Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds
Abstract
:1. Introduction
2. Quinoa and Its Characteristics
2.1. Nutrients in Quinoa Seeds
Nutritional Components | Unit | Availability (Per 100 g) | |
---|---|---|---|
Quinoa | Chia | ||
Water | g | 13.3 | 4.43 |
Energy | kcal | 368 | 486 |
Protein | g | 14.1 | 24.2 |
Total Fat | g | 6.10 | 40.2 |
Saturated Fatty Acids | g | 0.70 | 5.00 |
Monounsaturated Fatty Acids | g | 1.60 | 2.96 |
Polyunsaturated Fatty Acids | g | 3.30 | 22.8 |
Dietary Fiber | g | 7.00 | 34.4 |
Carbohydrates | g | 64.2 | 42.1 |
Ash | g | 2.40 | 4.8 |
Essential amino acids | |||
Phenylalanine | g | 0.59 | 1.02 |
Methionine | g | 0.31 | 0.59 |
Histidine | g | 0.41 | 0.53 |
Isoleucine | g | 0.50 | 0.80 |
Valine | g | 0.59 | 0.95 |
Leucine | g | 0.84 | 1.37 |
Lysine | g | 0.77 | 0.97 |
Threonine | g | 0.42 | 0.71 |
Tryptophan | g | 0.17 | 0.44 |
Arginine | g | 0.03 | 2.14 |
Non-essential amino acids | |||
Cystine | g | 0.19 | 0.41 |
Tyrosine | g | 0.52 | 0.56 |
Aspartic acid | g | 1.45 | 1.69 |
Glutamic acid | g | 12.8 | 3.50 |
Alanine | g | 0.64 | 1.04 |
Glycine | g | 0.30 | 0.94 |
Proline | g | 0.86 | 0.78 |
Serine | g | 0.47 | 1.05 |
Vitamins | |||
Thiamin (B1) | mg | 0.36 | 0.60 |
Riboflavin (B2) | mg | 0.32 | 0.20 |
Niacin (B3) | mg | 1.52 | 8.80 |
Pantothenic acid (B5) | mg | 5.60 | 0.94 |
Pyridoxine (B6) | mg | 0.49 | 0.10 |
Folic acid (B9) | mg | 6.50 | 49.0 |
Vitamin B12 | mg | 0.23 | 0.02 |
Vitamin A | mg | 14.0 | 54.0 |
ꞵ-carotene | µg | 8.00 | 10.2 |
α-carotene | µg | 0.00 | 0.00 |
ꞵ-cryptoxanthin | µg | 1.00 | 0.00 |
Lutein + Zeaxanthin | µg | 163 | 68.0 |
α-tocopherol | mg | 2.44 | 3.05 |
ꞵ-tocopherol | mg | 0.08 | 0.08 |
γ-tocopherol | mg | 4.55 | 5.53 |
δ-tocopherol | mg | 0.35 | 1.57 |
Vitamin K | mg | 0.00 | 0.00 |
Vitamin D (D2 + D3) | mg | 15.1 | 0.00 |
Vitamin C | mg | 10.2 | 1.60 |
Vitamin E | mg | 4.15 | 0.50 |
Minerals | |||
Calcium | mg | 47.0 | 631 |
Iron | mg | 4.6 | 7.7 |
Phosphorus | mg | 457 | 860 |
Sodium | mg | 5.0 | 16.0 |
Potassium | mg | 563 | 407 |
Magnesium | mg | 197 | 335 |
Copper | mg | 0.6 | 0.9 |
Zinc | mg | 3.1 | 4.6 |
Manganese | mg | 2.0 | 2.7 |
Selenium | µg | 8.5 | 0.04 |
2.2. Bioactive Compounds in Quinoa and Its Biological Properties
2.2.1. Phytosterols
2.2.2. Saponins
2.2.3. Phenolics
2.2.4. Phytoecdysteroids
2.2.5. Polysaccharides
2.2.6. Betalains
3. Chia Seeds and Its Characteristics
3.1. Nutrients in Chia Seeds
3.2. Bioactive Compounds in Chia and Its Biological Properties
3.2.1. Phenolics
3.2.2. Phytosterols
3.2.3. Polysaccharides
3.2.4. Other Bioactives
4. Quinoa and Chia Seeds
4.1. Processing Procedures
4.2. Health Benefits
4.3. Value-Added Food Products and Other Potential Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohlhorst, S.D.; Russell, R.; Bier, D.; Klurfeld, D.M.; Li, Z.; Mein, J.R.; Milner, J.; Ross, A.C.; Stover, P.; Konopka, E. Nutrition research to affect food and a healthy lifespan. Adv. Nutr. 2013, 4, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aja, S.; Haros, C.M. Nutrient composition of fresh pasta enriched with chia (Salvia hispanica L.). Biol. Life Sci. Forum 2022, 17, 3. [Google Scholar]
- Al-Anazi, M.S.; El-Zahar, K.M.; Rabie, N.A.-H. Nutritional and therapeutic properties of fermented camel milk fortified with red Chenopodium quinoa elour on hypercholesterolemia rats. Molecules 2022, 27, 7695. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.P.; Alves, R.C. Characterization of chia seeds, cold-pressed oil, and defatted cake: An ancient grain for modern food production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef] [PubMed]
- Kozio, M.J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal. 1992, 5, 35–68. [Google Scholar] [CrossRef]
- Ghafoor, K.; Juhaimi, F.A.; Ozcan, M.M.; Uslu, N.; Ahmed, I.A.M.; Babiker, E.E. The effect of boiling, germination and roasting on bioactive properties, phenolic compounds, fatty acids and minerals of chia seed (Salvia hispanica L.) and oils. Int. J. Gastron. Food Sci. 2022, 27, 100447. [Google Scholar] [CrossRef]
- Kakkar, S.; Tandon, R.; Tandon, N. The rising status of edible seeds in lifestyle related diseases: A review. Food Chem. 2023, 402, 134220. [Google Scholar] [CrossRef]
- Cueto, M.; Porras-Saavedra, J.; Farroni, A.; Alamilla-Beltran, L.; Schoenlechner, R.; Schleining, G.; Buera, P. Physical and mechanical properties of maize extrudates as affected by the addition of chia and quinoa seeds and antioxidants. J. Food Eng. 2015, 167, 139–146. [Google Scholar] [CrossRef]
- Goyat, J.; Passi, S.J.; Suri, S.; Dutta, H. Development of Chia (Salvia hispanica, L.) and Quinoa (Chenopodium quinoa, L.) seed flour substituted cookies- Physicochemical, nutritional and storage studies. Curr. Res. Nutr. Food Sci. J. 2018, 6, 757–769. [Google Scholar] [CrossRef]
- Oteri, M.; Bartolomeo, G.; Rigano, F.; Aspromonte, J.; Trovato, E.; Purcaro, G.; Dugo, P.; Mondello, L.; Beccaria, M. Comprehensive chemical characterization of chia (Salvia hispanica L.) seed oil with a focus on minor lipid components. Foods 2023, 12, 23. [Google Scholar] [CrossRef]
- Marcos Pasero, H.; Bojarczuk, A.; Haros, C.M.; Laparra Llopis, J.M. Immunonutritional benefits of Chenopodium quinoa’s ingredients preventing obesity-derived metabolic imbalances. Biol. Life Sci. Forum 2022, 17, 20. [Google Scholar]
- Mihai, E.; Ciucan, T.; Iosageanu, A.; Coroiu, V.; Gheorghe, A.-M.; Ghenea, A.M.; Milea, S.A.; Oancea, A. In Vitro antioxidant activity determination of a microencapsulated synergic polyphenols—Polysaccharide mixture. Chem. Proc. 2022, 7, 31. [Google Scholar]
- Mishima, M.D.V.; Da Silva, B.P.; Gomes, M.J.C.; Toledo, R.C.L.; Mantovani, H.C.; José, V.P.B.d.S.; Costa, N.M.B.; Tako, E.; Martino, H.S.D. Effect of chia (Salvia hispanica L.) associated with high-fat diet on the intestinal health of wistar rats. Nutrients 2022, 14, 4924. [Google Scholar] [CrossRef]
- Olmos, E.; Roman-Garcia, I.; Reguera, M.; Mestanza, C.; Fernandez-Garcia, N. An update on the nutritional profiles of quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus spp.), and chia (Salvia hispanica L.), three key species with the potential to contribute to food security worldwide. JSFA Rep. 2022, 2, 591–602. [Google Scholar] [CrossRef]
- Ozon, B.; Cotabarren, J.; Valicenti, T.; Parisi, M.G.; Obregon, W.D. Chia expeller: A promising source of antioxidant, antihypertensive and antithrombotic peptides produced by enzymatic hydrolysis with Alcalase and Flavourzyme. Food Chem. 2022, 380, 132185. [Google Scholar] [CrossRef]
- Mondor, M. Chia (Salvia hispanica) seed oil extraction by-product and its edible application. Food Rev. Int. 2023; ahead of print. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Deploying biomolecules as anti-COVID-19 agents. Indian J. Microbiol. 2020, 60, 263–268. [Google Scholar] [CrossRef]
- Rishi, P.; Thakur, K.; Vij, S.; Rishi, L.; Singh, A.; Kaur, I.P.; Patel, S.K.S.; Lee, J.-K.; Kalia, V.C. Diet, gut microbiota and COVID-19. Indian J. Microbiol. 2020, 60, 420–429. [Google Scholar] [CrossRef]
- Thakur, P.; Thakur, V.; Kumar, P.; Patel, S.K.S. Emergence of novel omicron hybrid variants: BA(x), XE, XD, XF more than just alphabets. Int. J. Surg. 2022, 104, 106727. [Google Scholar] [CrossRef]
- Thakur, V.; Bhola, S.; Thakur, P.; Patel, S.K.S.; Kulshrestha, S.; Ratho, R.K.; Kumar, P. Waves and variants of SARS-CoV-2: Understanding the causes and effect of the COVID-19 catastrophe. Infection 2022, 50, 309–325. [Google Scholar] [CrossRef]
- Kumar, L.; Patel, S.K.S.; Kharga, K.; Kumar, R.; Kumar, P.; Pandohee, J.; Kulshresha, S.; Harjai, K.; Chhibber, S. Molecular mechanisms and applications of N-acyl homoserine lactone mediated quorum sensing in bacteria. Molecules 2022, 27, 7584. [Google Scholar] [CrossRef] [PubMed]
- Kharga, K.; Kumar, L.; Patel, S.K.S. Recent advances in monoclonal antibody-based approaches in the management of bacterial sepsis. Biomedicines 2023, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.; Viuda-Martos, M.; Sayas-Barberá, M.E.; de Vera, C.N.-R.; Lucas-González, R.; Roldán-Verdú, A.; Botella-Martínez, C.; Pérez-Alvarez, J.A. Chia, quinoa, and their coproducts as potential antioxidants for the meat industry. Plants 2020, 9, 1359. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ledesma, B. Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: A review. Bioact. Comp. Health Dis. 2019, 2, 27–47. [Google Scholar] [CrossRef]
- Kulczynski, B.; Cisowska, J.K.; Taczanowski, M.; Kmiecik, D.; Michalowska, A.G. The chemical composition and nutritional value of chia seeds- current state of knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Angeli, V.; Silva, P.M.; Massuela, D.C.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Hrnčič, M.K.; Ivanovski, M.; Cor, D.; Knez, Z. Chia seeds (Salvia hispanica L.): An overview—Phytochemical profile, isolation methods, and application. Molecules 2020, 25, 11. [Google Scholar] [CrossRef] [Green Version]
- Mu, H.; Xue, S.; Sun, Q.; Shi, J.; Zhang, D.; Wang, D.; Wei, J. Research progress of quinoa seeds (Chenopodium quinoa Wild.): Nutritional components, technological treatment, and application. Foods 2023, 12, 2087. [Google Scholar] [CrossRef]
- Varli, S.N.; Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. [Google Scholar] [CrossRef]
- Bastidas, E.G.; Roura, R.; Rizzolo, D.A.D.; Massanés, T.; Gomis, R. Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: An integrative review. J. Nutr. Food Sci. 2016, 6, 3. [Google Scholar]
- Shitikova, A.V.; Kukharenkova, O.V.; Khaliluev, M.R. The crop production capacity of quinoa (Chenopodium quinoa Willd.)—A new field crop for russia in the non-chernozem zone of moscow’s urban environment. Agronomy 2022, 12, 3040. [Google Scholar] [CrossRef]
- Pulvento, C.; Bazile, D. Worldwide evaluations of quinoa—Biodiversity and food security under climate change pressures: Advances and perspectives. Plants 2023, 12, 868. [Google Scholar] [CrossRef]
- Brady, K.; Ho, C.T.; Rosen, R.T.; Sang, S.; Karwe, M.V. Effects of processing on the nutraceutical profile of quinoa. Food Chem. 2007, 100, 1209–1216. [Google Scholar] [CrossRef]
- Jaikishun, S.; Li, W.; Yang, Z.; Song, S. Quinoa: In perspective of global challenges. Agronomy 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Puri, S.; Sarao, L.K.; Kaur, K.; Talwar, A. Nutritional and quality analysis of quinoa seed flour fortified wheat biscuits. Asian Pac. J. Health Sci. 2020, 7, 48–52. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Fernandes, A.; Pereira, C.; Calhelha, R.C.; Sokovic, M.; Buelga, C.S.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, physicochemical characterization and bioactive properties of the Brazilian quinoa BRS Piabiru. Food Funct. 2020, 11, 2969–2977. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Siddiqui, R.A. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients 2022, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Demir, B.; Bilgicli, N. Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. J. Food Sci. Technol. 2020, 57, 3884–3892. [Google Scholar] [CrossRef]
- Galvez, A.V.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martinez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. J. Sci. Food. Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef]
- Maldonado-Alvarado, P.; Pavón-Vargas, D.J.; Abarca-Robles, J.; Valencia-Chamorro, S.; Haros, C.M. Effect of germination on the nutritional properties, phytic acid content, and phytase activity of quinoa (Chenopodium quinoa Willd). Foods 2023, 12, 389. [Google Scholar] [CrossRef]
- Goyat, J.; Handa, C. Quinoa (Chenopodium quinoa Willd.)—The unforgotten golden grain. IJFANS Int. J. Food Nutr. Sci. 2017, 7, 1. [Google Scholar]
- Abbas, G.; Areej, F.; Asad, S.A.; Saqib, M.; Anwar-ul-Haq, M.; Afzal, S.; Murtaza, B.; Amjad, M.; Naeem, M.A.; Akram, M.; et al. Differential effect of heat stress on drought and salt tolerance potential of quinoa genotypes: A physiological and biochemical investigation. Plants 2023, 12, 774. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.M.M. Quinoa: Nutritional aspects. Int. Nutraceut. Food Sci. 2017, 2, 3. [Google Scholar]
- Agçeli, G.K. A new approach to nanocomposite carbohydrate polymer films: Levan and chia seed mucilage. Int. J. Biol. Macromol. 2022, 218, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.M.M.; Pirozi, M.R.; Borges, J.T.D.S.; Sant’Ana, H.M.P.; Chaves, J.B.P.; Coimbra, J.S.D.R. Quinoa: Nutritional, functional and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef]
- USDA: United States Department of Agriculture. National Nutrient Database for Standard Reference, Release 28. 2018. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 10 June 2023).
- James, L.E.A. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar]
- Graf, B.L.; Silva, P.R.; Rojo, L.E.; Herrera, J.D.; Baldeon, M.E.; Raskin, I. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Compr. Rev. Food Sci. Food Saf. 2015, 14, 431–445. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Bisen, M.; Khan, A.; Kumar, P.; Patel, S.K.S. Role of matrix metalloproteinases in musculoskeletal diseases. Biomedicines 2022, 10, 2477. [Google Scholar] [CrossRef]
- Zamudio, F.V.; Hidalgo-Figueroa, S.N.; Andrade, R.R.O.; Álvarez, A.J.H.; Campos, M.R.S. Identification of antidiabetic peptides derived from in silico hydrolysis of three ancient grains: Amaranth, Quinoa and Chia. Food Chem. 2022, 394, 133479. [Google Scholar] [CrossRef]
- Alamri, E.; Amany, B.; Bayomy, H. Quinoa seeds (Chenopodium quinoa): Nutritional value and potential biological effects on hyperglycemic rats. J. King Saud Univ. Sci. 2023, 35, 102427. [Google Scholar] [CrossRef]
- Pereira, E.; Cadavez, V.; Barros, L.; Encina-Zelada, C.; Stojković, D.; Sokovic, M.; Calhelha, R.C.; Gonzales-Barron, U.; Ferreira, I.C. Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Res. Int. 2020, 137, 109574. [Google Scholar] [CrossRef]
- Galindo-Luján, R.; Pont, L.; Sanz-Nebot, V.; Benavente, F. A proteomics data mining strategy for the identification of quinoa grain proteins with potential immunonutritional bioactivities. Foods 2023, 12, 390. [Google Scholar] [CrossRef]
- Jafarpour, D.; Hashemi, S.M.B. Pure and co-fermentation of quinoa seeds by Limosilactobacillus fermentum and Lacticaseibacillus rhamnosus: Bioactive content, antidiabetic and antioxidant activities. Fermentation 2023, 9, 80. [Google Scholar] [CrossRef]
- Thakur, P.; Kumar, K.; Dhaliwal, H.S. Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Biosci. 2021, 42, 101170. [Google Scholar] [CrossRef]
- Graziano, S.; Agrimonti, C.; Marmiroli, N.; Gullì, M. Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends Food Sci. Technol. 2022, 125, 154–165. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Liu, R.; Hernandez, M.; Draves, J.; Marcone, M.F.; Tsao, R. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in ontario and their overall contribution to nutritional quality. J. Agric. Food Chem. 2016, 64, 1103–1110. [Google Scholar] [CrossRef]
- Toderich, K.N.; Mamadrahimov, A.A.; Khaitov, B.B.; Karimov, A.A.; Soliev, A.A.; Nanduri, K.R.; Shuyskaya, E.V. Differential impact of salinity stress on seeds minerals, storage proteins, fatty acids, and squalene composition of new quinoa genotype, grown in hyper-arid desert environments. Front. Plant Sci. 2020, 11, 607102. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, K.B.; Khakimov, B.; Engelsen, S.B.; Bak, S.; Biondi, S.; Jacobsen, S.E. Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponins profiles. Ind. Crops Prod. 2017, 104, 156–163. [Google Scholar] [CrossRef]
- Hazzam, K.E.; Hafsa, J.; Sobeh, M.; Mhada, M.; Taourirte, M.; Kacimi, K.E.; Yasri, A. An insight into saponins from quinoa (Chenopodium quinoa Willd): A review. Molecules 2020, 25, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidorova, Y.S.; Shipelin, V.A.; Petrov, N.A.; Zorin, S.N.; Mazo, V.K. Anxiolytic and antioxidant effect of phytoecdysteroids and polyphenols from Chenopodium quinoa on an in vivo restraint stress model. Molecules 2022, 27, 9003. [Google Scholar] [CrossRef]
- Abderrahim, F.; Huanatico, E.; Segura, R.; Arribas, S.; Gonzalez, M.C.; Hoyos, L.C. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from peruvian altiplano. Food Chem. 2015, 183, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, P.; Unni, S.; Krishnappa, G.; Padmanabhan, B. The Keap1–Nrf2 pathway: Promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys. Rev. 2017, 9, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Escribano, J.; Cabanes, J.; Atienzar, M.J.; Tremolada, M.I.; Pando, L.R.G.; Carmona, F.G.; Herrero, F.G. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017, 234, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, G.; Konopka, I.; Czaplicki, S. Variation in oil quality and content of low molecular lipophilic compounds in chia seed oils. Int. J. Food Prop. 2018, 21, 2016–2029. [Google Scholar] [CrossRef] [Green Version]
- Grave, G.; Mouloungui, Z.; Cerny, M.; Lacroux, E.; Valentin, R.; Fabre, J.-F.; Merah, O. Oil content, fatty acid and phytosterol compositions of chia seeds cultivated under organic conditions in France. OCL 2022, 29, 32. [Google Scholar] [CrossRef]
- Motyka, S.; Koc, K.; Ekiert, H.; Blicharska, E.; Czarnek, K.; Szopa, A. The current state of knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules 2022, 27, 1207. [Google Scholar] [CrossRef]
- Abdel Ghani, A.E.; Al-Saleem, M.S.M.; Abdel-Mageed, W.M.; AbouZeid, E.M.; Mahmoud, M.Y.; Abdallah, R.H. UPLC-ESI-MS/MS profiling and cytotoxic, antioxidant, anti-inflammatory, antidiabetic, and antiobesity activities of the non-polar fractions of Salvia hispanica L. aerial parts. Plants 2023, 12, 1062. [Google Scholar] [CrossRef]
- El-Desouky, H.S.; Zewail, R.M.Y.; Selim, D.A.-F.H.; Baakdah, M.M.; Johari, D.M.; Elhakem, A.; Mostafa, Y.S.; Alamri, S.; Sami, R.; El-Khayat, L.A.S.; et al. Bio-growth stimulants impact seed yield products and oil composition of chia. Agronomy 2022, 12, 2633. [Google Scholar] [CrossRef]
- Karel, A. Wonder foods: Quinoa and chia. Int. J. Pure Appl. Biosci. 2017, 5, 1180–1182. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Pérez-Alvarez, J.A. Quinoa and chia products as ingredients for healthier processed meat products: Technological strategies for their application and effects on the final product. Curr. Opin. Food Sci. 2020, 40, 26–32. [Google Scholar] [CrossRef]
- Wang, W.-H.; Lu, C.-P.; Kuo, M.-I. Combination of ultrasound and heat in the extraction of chia seed (Salvia hispanica L.) mucilage: Impact on yield and technological properties. Processes 2022, 10, 519. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega-3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—A review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Katunzi-Kilewela, A.; Kaale, L.D.; Kibazohi, O.; Rweyemamu, L.M. Nutritional, health benefits and usage of chia seeds (Salvia hispanica): A review. Afr. J. Food Sci. 2021, 15, 48–59. [Google Scholar]
- Aguilar-Toalá, J.E.; Vidal-Limon, A.; Liceaga, A.M. Multifunctional analysis of chia seed (Salvia hispanica L.) bioactive peptides using peptidomics and molecular dynamics simulations approaches. Int. J. Mol. Sci. 2022, 23, 7288. [Google Scholar] [CrossRef]
- Madrazo, A.L.; Campos, M.R.S. In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, antibiofilm, and antioxidant potential. Comput. Biol. Chem. 2022, 98, 107695. [Google Scholar] [CrossRef]
- Madrazo, A.L.; Ortíz, A.B.F.; Mendoza, L.F.M.; Campos, M.R.S. Antibacterial peptide fractions from chia seeds (Salvia hispanica L.) and their stability to food processing conditions. J. Food Sci. Technol. 2022, 59, 4332–4340. [Google Scholar] [CrossRef]
- Malik, A.M.; Riar, C.S. Difference in the nutritional, in vitro, and functional characteristics of protein and fat isolates of two Indian chia (Salvia hispanica L) seed genotypes with variation in seed coat color. J. Food Sci. 2022, 87, 3872–3887. [Google Scholar] [CrossRef]
- Prathyusha, P.; Kumari, B.A.; Suneetha, W.J.; Srujana, M.N.S. Chia seeds for nutritional security. J. Pharmacog. Phytochem. 2019, 8, 2702–2707. [Google Scholar]
- Munoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seed (Salvia hispanica): An ancient grain and a new functional food. Food Rev. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Aiassa, V.; Ferreira, M.D.R.; Villafane, N.; Alessandro, E.M. α-Linolenic acid rich-chia seed modulates visceral adipose tissue collagen deposition, lipolytic enzymes expression, insulin signaling and GLUT-4 levels in a diet-induced adiposity rodent model. Food Res. Int. 2022, 156, 111164. [Google Scholar] [CrossRef]
- Takic, M.; Pokimica, B.; Petrovic-Oggiano, G.; Popovic, T. Effects of dietary -linolenic acid treatment and the efficiency of its conversion to eicosapentaenoic and docosahexaenoic acids in obesity and related diseases. Molecules 2022, 27, 4471. [Google Scholar] [CrossRef]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and therapeutic perspectives of chia (Salvia hispanica L.): A review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva-Lazo, A.; Montserrat-de la Paz, S.; Grao-Cruces, E.; Pedroche, J.; Toscano, R.; Millan, F.; Millan-Linares, M.C. Antioxidant and immunomodulatory properties of chia protein hydrolysates in primary human monocyte–macrophage plasticity. Foods 2022, 11, 623. [Google Scholar] [CrossRef] [PubMed]
- Lopez, V.; Tecante, A. Chia (Salvia hispanica): A review of native Mexican seed and its nutritional and functional properties. Adv. Food Nutr. Res. 2015, 75, 53–75. [Google Scholar]
- Grancieri, M.; Martino, H.S.D.; Mejia, E.G. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, A.; Shukla, S.; Ohri, D. Chenopodium quinoa—An Indian perspective. Ind. Crops Prod. 2006, 23, 73–87. [Google Scholar] [CrossRef]
- Ruales, J.; De Grijalva, Y.; Lopez-Jaramillo, P.; Nair, B.M. The nutritional quality of infant food from quinoa and its effect on the plasma level of insulin-like growth factor-1 (IGF-1) in undernourished children. Int. J. Food Sci. Nutr. 2002, 53, 143–154. [Google Scholar] [CrossRef]
- Moratilla-Rivera, I.; Sánchez, M.; Valdés-González, J.A.; Gómez-Serranillos, M.P. Natural products as modulators of Nrf2 signaling pathway in neuroprotection. Int. J. Mol. Sci. 2023, 24, 3748. [Google Scholar] [CrossRef]
- Hollman, P.C.H.; Cassidy, A.; Comte, B.; Heinonen, M.; Richelle, M.; Richling, E.; Serafini, M.; Scalbert, A.; Sies, H.; Vidry, S. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J. Nutr. 2011, 141, 989S–1009S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croft, K.D. Dietary polyphenols: Antioxidants or not? Arch. Biochem. Biophys. 2016, 595, 120–124. [Google Scholar] [CrossRef] [Green Version]
- López, D.N.; Galante, M.; Raimundo, G.; Spelzini, D.; Boeris, V. Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Res. Int. 2019, 116, 419–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motyka, S.; Skala, E.; Ekiert, H.; Szopa, A. Health-promoting approaches of the use of chia seeds. J. Funct. Foods 2023, 103, 105480. [Google Scholar] [CrossRef]
- Gabay, O.; Sanchez, C.; Salvat, C.; Chevy, F.; Breton, M.; Nourissat, G.; Wolf, C.; Jacques, C.; Berenbaum, F. Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthr. Cartil. 2010, 18, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.-H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef]
- Sayeed, M.S.B.; Karim, S.M.R.; Sharmin, T.; Morshed, M.M. Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: A plant-derived orphan phytosterol. Medicines 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Brütsch, L.; Stringer, F.J.; Kuster, S.; Windhab, E.J.; Fischer, P. Chia seed mucilage—A vegan thickener: Isolation, tailoring viscoelasticity and rehydration. Food Funct. 2019, 10, 4854–4860. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, D.A.; Mohammed, S.E.; Hamed, I.M. Chia seeds oil enriched with phytosterols and mucilage as a cardioprotective dietary supplement towards inflammation, oxidative stress, and dyslipidemia. J. Herbmed Pharmacol. 2022, 11, 83–90. [Google Scholar] [CrossRef]
- Mhada, M.; Metougui, M.L.; El Hazzam, K.; El Kacimi, K.; Yasri, A. Variations of saponins, minerals and total phenolic compounds due to processing and cooking of quinoa (Chenopodium quinoa Willd.) seeds. Foods 2020, 9, 660. [Google Scholar] [CrossRef]
- Alarcon, G.; Valoy, A.; Rossi, A.; Jerez, S. Study of the residue from Salvia hispanica (Chia) seed oil extraction by cold pressing for repurposing as functional food to prevent metabolic syndrome. Biol. Life Sci. Forum 2022, 17, 13. [Google Scholar]
- Ang, M.E.; Cowley, J.M.; Yap, K.; Hahn, M.G.; Mikkelsen, D.; Tucker, M.R.; Williams, B.A.; Burton, R.A. Novel constituents of Salvia hispanica L. (chia) nutlet mucilage and the improved in vitro fermentation of nutlets when ground. Food Funct. 2023, 14, 1401. [Google Scholar] [CrossRef]
- Bhathal, S.K.; Kaur, N.; Gill, J. Effect of processing on the nutritional composition of quinoa (Chenopodium quinoa Willd.). Agric. Res. J. 2017, 54, 90–93. [Google Scholar] [CrossRef]
- Valencia, R.A.M.R.C.; Serna, L.A. Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Food Sci. Technol. 2011, 31, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Valencia, S.; Svanberg, U.; Sandberg, A.S.; Ruales, J. Processing of quinoa (Chenopodium quinoa, Willd.): Effects on in vitro iron availability and phytate hydrolysis. Int. J. Food Sci. Nutr. 1999, 50, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Ridout, C.L.; Price, K.R.; Dupont, M.S.; Parker, M.L.; Fenwick, G.R. Quinoa saponins—Analysis and preliminary investigations into the effects of reduction by processing. J. Sci. Food and Agricul. 1991, 54, 165–176. [Google Scholar] [CrossRef]
- Suárez-Estrella, D.; Cardone, G.; Buratti, S.; Pagani, M.A.; Marti, A. Sprouting as a pre-processing for producing quinoa-enriched bread. J. Cereal Sci. 2020, 96, 103111. [Google Scholar] [CrossRef]
- Wu, L.; Wang, A.; Shen, R.; Qu, L. Effect of processing on the contents of amino acids and fatty acids, and glucose release from the starch of quinoa. Food Sci. Nutr. 2020, 8, 4877–4887. [Google Scholar] [CrossRef]
- Sharma, S.; Kataria, A.; Singh, B. Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (Chenopodium quinoa). LWT 2022, 160, 113256. [Google Scholar] [CrossRef]
- Calvo-Lerma, J.; Paz-Yépez, C.; Asensio-Grau, A.; Heredia, A.; Andrés, A. Impact of processing and intestinal conditions on in vitro digestion of chia (Salvia hispanica) seeds and derivatives. Foods 2020, 9, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otondi, E.A.; Nduko, J.M.; Omwamba, M. Physico-chemical properties of extruded cassava-chia seed instant flour. J. Agricul. Food Res. 2020, 2, 100058. [Google Scholar] [CrossRef]
- Dakhili, S.; Abdolalizadeh, L.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Quinoa protein: Composition, structure and functional properties. Food Chem. 2019, 299, 125161. [Google Scholar] [CrossRef]
- Chludil, H.D.; Corbino, G.B.; Leicach, S.R. Soil quality effects on Chenopodium album flavonoid content and antioxidant potential. J. Agricul. Food Chem. 2008, 56, 5050–5056. [Google Scholar] [CrossRef]
- Fadwa, E.; Amssayef, A.; Eddouks, M. Antihyperglycemic and antidyslipidemic activities of the aqueous Salvia hispanica extract in diabetic rat. Cardiovasc. Hematol. Agents Med. Chem. 2022, 20, 60–66. [Google Scholar] [CrossRef]
- Cerda-Bernad, D.; Valero-Cases, E.; Pastor, J.-J.; Frutos, M.J.; Perez-Llamas, F. Probiotic red quinoa drinks for celiacs and lactose intolerant people: Study of functional, physicochemical and probiotic properties during fermentation and gastrointestinal digestion. Int. J. Food Sci. Nutrit. 2022, 73, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Gazem, R.A.A.; Chandrashekariah, S.A. Pharmacological properties of Salvia hispanica (chia) seeds: A review. J. Crit. Rev. 2016, 3, 63–67. [Google Scholar]
- Ikumi, P.; Mburu, M.; Njoroge, D. Chia (Salvia hispanica L.)—A potential crop for food and nutrition security in Africa. J. Food Res. 2019, 8, 104–118. [Google Scholar] [CrossRef]
- Grancieri, M.; Verediano, T.A.; Sant’Ana, C.T.; de Assis, A.; Toledo, R.L.; de Mejia, E.G.; Martino, H.S.D. Digested protein from chia seed (Salvia hispanica L.) prevents obesity and associated inflammation of adipose tissue in mice fed a high-fat diet. PharmaNutrition 2022, 21, 100298. [Google Scholar] [CrossRef]
- Melo, D.; Machado, T.B.; Oliveira, M.B.P.P. Chia seeds: An ancient grain trending in modern human diets. Food Funct. 2019, 10, 3068–3089. [Google Scholar] [CrossRef]
- Aguirre, E.; Rodríguez, G.; León-López, A.; Urbina-Castillo, K.; Villanueva, E. Incorporation of chia seeds (Salvia hispanica L.) in cereal flour mixtures: Rheology and quality of sliced bread. Dyna 2021, 88, 109–116. [Google Scholar]
- Rabail, R.; Khan, M.R.; Mehwish, H.M.; Rajoka, M.S.R.; Lorenzo, J.M.; Kieliszek, M.; Khalid, A.R.; Shabbir, M.A.; Aadil, R.M. An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Front. Biosci. 2021, 26, 643–654. [Google Scholar]
- Alemán, A.; Pérez-García, S.; Fernández de Palencia, P.; Montero, M.P.; Gómez-Guillén, M.d.C. Physicochemical, antioxidant, and anti-inflammatory properties of rapeseed lecithin liposomes loading a chia (Salvia hispanica L.) seed extract. Antioxidants 2021, 10, 693. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Chandra, S.; Dwivedi, P.; Parturkar, M. Quinoa (Chenopodium quinoa Willd.): A nutritional healthy grain. Int. J. Adv. Res. 2015, 3, 725–736. [Google Scholar]
- Myrisis, G.; Aja, S.; Haros, C.M. Substitution of critical ingredients of cookie products to increase nutritional value. Biol. Life Sci. Forum 2022, 17, 15. [Google Scholar]
- Quispe-Sanchez, L.; Mestanza, M.; Goñas, M.; Gill, E.R.A.; Oliva-Cruz, M.; Chavez, S.G. Physical, functional and sensory properties of bitter chocolates with incorporation of high nutritional value flours. Front. Nutr. 2022, 9, 990887. [Google Scholar] [CrossRef]
- Rabail, R.; Sultan, M.T.; Khalid, A.R.; Sahar, A.T.; Zia, S.; Kowalczewski, P.Ł.; Jezowski, P.; Shabbir, M.A.; Aadil, R.M. Clinical, nutritional, and functional evaluation of chia seed-fortified muffins. Molecules 2022, 27, 5907. [Google Scholar] [CrossRef]
- Stikic, R.; Glamoclija, D.; Demin, M.; Radovic, B.V.; Jovanovic, Z.; Opsenica, D.M.; Jacobsen, S.E.; Milovanovic, M. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J. Cereal Sci. 2012, 55, 132–138. [Google Scholar] [CrossRef]
- Li, L.; Lietz, G.; Seal, C.J. Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. Int. J. Food Sci. Technol. 2021, 56, 3245–3254. [Google Scholar] [CrossRef]
- Srujana, M.N.; Kumari, B.A.; Maheswari, K.U.; Devi, K.B.S.; Suneetha, W.J. Sensory quality characteristics of gluten-free products prepared with germinated quinoa (Chenopodium quinoa Wild). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3507–3514. [Google Scholar] [CrossRef]
- Puri, S.; Sarao, L.K.; Trehan, J.; Kaur, R. Evaluation of the nutritional value of snacks prepared by fortification of gram flour with chia seeds. Int. J. Home Sci. 2020, 6, 35–39. [Google Scholar]
- Cotovanu, I.; Mironeasa, C.; Mironeasa, S. Nutritionally improved wheat bread supplemented with quinoa flour of large, medium and small particle sizes at typical doses. Plants 2023, 12, 698. [Google Scholar] [CrossRef] [PubMed]
- Kosiorowska, A.; Pietrzyk, S.; Pająk, P.; Socha, R. The effect of the addition of gold flax (Linum usitatissimum L.) and chia seeds (Salvia hispanica L.) on the physicochemical and antioxidant properties of cranberry jams. Eur. Food Res. Technol. 2022, 248, 2865–2876. [Google Scholar] [CrossRef]
- Estivi, L.; Pellegrino, L.; Hogenboom, J.A.; Brandolini, A.; Hidalgo, A. Antioxidants of amaranth, quinoa and buckwheat wholemeals and heat-damage development in pseudocereal-enriched einkorn water biscuits. Molecules 2022, 27, 7541. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Sotin, H.; Rabesona, H.; Novales, B.; Le Quéré, J.-M.; Froissard, M.; Faure, J.-D.; Guyot, S.; Anton, M. Oil bodies from chia (Salvia hispanica L.) and Camelina (Camelina sativa L.) seeds for innovative food applications: Microstructure, composition and physical stability. Foods 2023, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Sayed-Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Evaluation of nutritional and technological attributes of whole wheat based bread fortified with chia flour. Foods 2018, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Batista, A.; Quitete, F.T.; Peixoto, T.C.; Almo, A.; Monteiro, E.B.; Trindade, P.; Zago, L.; Citelli, M.; Daleprane, J.B. Chia (Salvia hispanica L.) oil supplementation ameliorates liver oxidative stress in high-fat diet-fed mice through PPAR-γ and Nrf2 upregulation. J. Funct. Foods 2023, 102, 105462. [Google Scholar] [CrossRef]
- Joubert, M.B.V.; Degrave, V.; Oliva, M.E.; D’Alessandro, M.E. Salvia hispanica L. (chia) seed improves liver inflammation and endothelial dysfunction in an experimental model of metabolic syndrome. Food Funct. 2022, 13, 11249. [Google Scholar] [CrossRef]
- Joubert, M.B.V.; Ingaramo, P.; Oliva, M.E.; D’Alessandro, M.E. Salvia hispanica L. (chia) seed ameliorates liver injury and oxidative stress by modulating NrF2 and NFκB expression in sucrose-rich diet-fed rats. Food Funct. 2022, 13, 7333. [Google Scholar] [CrossRef]
- Ramos, I.F.D.S.; Magalhaes, L.M.; Pessoa, C.D.O.; Ferreira, P.M.P.; Rizzo, M.D.S.; Osajima, J.A.; Silva-Filho, E.C.; Nunes, C.; Raposo, F.; Coimbra, M.A.; et al. New properties of chia seed mucilage (Salvia hispanica L.) and potential application in cosmetic and pharmaceutical products. Ind. Crops Prod. 2021, 171, 113981. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Novack, M.E.; Santos, C.P.; Kubota, E.; Rosa, C.S. Evaluation of replacing wheat flour with chia flour (Salvia hispanica L.) in pasta. Semin. Cienc. Agrar. 2015, 36, 2545–2554. [Google Scholar] [CrossRef] [Green Version]
- Dincoglu, A.H.; Yesildemir, O. A renewable source as a functional food: Chia seed. Curr. Nutr. Food Sci. 2019, 15, 327–337. [Google Scholar] [CrossRef]
- Nduko, J.M.; Maina, R.W.; Muchina, R.K.; Kibitok, S.K. Application of chia (Salvia hispanica) seeds as a functional component in the fortification of pineapple jam. Food Sci. Nutr. 2018, 6, 2344–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punia, S.; Dhull, S.B. Chia seed (Salvia hispanica L.) mucilage (a heteropolysaccharide): Functional, thermal, rheological behaviour and its utilization. Int. J. Biol. Macromol. 2019, 140, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Kowaleski, J.; Quast, L.B.; Steffens, J.; Lovato, F.; dos Santos, L.R.; da Silva, S.Z.; de Souza, D.M.; Felicetti, M.A. Functional yogurt with strawberries and chia seeds. Food Biosci. 2020, 37, 100726. [Google Scholar] [CrossRef]
- Goyat, J.; Rudra, S.G.; Suri, S.; Passi, S.J.; Dutta, H. Nutritional, functional and sensory properties of ready-to-eat chia and quinoa mix enriched low amylose rich based porridge mixes. Curr. Res. Nutr. Food Sci. 2019, 7, 399–414. [Google Scholar] [CrossRef]
- Bermejo, N.F.; Munne-Bosch, S. Mixing chia seeds and sprouts at different developmental stages: A cost-effective way to improve antioxidant vitamin composition. Food Chem. 2023, 405, 134880. [Google Scholar] [CrossRef] [PubMed]
- Botella-Martínez, C.; Gea-Quesada, A.; Sayas-Barbera, E.; Perez-Alvarez, J.A.; Fernandez-Lopez, J.; Viuda-Martos, M. Improving the lipid profile of beef burgers added with chia oil (Salvia hispanica L.) or hemp oil (Cannabis sativa L.) gelled emulsions as partial animal fat replacers. LWT—Food Sci. Technol. 2022, 161, 113416. [Google Scholar] [CrossRef]
- Chiang, J.H.; Ong, D.S.M.; Ng, F.S.K.; Hua, X.Y.; Hua, X.Y.; Tay, W.L.W.; Henry, C.J. Application of chia (Salvia hispanica) mucilage as an ingredient replacer in foods. Trends Food Sci. Technol. 2021, 115, 105–116. [Google Scholar] [CrossRef]
- Tak, Y.; Kaur, M.; Kumar, R.; Gautam, C.; Singh, P.; Kaur, H.; Kaur, A.; Bhatia, S.; Jha, N.K.; Gupta, P.K.; et al. Repurposing chia seed oil: A versatile novel functional food. J. Food Sci. 2022, 87, 2798–2819. [Google Scholar] [CrossRef]
- De Souza, A.A.; Lima, A.M.; BezerraSousa, D.D.O.; Nogueira, F.C.; Neto, J.C.D.S.; Dias, L.P.; Araujo, N.M.S.; Nagano, C.S.; Junior, H.V.N.; da Silva, C.R.; et al. Chia (Salvia hispanica L.) seeds contain a highly stable trypsin inhibitor with potential for bacterial management alone or in drug combination therapy with oxacillin. Probiotics Antimicro. Prot. 2022; ahead of print. [Google Scholar] [CrossRef]
- Druzynska, B.; Wołosiak, R.; Grzebalska, M.; Majewska, E.; Ciecierska, M.; Worobiej, E. Comparison of the content of selected bioactive components and antiradical properties in yoghurts enriched with chia seeds (Salvia hispanica L.) and chia seeds soaked in apple juice. Antioxidants 2021, 10, 1989. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, T.; Karasu, S.; Tekin-Çakmak, Z.H.; Bozkurt, F. Extraction of natural gum from cold-pressed chia seed, flaxseed, and rocket seed oil by-product and application in low fat vegan mayonnaise. Foods 2022, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Sabouri, Z.; Rangrazi, A.; Amiri, M.S.; Khatami, M.; Darroudi, M. Green synthesis of nickel oxide nanoparticles using Salvia hispanica L. (chia) seeds extract and studies of their photocatalytic activity and cytotoxicity effects. Bioprocess Biosyst. Eng. 2021, 44, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, H.A.; Taha, A. Sonochemical-assisted biogenic synthesis of theophrasite β-Ni(OH)2 nanocluster using chia seeds extract: Characterization and anticancer activity. Nanomaterials 2022, 12, 1919. [Google Scholar] [CrossRef]
- Abdel-Aty, A.M.; Barakat, A.Z.; Bassuiny, R.I.; Mohamed, S.A. Improved production of antioxidant-phenolic compounds and certain fungal phenolic-associated enzymes under solid-state fermentation of chia seeds with Trichoderma reesei: Response surface methodology-based optimization. Food Meas. 2022, 16, 3488–3500. [Google Scholar] [CrossRef]
Bioactive Compounds | Unit | Availability (Per 100 g) | Reference | |
---|---|---|---|---|
Quinoa | Chia | |||
Phytosterols | mg | 38.0–118 | 153–497 | [24,67,68] |
Saponins | mg | 20–3400 | + a | [24,26] |
Phenolics | mg | 46.0–202 | 3.5–253 | [27,67] |
Phyotoecdysteroids | mg | 13.8–57.0 | + | [24] |
Betalains | µg | 150–610 | + | [24] |
Flavonoids | mg | 25.9–289 | 62.5–122 | [28,51] |
Carotenoids | µg | 0.65–1.81 | 13.4–39.8 | [57,67] |
Squalene | µg | 148–256 | 111–299 | [58,67] |
Tocopherols | mg | 0.4–52.0 | 35.6–60.0 | [51,57,67,68] |
Oil | % | 2.00-10-0 | 28.5–32.7 | [9,10] |
Linolenic acid (omega 3) | % | 6.5–6.7 | 59.8–63.8 | [27,58] |
Linoleic acid (omega 6) | % | 56.4–60.1 | 18.9–20.4 | [27,58] |
Antioxidant activity (DPPH) | mg TE/g | 1.3–6.0 | 1.60–109 | [23] |
Antioxidant activity (FRAP) | mg TE/g | 0.7–9.0 | 5.10–278 | [23] |
Extraction Method | Solvent |
---|---|
Cold solvent | n-hexane |
Soxhlet | Ethyl acetate ethanol/n-hexane |
Ultrasonic/Soxhlet | n-hexane/ethyl acetate/isopropanol |
Ultrasound | Ethyl acetate/ethanol |
Cold pressing | Ethanol |
Ultrasound liquid-liquid | Methanol-water solution |
Hot solvent | Water and aqueous ethanol |
Ultrasound-assisted | n-hexane |
Cold pressing and ultrasound | Methanol |
Screw pressing | n-hexane |
Supercritical fluid | Carbon dioxide/ethanol |
Pressurized liquid | Ethanol/n-hexane |
Subcritical fluid | n-propane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, A.; Rizwana; Tripathi, A.D.; Kumar, T.; Sharma, K.P.; Patel, S.K.S. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants 2023, 12, 1413. https://doi.org/10.3390/antiox12071413
Agarwal A, Rizwana, Tripathi AD, Kumar T, Sharma KP, Patel SKS. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants. 2023; 12(7):1413. https://doi.org/10.3390/antiox12071413
Chicago/Turabian StyleAgarwal, Aparna, Rizwana, Abhishek Dutt Tripathi, Tarika Kumar, Kanti Prakash Sharma, and Sanjay Kumar Singh Patel. 2023. "Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds" Antioxidants 12, no. 7: 1413. https://doi.org/10.3390/antiox12071413
APA StyleAgarwal, A., Rizwana, Tripathi, A. D., Kumar, T., Sharma, K. P., & Patel, S. K. S. (2023). Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants, 12(7), 1413. https://doi.org/10.3390/antiox12071413