CrossRef]
- An, S.; Xu, X.; Bao, Y.; Su, F.; Jiang, Y. Cephalomannine reduces radiotherapy resistance in non-small cell lung cancer cells by blocking the β-catenin-BMP2 signaling pathway. Tissue Cell 2024, 91, 102577. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Chen, R.; Li, T.; Chen, M. Active Ingredients from Chinese Medicine for Combination Cancer Therapy. Int. J. Biol. Sci. 2023, 19, 3499–3525. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 1997, 88, 323–331. [Google Scholar] [CrossRef]
- Fernandes, G.M.M.; Serafim Junior, V.; Galbiatti-Dias, A.L.S.; Ferreira, L.A.M.; Castanhole-Nunes, M.M.U.; Kawasaki-Oyama, R.S.; Maniglia, J.V.; Pavarino, E.C.; Goloni-Bertollo, E.M. Treatment effects of the EGFR pathway drugs on head and neck cancer stem cells. Am. J. Cancer Res. 2022, 12, 4196–4210. [Google Scholar]
- Huang, Y.K.; Chang, K.C.; Li, C.Y.; Lieu, A.S.; Lin, C.L. AKR1B1 Represses Glioma Cell Proliferation through p38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways. Curr. Issues Mol. Biol. 2023, 45, 3391–3405. [Google Scholar] [CrossRef]
- Chen, Y.T.; Lin, C.W.; Su, C.W.; Yang, W.E.; Chuang, C.Y.; Su, S.C.; Hsieh, M.J.; Yang, S.F. Magnolol Triggers Caspase-Mediated Apoptotic Cell Death in Human Oral Cancer Cells through JNK1/2 and p38 Pathways. Biomedicines 2021, 9, 1295. [Google Scholar] [CrossRef]
- Hassin, O.; Oren, M. Drugging p53 in cancer: One protein, many targets. Nat. Rev. Drug Discov. 2023, 22, 127–144. [Google Scholar] [CrossRef]
- Yuan, S.; Akey, C.W. Apoptosome structure, assembly, and procaspase activation. Structure 2013, 21, 501–515. [Google Scholar] [CrossRef]
- Gryko, M.; Łukaszewicz-Zając, M.; Guzińska-Ustymowicz, K.; Kucharewicz, M.; Mroczko, B.; Algirdas, U. The caspase-8 and procaspase-3 expression in gastric cancer and non-cancer mucosa in relation to clinico-morphological factors and some apoptosis-associated proteins. Adv. Med. Sci. 2023, 68, 94–100. [Google Scholar] [CrossRef]
- Kadam, A.; Jubin, T.; Roychowdhury, R.; Begum, R. Role of PARP-1 in mitochondrial homeostasis. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2020, 1864, 129669. [Google Scholar] [CrossRef]
- Rickard, J.A.; O’Donnell, J.A.; Evans, J.M.; Lalaoui, N.; Poh, A.R.; Rogers, T.; Vince, J.E.; Lawlor, K.E.; Ninnis, R.L.; Anderton, H.; et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 2014, 157, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Meng, Y.; Yan, B.; Zhou, Q.; Wang, X. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Mol. Cell 2024, 84, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Tang, Y.; Li, L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 2010, 51, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, Y.; Song, M.; Song, Y.; Fang, Y.; Zhang, Q.; Li, X.; Song, N.; Ding, J.; Lu, M.; et al. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight 2021, 6, e146852. [Google Scholar] [CrossRef]
- Yu, T.; Di, G. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin. J. Cancer Res. 2017, 29, 237. [Google Scholar] [CrossRef]
- Wang, C.; Yang, T.; Xiao, J.; Xu, C.; Alippe, Y.; Sun, K.; Kanneganti, T.D.; Monahan, J.B.; Abu-Amer, Y.; Lieberman, J.; et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci. Immunol. 2021, 6, eabj3859. [Google Scholar] [CrossRef]
- Becker-Hapak, M.K.; Shrestha, N.; McClain, E.; Dee, M.J.; Chaturvedi, P.; Leclerc, G.M.; Marsala, L.I.; Foster, M.; Schappe, T.; Tran, J.; et al. A Fusion Protein Complex that Combines IL-12, IL-15, and IL-18 Signaling to Induce Memory-Like NK Cells for Cancer Immunotherapy. Cancer Immunol. Res. 2021, 9, 1071–1087. [Google Scholar] [CrossRef]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef]
- Lim, S.J.; Choi, H.G.; Jeon, C.K.; Kim, S.H. Increased chemoresistance to paclitaxel in the MCF10AT series of human breast epithelial cancer cells. Oncol. Rep. 2015, 33, 2023–2030. [Google Scholar] [CrossRef]
- Yu, K.D.; Ye, F.G.; He, M.; Fan, L.; Ma, D.; Mo, M.; Wu, J.; Liu, G.Y.; Di, G.H.; Zeng, X.H.; et al. Effect of Adjuvant Paclitaxel and Carboplatin on Survival in Women With Triple-Negative Breast Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1390–1396. [Google Scholar] [CrossRef]
- Saloustros, E.; Nikolaou, M.; Kalbakis, K.; Polyzos, A.; Christofillakis, C.; Kentepozidis, N.; Pistamaltzian, N.; Kourousis, C.; Vamvakas, L.; Georgoulias, V.; et al. Weekly Paclitaxel and Carboplatin Plus Bevacizumab as First-Line Treatment of Metastatic Triple-Negative Breast Cancer. A Multicenter Phase II Trial by the Hellenic Oncology Research Group. Clin. Breast Cancer 2018, 18, 88–94. [Google Scholar] [CrossRef]
- Corti, C.; Koca, B.; Rahman, T.; Mittendorf, E.A.; Tolaney, S.M. Recent Advances in Immune Checkpoint Inhibitors for Triple-Negative Breast Cancer. ImmunoTargets Ther. 2025, 14, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Yardley, D.A.; Coleman, R.; Conte, P.; Cortes, J.; Brufsky, A.; Shtivelband, M.; Young, R.; Bengala, C.; Ali, H.; Eakel, J.; et al. nab-Paclitaxel plus carboplatin or gemcitabine versus gemcitabine plus carboplatin as first-line treatment of patients with triple-negative metastatic breast cancer: Results from the tnAcity trial. Ann. Oncol. 2018, 29, 1763–1770. [Google Scholar] [CrossRef]
- Chen, M.; Huang, R.; Rong, Q.; Yang, W.; Shen, X.; Sun, Q.; Shu, D.; Jiang, K.; Xue, C.; Peng, J.; et al. Bevacizumab, tislelizumab and nab-paclitaxel for previously untreated metastatic triple-negative breast cancer: A phase II trial. J. Immunother. Cancer 2025, 13, e011314. [Google Scholar] [CrossRef]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef] [PubMed]
- Gielecińska, A.; Kciuk, M.; Yahya, E.B.; Ainane, T.; Mujwar, S.; Kontek, R. Apoptosis, necroptosis, and pyroptosis as alternative cell death pathways induced by chemotherapeutic agents? Biochim. Biophys. Acta (BBA)-Rev. Cancer 2023, 1878, 189024. [Google Scholar] [CrossRef] [PubMed]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef]
- Donohoe, C.; Senge, M.O.; Arnaut, L.G.; Gomes-da-Silva, L.C. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2019, 1872, 188308. [Google Scholar] [CrossRef]
- Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2019, 1863, 1398–1409. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; et al. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother. 2020, 121, 109595. [Google Scholar] [CrossRef] [PubMed]
Drug | Target | Binding Energy (-kcal/mol) | PDB ID |
---|---|---|---|
Paclitaxel | BCL2L1 | 7.4 | 7JGW |
Paclitaxel | MAPK14 | 7.9 | 3OEF |
Paclitaxel | SYK | 8.6 | 4YJR |
Paclitaxel | TNF | 9.3 | 1EXT |
Paclitaxel | ADAM17 | 9.5 | 2FV5 |
Cephalomannine | BCL2L1 | 7.9 | 7JGW |
Cephalomannine | MAPK14 | 9.0 | 3OEF |
Cephalomannine | SYK | 8.7 | 4YJR |
Cephalomannine | TNF | 7.4 | 1EXT |
Cephalomannine | ADAM17 | 8.2 | 2FV5 |
Total Concentration of Paclitaxel + Cephalomannine (ng/mL) | Fa (Fraction Affected) (%) | CI |
---|---|---|
2 | 44 | 0.13533 |
2 | 40 | 0.09889 |
2 | 39 | 0.09137 |
10 | 38 | 0.42198 |
10 | 37 | 0.38959 |
10 | 42 | 0.57862 |
20 | 34 | 0.61104 |
20 | 36 | 0.71899 |
20 | 35 | 0.66305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Chen, K.; Jia, S.; Li, J.; Zhang, H.; Wang, Y.; Xie, W. Paclitaxel and Cephalomannine Synergistically Induce PANoptosis in Triple-Negative Breast Cancer Through Oxygen-Regulated Cell Death Pathways. Antioxidants 2025, 14, 1037. https://doi.org/10.3390/antiox14091037
Gao X, Chen K, Jia S, Li J, Zhang H, Wang Y, Xie W. Paclitaxel and Cephalomannine Synergistically Induce PANoptosis in Triple-Negative Breast Cancer Through Oxygen-Regulated Cell Death Pathways. Antioxidants. 2025; 14(9):1037. https://doi.org/10.3390/antiox14091037
Chicago/Turabian StyleGao, Xinyu, Kuilin Chen, Shuhui Jia, Jiapeng Li, Huan Zhang, Yuwei Wang, and Weidong Xie. 2025. "Paclitaxel and Cephalomannine Synergistically Induce PANoptosis in Triple-Negative Breast Cancer Through Oxygen-Regulated Cell Death Pathways" Antioxidants 14, no. 9: 1037. https://doi.org/10.3390/antiox14091037
APA StyleGao, X., Chen, K., Jia, S., Li, J., Zhang, H., Wang, Y., & Xie, W. (2025). Paclitaxel and Cephalomannine Synergistically Induce PANoptosis in Triple-Negative Breast Cancer Through Oxygen-Regulated Cell Death Pathways. Antioxidants, 14(9), 1037. https://doi.org/10.3390/antiox14091037