Manganese Porphyrin Reduces Oxidative Stress in Vulnerable Parkin-Null Drosophila Dopaminergic Neurons
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Drosophila Maintenance and MnP Administration
2.3. Development Assay
2.4. Analysis of Low-Molecular-Weight Thiols/Disulfides Using Liquid Chromatography Tandem Mass Spectrometry
2.5. Liquid Chromatography Tandem Mass Spectrometry Analysis of MnP Levels
2.6. Protein Assay
2.7. Drosophila Brain Dissection and Immunofluorescence
2.8. PPL1 Image Capture and Analysis
2.9. Climbing Assay
2.10. Survival Assay
3. Results
3.1. MnBuOE Improves Efficiency of Parkin-Null Drosophila Eclosion from Pupa Cases
3.2. MnPs Selectively Decrease Oxidative Stress in Control Drosophila Brains
3.3. MnP Administration Increases Parkin-Null PPL1 Mitochondrial Antioxidant Activity in a Sexually Dimorphic Manner
3.4. The More Brain- and Mitochondria-Penetrable MnP Increases Motivated Behavior in Parkin-Null Females
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Parkinson’s disease |
MnP | Manganese porphyrin |
MnBuOE | MnTnBuOE-2-PyP5+, manganese(III) meso-tetrakis(N-butoxyethylpyridinium-2-yl)porphyrin, BMX-001 |
MnE | MnTE-2-PyP5+, manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, BMX-010, AEOL10113 |
roGFP2 | redox-sensitive green fluorescent protein |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
NF-κB | nuclear factor-kappa B |
Nrf2 | NF-E2-related factor 2 |
Keap1 | kelch-like-ECH-associated protein 1 |
GRE | glutathione redox equilibrium |
GSH | reduced glutathione |
PPL1 | protocerebral posterior lateral 1 |
Orp1 | oxidant receptor peroxidase 1 |
Grx1 | glutaredoxin 1 |
TH | tyrosine hydroxylase |
UAS | upstream activating sequence |
park+/+ | control Drosophila park genotype |
park−/− | homozygous park loss-of-function genotype |
NEM | N-ethylmaleimide |
PBT | phosphate buffer with Triton X-100 |
LC-MS/MS | liquid chromatography tandem mass spectrometry |
SEM | standard error of the mean |
References
- Narendra, D.; Tanaka, A.; Suen, D.; Youle, R. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183, 795. [Google Scholar] [CrossRef] [PubMed]
- Shimura, H.; Hattori, N.; Kubo, S.-i.; Mizuno, Y.; Asakawa, S.; Minoshima, S.; Shimizu, N.; Iwai, K.; Chiba, T.; Tanaka, K. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000, 25, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Soda, M.; Takahashi, R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 2000, 275, 35661–35664. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Chung, K.K.; Huang, H.; Dawson, V.L.; Dawson, T.M. Parkin functions as an E2-dependent ubiquitin–protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. USA 2000, 97, 13354–13359. [Google Scholar] [CrossRef] [PubMed]
- Narendra, D.; Tanaka, A.; Suen, D.; Youle, R. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 2009, 5, 706–708. [Google Scholar] [CrossRef]
- Greene, J.C.; Whitworth, A.J.; Kuo, I.; Andrews, L.A.; Feany, M.B.; Pallanck, L.J. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 2003, 100, 4078. [Google Scholar] [CrossRef]
- Whitworth, A.J.; Theodore, D.A.; Greene, J.C.; Beneš, H.; Wes, P.D.; Pallanck, L.J. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 8024. [Google Scholar] [CrossRef]
- Cackovic, J.; Gutierrez-Luke, S.; Call, G.B.; Juba, A.; O’Brien, S.; Jun, C.H.; Buhlman, L.M. Vulnerable Parkin Loss-of-Function Drosophila Dopaminergic Neurons Have Advanced Mitochondrial Aging, Mitochondrial Network Loss and Transiently Reduced Autophagosome Recruitment. Front. Cell. Neurosci. 2018, 12, 39. [Google Scholar] [CrossRef]
- Strausfeld, N.J.; Hirth, F. Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia. Science 2013, 340, 157–161. [Google Scholar] [CrossRef]
- Greene, J.C.; Whitworth, A.J.; Andrews, L.A.; Parker, T.J.; Pallanck, L.J. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 2005, 14, 799–811. [Google Scholar] [CrossRef]
- Burman, J.L.; Yu, S.; Poole, A.C.; Decal, R.B.; Pallanck, L. Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants. Proc. Natl. Acad. Sci. USA 2012, 109, 10438–10443. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A. Oxidative stress in Parkinson’s disease. Neuropathol. Appl. Neurobiol. 1995, 21, 3–9. [Google Scholar] [CrossRef]
- Jenner, P.; Dexter, D.; Sian, J.; Schapira, A.; Marsden, C. Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1992, 32, S82–S87. [Google Scholar] [CrossRef]
- Schapira, A.H. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008, 7, 97–109. [Google Scholar] [CrossRef]
- Mortiboys, H.; Thomas, K.J.; Koopman, W.J.H.; Klaffke, S.; Abou-Sleiman, P.; Olpin, S.; Wood, N.W.; Willems, P.H.G.M.; Smeitink, J.A.M.; Cookson, M.R. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann. Neurol. 2008, 64, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Dodson, M.W.; Guo, M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr. Opin. Neurobiol. 2007, 17, 331–337. [Google Scholar] [CrossRef]
- González-Rodríguez, P.; Zampese, E.; Stout, K.A.; Guzman, J.N.; Ilijic, E.; Yang, B.; Tkatch, T.; Stavarache, M.A.; Wokosin, D.L.; Gao, L. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 2021, 599, 650–656. [Google Scholar] [CrossRef]
- Junn, E.; Mouradian, M.M. Human α-Synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci. Lett. 2002, 320, 146–150. [Google Scholar] [CrossRef]
- Bosco, D.A.; Fowler, D.M.; Zhang, Q.; Nieva, J.; Powers, E.T.; Wentworth, P., Jr.; Lerner, R.A.; Kelly, J.W. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat. Chem. Biol. 2006, 2, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Houlihan, K.L.; Keoseyan, P.P.; Juba, A.N.; Margaryan, T.; Voss, M.E.; Babaoghli, A.M.; Norris, J.M.; Adrian, G.J.; Tovmasyan, A.; Buhlman, L.M. Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium. Antioxidants 2022, 11, 2068. [Google Scholar] [CrossRef]
- Beal, M.F.; Oakes, D.; Shoulson, I.; Henchcliffe, C.; Galpern, W.R.; Haas, R.; Juncos, J.L.; Nutt, J.G.; Voss, T.S.; Ravina, B. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: No evidence of benefit. JAMA Neurol. 2014, 71, 543–552. [Google Scholar]
- Schwarzschild, M.A.; Ascherio, A.; Casaceli, C.; Curhan, G.C.; Fitzgerald, R.; Kamp, C.; Lungu, C.; Macklin, E.A.; Marek, K.; Mozaffarian, D.; et al. Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression: The SURE-PD3 Randomized Clinical Trial. JAMA 2021, 326, 926–939. [Google Scholar] [CrossRef]
- Strijks, E.; Kremer, H.; Horstink, M. Q10 therapy in patients with idiopathic Parkinson’s disease. Mol. Asp. Med. 1997, 18, 237–240. [Google Scholar] [CrossRef]
- Shults, C.W.; Flint Beal, M.; Fontaine, D.; Nakano, K.; Haas, R. Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology 1998, 50, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Snow, B.J.; Rolfe, F.L.; Lockhart, M.M.; Frampton, C.M.; O’Sullivan, J.D.; Fung, V.; Smith, R.A.; Murphy, M.P.; Taylor, K.M.; Group, P.S. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 2010, 25, 1670–1674. [Google Scholar] [CrossRef]
- Ascherio, A.; LeWitt, P.A.; Xu, K.; Eberly, S.; Watts, A.; Matson, W.R.; Marras, C.; Kieburtz, K.; Rudolph, A.; Bogdanov, M.B. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol. 2009, 66, 1460–1468. [Google Scholar] [CrossRef]
- Mischley, L.K.; Leverenz, J.B.; Lau, R.C.; Polissar, N.L.; Neradilek, M.B.; Samii, A.; Standish, L.J. A randomized, double-blind phase I/II a study of intranasal glutathione in P arkinson’s disease. Mov. Disord. 2015, 30, 1696–1701. [Google Scholar] [CrossRef]
- Zhang, S.; Hernan, M.; Chen, H.; Spiegelman, D.; Willett, W.; Ascherio, A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 2002, 59, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Group, P.S. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N. Engl. J. Med. 1993, 328, 176–183. [Google Scholar]
- Tanaka, J.; Nagai, T.; Arai, H.; Inui, K.; Yamanouchi, H.; Goto, Y.-i.; Nonaka, I.; Okada, S. Treatment of mitochondrial encephalomyopathy with a combination of cytochrome C and vitamins B1 and B2. Brain Dev. 1997, 19, 262–267. [Google Scholar] [CrossRef]
- Yamada, Y.; Burger, L.; Kawamura, E.; Harashima, H. Packaging of the coenzyme Q10 into a liposome for mitochondrial delivery and the intracellular observation in patient derived mitochondrial disease cells. Biol. Pharm. Bull. 2017, 40, 2183–2190. [Google Scholar] [CrossRef] [PubMed]
- Hibino, M.; Yamada, Y.; Fujishita, N.; Sato, Y.; Maeki, M.; Tokeshi, M.; Harashima, H. The use of a microfluidic device to encapsulate a poorly water-soluble drug CoQ10 in lipid nanoparticles and an attempt to regulate intracellular trafficking to reach mitochondria. J. Pharm. Sci. 2019, 108, 2668–2676. [Google Scholar] [CrossRef]
- Murphy, M.P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 2008, 1777, 1028–1031. [Google Scholar] [CrossRef]
- Smith, R.A.; Porteous, C.M.; Coulter, C.V.; Murphy, M.P. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 1999, 263, 709–716. [Google Scholar] [CrossRef]
- Batinic-Haberle, I.; Tovmasyan, A.; Spasojevic, I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid. Redox Signal. 2018, 29, 1691–1724. [Google Scholar] [CrossRef] [PubMed]
- Grujicic, J.; Allen, A.R. MnSOD Mimetics in Therapy: Exploring Their Role in Combating Oxidative Stress-Related Diseases. Antioxidants 2024, 13, 1444. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q.; Fang, S.H.; Dong, X.; Li, N.; Gao, J.Y.; Yang, G.Q.; Gong, X.C.; Wang, S.J.; Wang, F.S. Pharmacokinetics, tissue distribution and excretion of manganese (III) meso-tetra [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, a novel superoxide dismutase mimic, in Wistar rats. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 245–253. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Bacellar-Galdino, M.; Iqbal, S.; Pappenhagen, N.E.; Kaja, S. Topical Porphyrin Antioxidant Protects Against Ocular Surface Pathology in a Novel Rabbit Model for Particulate Matter-Induced Dry Eye Disease. J. Ocul. Pharmacol. Ther. 2022, 38, 294–304. [Google Scholar] [CrossRef]
- Dees, A.; Zahl, A.; Puchta, R.; Hommes, N.J.; Heinemann, F.W.; Ivanović-Burmazović, I. Water exchange on seven-coordinate Mn(II) complexes with macrocyclic pentadentate ligands: Insight in the mechanism of Mn(II) SOD mimetics. Inorg. Chem. 2007, 46, 2459–2470. [Google Scholar] [CrossRef]
- Batinic-Haberle, I.; Tovmasyan, A.; Huang, Z.; Duan, W.; Du, L.; Siamakpour-Reihani, S.; Cao, Z.; Sheng, H.; Spasojevic, I.; Alvarez Secord, A. H2O2-driven anticancer activity of Mn porphyrins and the underlying molecular pathways. Oxidative Med. Cell. Longev. 2021, 2021, 6653790. [Google Scholar] [CrossRef] [PubMed]
- Spasojevic, I.; Weitner, T.; Tovmasyan, A.; Sheng, H.; Miriyala, S.; Leu, D.; Rajic, Z.; Warner, D.S.; Clair, D.S.; Huang, T.-T.; et al. PSS304—Pharmacokinetics, Brain Hippocampus and Cortex, and Mitochondrial Accumulation of a New Generation of Lipophilic Redox-Active Therapeutic, Mn(III) Meso Tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+, in Comparison with its Ethyl and N-hexyl Analogs, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radic. Biol. Med. 2013, 65, S132. [Google Scholar] [CrossRef]
- Leu, D.; Spasojevic, I.; Nguyen, H.; Deng, B.; Tovmasyan, A.; Weitner, T.; Sampaio, R.S.; Batinic-Haberle, I.; Huang, T.T. CNS bioavailability and radiation protection of normal hippocampal neurogenesis by a lipophilic Mn porphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP(5). Redox. Biol. 2017, 12, 864–871. [Google Scholar] [CrossRef]
- Rajic, Z.; Tovmasyan, A.; Spasojevic, I.; Sheng, H.; Lu, M.; Li, A.M.; Gralla, E.B.; Warner, D.S.; Benov, L.; Batinic-Haberle, I. A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity. Free Radic. Biol. Med. 2012, 52, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Gutscher, M.; Pauleau, A.-L.; Marty, L.; Brach, T.; Wabnitz, G.H.; Samstag, Y.; Meyer, A.J.; Dick, T.P. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 2008, 5, 553. [Google Scholar] [CrossRef]
- Gutscher, M.; Sobotta, M.C.; Wabnitz, G.H.; Ballikaya, S.; Meyer, A.J.; Samstag, Y.; Dick, T.P. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 2009, 284, 31532–31540. [Google Scholar] [CrossRef]
- Albrecht, S.C.; Barata, A.G.; Grosshans, J.; Teleman, A.A.; Dick, T.P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 2011, 14, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.T.; Aggeler, R.; Oglesbee, D.; Cannon, M.; Capaldi, R.A.; Tsien, R.Y.; Remington, S.J. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 2004, 279, 13044–13053. [Google Scholar] [CrossRef]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef]
- Shaikh, E.; Bagul, M.A.; Mukesh, A.; Wankhade, S.; Mane, S.S.; Shaji, A.K.; Mohanraj, K.; Dengale, S.J. Stability Indicating High-performance Liquid Chromatography Method for Quantification of Amoxapine and Characterization of Forced Degradation Products Employing Quadrupole-Time of Flight Mass Spectrometry. Sep. Sci. Plus 2024, 7, e202400190. [Google Scholar] [CrossRef]
- Tovmasyan, A.; Bueno-Janice, J.C.; Jaramillo, M.C.; Sampaio, R.S.; Reboucas, J.S.; Kyui, N.; Benov, L.; Deng, B.; Huang, T.T.; Tome, M.E.; et al. Radiation-Mediated Tumor Growth Inhibition Is Significantly Enhanced with Redox-Active Compounds That Cycle with Ascorbate. Antioxid. Redox Signal. 2018, 29, 1196–1214. [Google Scholar] [CrossRef]
- Pfeiffenberger, C.; Lear, B.; Keegan, K.; Allada, R. Locomotor activity level monitoring using the Drosophila activity monitoring (DAM) system. In Drosophila Neurobiology; CSHL Press: Cold Spring, NY, USA, 2010. [Google Scholar]
- Gadagkar, S.R.; Call, G.B. Computational tools for fitting the Hill equation to dose-response curves. J. Pharmacol. Toxicol. Methods 2015, 71, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Juba, A.N.; Stwalley, B.; Margaryan, T.; Hamel, R.; Foley, A.N.; Jones, T.B.; Tovmasyan, A.; Buhlman, L.M. Control and parkin-null Drosophilae have sexually dimorphic brain redox chemistry. Dis. Models Mech. 2025, accepted. [Google Scholar]
- Zhao, Y.; Carroll, D.W.; You, Y.; Chaiswing, L.; Wen, R.; Batinic-Haberle, I.; Bondada, S.; Liang, Y.; St Clair, D.K. A novel redox regulator, MnTnBuOE-2-PyP(5+), enhances normal hematopoietic stem/progenitor cell function. Redox. Biol. 2017, 12, 129–138. [Google Scholar] [CrossRef]
- Chaiswing, L.; Yarana, C.; St. Clair, W.; Tovmasyan, A.; Batinic-Haberle, I.; Spasojevic, I.; St. Clair, D. A Redox-active Mn Porphyrin, MnTnBuOE-2-PyP5+, Synergizes with Carboplatin in Treatment of Chemoresistant Ovarian Cell Line. Oxid. Med. Cell Longev. 2022, 2022, 9664636. [Google Scholar] [CrossRef]
- Gad, S.C.; Sullivan, D.W., Jr.; Crapo, J.D.; Spainhour, C.B. A nonclinical safety assessment of MnTE-2-PyP, a manganese porphyrin. Int. J. Toxicol. 2013, 32, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Gad, S.C.; Sullivan, D.W., Jr.; Spasojevic, I.; Mujer, C.V.; Spainhour, C.B.; Crapo, J.D. Nonclinical Safety and Toxicokinetics of MnTnBuOE-2-PyP5+ (BMX-001). Int. J. Toxicol. 2016, 35, 438–453. [Google Scholar] [CrossRef]
- Liang, L.P.; Huang, J.; Fulton, R.; Pearson-Smith, J.N.; Day, B.J.; Patel, M. Pre-clinical therapeutic development of a series of metalloporphyrins for Parkinson’s disease. Toxicol. Appl. Pharmacol. 2017, 326, 34–42. [Google Scholar] [CrossRef]
- Watanabe, L.P.; Riddle, N.C. Exercise-induced changes in climbing performance. R Soc. Open Sci. 2021, 8, 211275. [Google Scholar] [CrossRef]
- Li, S.; Yan, T.; Yang, J.Q.; Oberley, T.D.; Oberley, L.W. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res. 2000, 60, 3927–3939. [Google Scholar]
- Bottino, R.; Balamurugan, A.N.; Tse, H.; Thirunavukkarasu, C.; Ge, X.; Profozich, J.; Milton, M.; Ziegenfuss, A.; Trucco, M.; Piganelli, J.D. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes 2004, 53, 2559–2568. [Google Scholar] [CrossRef] [PubMed]
- Tse, H.M.; Milton, M.J.; Piganelli, J.D. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: Implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic. Biol. Med. 2004, 36, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Ogata, F.T.; Branco, V.; Vale, F.F.; Coppo, L. Glutaredoxin: Discovery, redox defense and much more. Redox. Biol. 2021, 43, 101975. [Google Scholar] [CrossRef] [PubMed]
- Aesif, S.W.; Kuipers, I.; van der Velden, J.; Tully, J.E.; Guala, A.S.; Anathy, V.; Sheely, J.I.; Reynaert, N.L.; Wouters, E.F.M.; van der Vliet, A.; et al. Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling. Free Radic. Biol. Med. 2011, 51, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juba, A.N.; Keoseyan, P.P.; Hamel, R.P.; Margaryan, T.; Barber, M.L.; Foley, A.N.; Jones, T.B.; Batinic-Haberle, I.; Tovmasyan, A.; Buhlman, L.M. Manganese Porphyrin Reduces Oxidative Stress in Vulnerable Parkin-Null Drosophila Dopaminergic Neurons. Antioxidants 2025, 14, 1031. https://doi.org/10.3390/antiox14091031
Juba AN, Keoseyan PP, Hamel RP, Margaryan T, Barber ML, Foley AN, Jones TB, Batinic-Haberle I, Tovmasyan A, Buhlman LM. Manganese Porphyrin Reduces Oxidative Stress in Vulnerable Parkin-Null Drosophila Dopaminergic Neurons. Antioxidants. 2025; 14(9):1031. https://doi.org/10.3390/antiox14091031
Chicago/Turabian StyleJuba, Amber N., Petros P. Keoseyan, Riley P. Hamel, Tigran Margaryan, Michaela L. Barber, Amanda N. Foley, T. Bucky Jones, Ines Batinic-Haberle, Artak Tovmasyan, and Lori M. Buhlman. 2025. "Manganese Porphyrin Reduces Oxidative Stress in Vulnerable Parkin-Null Drosophila Dopaminergic Neurons" Antioxidants 14, no. 9: 1031. https://doi.org/10.3390/antiox14091031
APA StyleJuba, A. N., Keoseyan, P. P., Hamel, R. P., Margaryan, T., Barber, M. L., Foley, A. N., Jones, T. B., Batinic-Haberle, I., Tovmasyan, A., & Buhlman, L. M. (2025). Manganese Porphyrin Reduces Oxidative Stress in Vulnerable Parkin-Null Drosophila Dopaminergic Neurons. Antioxidants, 14(9), 1031. https://doi.org/10.3390/antiox14091031