Pathomechanisms of Prenatally Programmed Adult Diseases
Abstract
:1. Introduction
2. Telomere System and Fetal Programming
2.1. The Function of the Telomere/Telomerase System
2.2. Telomeres and Developmental Programming
3. Epigenetic Modifications and Developmental Programming
3.1. DNA Methylation
3.2. Histone Acetylation
3.3. MicroRNA
3.3.1. Pathophysiology
3.3.2. Fetal Programming
4. Oxidative Stress (OS) and Fetal Programming
4.1. Pathophysiology
4.2. Fetal Programming
5. Fetal Programming of Cardiovascular Diseases
5.1. L-Arginine–NO–ADMA System and Fetal Programming
5.1.1. Metabolic Pathway of NO Generation and Elimination
5.1.2. L-Arginine NO System and Fetal Programming
5.2. Adenosine and Fetal Programming
5.2.1. Adenosine Metabolism and Function
5.2.2. Adenosine and Fetal Programming of Cardiometabolic Diseases
5.3. Renin-Angiotensin System (RAS) and Fetal Programming
5.3.1. Generation and Function of Angiotensin Peptides
5.3.2. RAS and Fetal Programming
6. Renal Development and Perinatal Programming
6.1. Nephrogenesis—Fetal Nephron Endowment
6.2. Gestational Chronodisruption and Programming of Renal Dysfunction
6.3. Renin-Angiotensin-Aldosterone System (RAAS) and Fetal Renal Programming
6.4. Glomerular Hyperfiltration and Fetal Programming
7. Nutritional and Metabolic Fetal Programming
7.1. Metabolic Hormones and Fetal Programming
7.1.1. Insulin
7.1.2. Irisin
7.1.3. Leptin
7.1.4. Adiponectin
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OS | Oxidative stress |
TERT | Telomerase reverse transcriptase |
TERC | RNA template of telomerase reverse |
HIF-1α | Hypoxia-inducible factor 1α |
IUGR | Intrauterine growth restriction |
ROS | Reactive oxygen species |
CpG | Cytosine bases preceding guanine |
DNMT | DNA methyltransferase |
SAM | S-adenosylmethionine |
SAH | S-adenosylhomocysteine |
HAT | Histone acetyltransferase |
HDAC | Histone deacetylase |
TET | Ten-eleven-translocation |
5-hmC | 5-hydroxy-methylcytosine |
5-mec | 5-methylcytosine |
Sirtuin | SIRT |
NO | Nitrogen oxide |
eNOS | Endothelial nitric oxide synthase |
VEGF | Vascular endothelial growth factor |
CAT | Cationic amino acid transporter |
nNOS | Neuronal nitric oxide synthase |
iNOS | Inducible nitric oxide synthase |
ADMA | Asymmetric dimethylarginine |
MMA | Monomethylarginine |
PRMT | Protein methyltransferase |
DDAH | Dimethylarginine dimethylamino hydrolase |
cGMP | Cyclic guanosine monophosphate |
ATP | Adenosine triphosphate |
ADP | Adenosine diphosphate |
AMP | Adenosine monophosphate |
AR | Adenosine receptor |
cAMP | Cyclic adenosine monophosphate |
PKA | Phosphokinase A |
IP3K | Inositide-1,4,5 triphosphate kinase |
PI3K | Phosphatidylinositol 3-kinase |
DG | Diacylglycerol |
IL-10, IL-8 | Interleukin-10, -8 |
AKT | Protein kinase B |
TNFα | Tumor necrosis factor α |
HUVEC | Human umbilical cell |
RAAS | Renin-angiotensin-aldosterone system |
RAS | Renin-angiotensin system |
Ang | Angiotensin |
ACE | Angiotensin-converting enzyme |
MasR | Angiotensin—(1–7) receptor, class A G protein-coupled receptor |
NFκB | Nuclear factor kappa B |
ET | Endothelin |
ARB | Angiotensin receptor blocker |
PLGF | Placental growth factor |
AT1R-AAS | Angiotensin 1 receptor agonist antibodies |
mtROS | Mitochondrial reactive oxygen species |
References
- Barker, D.J.P. In utero programming of chronic disease. Clin. Sci. 1998, 95, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.P.; Bagby, S.P.; Ganson, M.A. Mechanisms of disease: In utero programming in the pathogenesis of hypertension. Nat. Clin. Pract. Nephrol. 2007, 2, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Winer, P.D.; Osmond, C.; Margetts, B.; Simmonds, S.J. Weight in infancy and death from ischaemic heart disease. Lancet 1989, 2, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Osmond, C.; Barker, D.J.; Winter, P.D.; Fall, C.H.; Simmonds, S.J. Early growth and death from cardiovascular disease. Brit. Med. J. 1993, 307, 1519–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, D.J.; Hales, C.N.; Fall, C.H.; Osmond, C.; Phipps, K.; Clark, P.M. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X). relation to reduced fetal growth. Diabetologia 1993, 36, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Hales, C.N.; Barker, D.J. Type 2 (non-insulin-dependent) diabetes mellitus the thrifty phenotype hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef]
- Kuzawa, C.W. Fetal origins of developmental plasticity. are fetal cues reliable predictors of future nutritional environment? Am. J. Hum. Biol. 2005, 17, 5–21. [Google Scholar] [CrossRef]
- Bateson, P. Developmental plasticity and evolutionary biology. J. Nutr. 2007, 137, 1060–1062. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.; Osmond, C.; Forsén, T.J.; Kajantie, E.; Eriksson, J.G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 2005, 353, 1802–1809. [Google Scholar] [CrossRef]
- Law, C.M.; Shell, A.W.; Newsome, C.A.; Syddall, H.E.; Shinebourne, A.E.; Fayers, P.M.; Martyn, C.N.; de Swiet, M. Fetal, infant and childhood growth and adult blood pressure a longitudinal study from birth to 22 years of age. Circulation 2002, 105, 1088–1092. [Google Scholar] [CrossRef] [Green Version]
- Adair, L.S.; Cole, T.J. Rapid child growth raises blood pressure in adolescent boys who were thin at birth. Hypertension 2003, 41, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irving, R.J.; Belton, N.R.; Elton, R.A.; Walter, B.R. Adult cardiovascular risk factors in premature babies. Lancet 2000, 355, 2135–2136. [Google Scholar] [CrossRef] [PubMed]
- Kistner, A.; Jacobson, L.; Jacobson, S.H.; Svensson, E.; Hellstrom, A. Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women. Pediatr. Res. 2002, 51, 675–680. [Google Scholar] [CrossRef]
- Symonds, M.E.; Stephenson, T.; Gardner, D.S.; Budge, H. Long-term effects of nutritional programming of the embryo and fetus. mechanisms and critical windows. Reprod. Fertil. Dev. 2007, 19, 53–63. [Google Scholar] [CrossRef] [PubMed]
- De Lange, T. Protection of mammalian telomeres. Oncogene 2002, 21, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Moyzis, R.K.; Buckingham, J.M.; Cram, L.S.; Dani, M.; Deaven, L.L.; Jones, M.D.; Meyne, J.; Ratliff, L.F.; Wu, J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 1988, 18, 6622–6626. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, E.H. Telomere states and cell fates. Nature 2000, 408, 53–56. [Google Scholar] [CrossRef]
- Zhang, X.; Mar, V.; Zhou, W.; Harrington, E.; Robinson, M.O. Telomere shortening and apoptosis in telomerase inhibited tumor cells. Genes Dev. 1999, 13, 2388–2399. [Google Scholar] [CrossRef] [Green Version]
- Fossel, M. Telomerase and the aging cell: Implications for human health. JAMA 1998, 179, 1732–1735. [Google Scholar] [CrossRef]
- Buys, C.H. Telomeres, telomerase and cancer. N. Engl. J. Med. 2000, 142, 1282–1283. [Google Scholar] [CrossRef]
- Collins, K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 2006, 7, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Harley, C.B.; Futzher, A.B.; Greider, C.W. Telomeres shorten during of human fibroblasts. Nature 1999, 145, 458–460. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, Y.; Liu, B.; Helmling, C.; Susac, L.; Cheng, R.; Zhou, Z.H.; Feigon, J. Structures of telomerase at several steps of telomere repeat synthesis. Nature 2021, 593, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; He, Y.; Wang, Y.; Song, H.; Zhou, Z.N.; Feigon, J. Structure of active human telomerase with telomere shelterin protein TPP1. Nature 2022, 604, 578–583. [Google Scholar] [CrossRef] [PubMed]
- De Lange, T. Shelterin the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005, 19, 2100–2110. [Google Scholar] [CrossRef] [Green Version]
- Mangaonkar, A.A.; Patnaik, M.M. Short telomere syndromes in clinical practice: Bridging bench and bedside. Mayo Clin. Proc. 2018, 93, 904–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaetzlein, S.; Lucas-Hahn, A.; Lemme, E.; Kues, W.A.; Dorsch, M.; Manns, M.P.; Niemann, H.; Rudolph, K.L. Telomere length is reset during early mammalian embryogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 8034–8038. [Google Scholar] [CrossRef] [Green Version]
- Okuda, K.; Bardeguez, A.; Gardner, J.P.; Rodriguez, P.; Ganesh, V.; Kimura, M.; Skurmick, J.; Awad, G.; Aviv, A. Telomere length in the newborn. Pediatr. Res. 2002, 52, 377–381. [Google Scholar] [CrossRef]
- Zeichner, S.L.; Palumbo, P.; Feng, Y.; Xiao, X.; Gee, D.; Sleasman, J.; Goodenow, M.; Biggar, R.; Dimitrov, D. Rapid telomere shortening in children. Blood 1999, 93, 2824–2830. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; de Punder, K.; Buss, C.; Wadhwa, P.D. The fetal programming of telomere biology hypothesis: An update. Philos. Trans. R. Soc. 2017, 373, 20170151. [Google Scholar] [CrossRef]
- Whiteman, V.E.; Goswami, A.; Salihu, H.M. Telomere length and fetal programming. a review of recent scientific advances. Am. J. Reprod. Immunol. 2017, 77, e12661. [Google Scholar] [CrossRef] [Green Version]
- Keefe, D.L. Telomeres, reproductive aging, and genomic instability during early development. Reprod. Sci. 2016, 23, 1602–1615. [Google Scholar] [CrossRef] [PubMed]
- Anifandis, G.; Samara, K.; Simopoulou, M.; Messini, C.I.; Charzimeletiou, K.; Thodou, E.; Daponte, A.; Georgiu, I. Insight into the role of telomeres in human embryological parameters. Opinion regarding IVF. J. Dev. Biol. 2021, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Aydos, S. Telomeres and reproductive aging. Rev. Sel. Top. Telomere Biol. 2012, 6, 149–174. [Google Scholar]
- Frenck, R.W., Jr.; Blackbum, E.H.; Shannon, K.M. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA 1998, 95, 5607–5610. [Google Scholar] [CrossRef] [Green Version]
- Jennings, B.J.; Ozanne, S.E.; Dorling, M.W.; Hales, C.N. Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett. 1999, 448, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Pericuesta, E.; Gutierrez-Arroyo, J.L.; Sanches-Calabug, M.J.; Gutierrez-Adan, D. Postnatak catch-up growth programs telomere dynamics and glucose intolerance in low birth weight mice. Int. J. Mol. Sci. 2021, 22, 3657. [Google Scholar] [CrossRef]
- Benetos, A.; Kark, J.D.; Susser, E.; Kimura, M.; Sinnreich, R.; Chen, W.; Steenstrup, T.; Christensen, K.; Herbig, U.; von Bornemann Hjelmborg, J.; et al. Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell 2013, 12, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Palomo, J.; Creus, A.; Maírcos, R.; Hernandez, A. Genomic instability in newborn with short telomeres. PLoS ONE 2014, 9, e91753. [Google Scholar] [CrossRef] [Green Version]
- Hjelmborg, J.B.; Dalgard, C.; Moller, S.; Steenstrup, T.; Kimura, M.; Christensen, K.; Kyvik, K.O.; Aviv, A. The heritability of leucocyte telomere length dynamics. J. Med. Genet. 2015, 52, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Nisi, H.; Nakada, T.; Kyo, S.; Inoue, M.; Shay, J.W.; Isaka, K. Hypoxia-induced factor 1 mediates upregulation of telomerase (hTERT). Mol. Cell Biol. 2004, 24, 6076–6083. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.Z.; Guan, W.P.; Maeda, T.; Makino, N. Different levels of hypoxia regulate telomere length and telomerase activity. Aging Clin. Exp. Res. 2012, 24, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Coussens, M.; Davy, P.; Brown, L.; Foster, C.; Andrews, W.H.; Nagata, M.; Allsopp, R. RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1 alpha as critical for telomerase function in murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 2010, 107, 13842–13847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, T.; Izutsu, T.; Sato, T. Telomerase activity and apoptosis as indicators of ageing in placenta with and without intrauterine growth retardation. Placenta 2000, 21, 493–500. [Google Scholar] [CrossRef]
- Izutsu, T.; Izutsu, N.; Iwane, A.; Takada, A.; Nagasawa, T.; Kanasugi, T.; Sugiyama, T. Expression of human telomerase reverse transcriptase and correlation with telomerase activity in placentas with and without intrauterine growth retardation. Acta Obstet. Gynecol. Scand. 2006, 85, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Davy, P.; Nagata, M.; Bullard, P.; Fogelson, N.S.; Allsopp, R. Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta 2009, 30, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Lee, S.P.; Lee, J.S.; Yoon, S.J.; Jun, G.; Hwang, Y.J. Telomerase and apoptosis in the placental trophoblasts of growth discordant twins. Yonsei Med. J. 2006, 47, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Entringer, S.; Epel, E.S.; Kumsta, R.; Lin, J.; Hellhammer, D.H.; Blackburn, E.H.; Wüst, S.; Wadhwa, P.D. Stress exposure in intrauteruine life is associated with shorter telomere length in young adulthood. Proc. Natl. Acad. Sci. USA 2011, 108, E513–E518. [Google Scholar] [CrossRef] [Green Version]
- Epel, E.S.; Blackburn, E.H.; Lin, J.; Dhabhar, F.S.; Adler, N.E.; Morrow, J.D.; Cawthon, R.M. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA 2004, 101, 17312–17315. [Google Scholar] [CrossRef] [Green Version]
- Bunker, N.; Pathak, N.; Lohiya NKChoi, J.; Fauce, S.R.; Effros, R.B. Telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 2007, 22, 600–605. [Google Scholar]
- Tomiyama, A.J.; O’Donovan, A.; Lin, J.; Puterman, E.; Lazaro, A.; Chan, J.; Dhabhar, F.S.; Wolkowitz, O.; Kirschbaum, C.; Blackburn, E.; et al. Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol. Behav. 2011, 106, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Enlow, M.B.; Sideridis, G.; Bollati, V.; Hoxha, M.; Macker, M.R.; Wright, J. Maternal cortisol output in pregnancy and newborn telomere length. Evidence for specific effects. Psychoneuroendocrinology 2019, 102, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Bayne, S.; Li, H.; Jones, M.E.E.; Pinto, A.R.; van Sinderen, M.; Drummond, A.; Simpson, E.R.; Liu, J.-P. Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell 2011, 2, 333–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Wang, W.; Mo, Y.; Ma, Y.; Ouyang, N.; Li, R.; Mai, M.; He, Y.; Bodombossou-Djobo, A.; Yang, D. Women with high telomerase activity in luteinized granulosa cells have a higher pregnancy rate during in vitro fertilization treatment. J. Assist. Reprod. Genet. 2011, 28, 797–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Allamanemi, S. Oxidants and antioxidants in human fertility. Middle East Fertil. Soc. J. 2004, 9, 187–197. [Google Scholar]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Gupta, S.; Sekhon, L.; Shah, R. Redox considerations in female reproductive function and assisted reproduction. From molecular mechanisms to health implications. Antioxid. Redox Signal. 2008, 10, 1375–1404. [Google Scholar] [CrossRef]
- Sarewtzki, G.; Zglinicki, V.T. Replicative aging, telomeres, and oxidative stress. Ann. N. Y. Acad. Sci. 2002, 959, 24–29. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, W.; Hu, S.; Yang, Y. Association between oxidative stress and telomere length in Type 1 and Type 2 diabetic patients. J. Endocrinol. Investig. 2003, 36, 1032–1037. [Google Scholar]
- Al-Turki, T.M.; Griffith, J.D. Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins. Proc. Natl. Acad. Sci. USA 2023, 120, e2221529120. [Google Scholar] [CrossRef]
- Bunkar, N.; Pathak, N.; Lohiya, N.K.; Mishra, P.K. Epigenetics: A kay paradigm in reproductive health. Clin. Exp. Reprod. Med. 2016, 43, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Chamani, I.J.; Keefe, D.L. Epigenetics and female Reproductive Aging. Front. Endocrinol. 2019, 10, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.; Rando, O.J. Epigenomics and the structure of the living genome. Genome Res. 2015, 25, 1482–1490. [Google Scholar] [CrossRef] [Green Version]
- Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9, 2395–2402. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.D.; Lee, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Rivera, R.M.; Ross, J.W. Epigenetics in fertilization and preimplantation embryo development. Prog. Biophys. Mol. Biol. 2013, 113, 423–432. [Google Scholar] [CrossRef]
- Tahilani, M.; Koh, H.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930–935. [Google Scholar] [CrossRef] [Green Version]
- Wossidlo, M.; Nakamura, T.; Lepikhov, K.; Markes, C.J.; Zakhartchenko, V.; Bolani, M.; Arans, J.; Nakano, T.; Reik, W.; Walter, J. 5-Hyroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2011, 2, 241. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Russwanova, V.R.; Gravina, S.; Hartley, S.; Mullikin, J.C.; Ignezweski, A.; Graham, J.; Segars, J.H.; BeCherny, A.H.; Howard, B.H. DNA methylome and transcriptome sequencing in human ovarian granulosa cells links age-related changes in gene expression to gene body methylation and 3’-end CG density. Oncotarget 2015, 6, 3627–3643. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Tao, X.; Scott, K.; Zhang, Y.; Scott, R.T.; Seli, E. Evaluation of genome-wide DNA methylation profile of human embryos with different developmental competences. Hum. Reprod. 2021, 36, 1682–1690. [Google Scholar] [CrossRef]
- Hayashi, J.; Yamagutchi, K.; Bumitomo, M.; Takakura, K.; Nagais, N.; Sakane, N. Full-term low birth weight infants have differentially hypermethylated DNA related to immune system and organ growth. a comparison with full-term normal birth weight infants. BMC Res. Notes 2020, 13, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Guo, Y.; Chen, X.; Guo, Q.; Huang, S.; Chen, Q.; Xu, X.; Zeng, K.; Zhou, H.; Zou, Y.; et al. Methylation pattern of CALCA and CALCB in extremely premature infants with monochorionic triplets after single-embryo transfer. Oxidative Med. Cell. Longev. 2021, 2021, 1438837. [Google Scholar] [CrossRef] [PubMed]
- Wheater, E.N.W.; Galdi, P.; McCartney, D.L.; Blesa, M.; Sulivan, G.; Stoye, D.Q.; Lamb, G.; Sparrow, S.; Murphy, L.; Wrobel, N.; et al. DNA methylation in relation to gestational age and brain dysmaturation in preterm infants. Brain Commun. 2022, 4, fcac056. [Google Scholar] [CrossRef] [PubMed]
- van Dokkum, N.H.; Bachini, S.; Verkaik-Schakel, R.N.; Baptist, D.H.; Salvati, S.W.; Krwaft, K.L.; Scherjon, S.A.; Bos, F.A.; Plösch, T. Differential placental DNA methylation of NR3C1 in extremely preterm infants with poorer neurological functioning. Front. Pediatr. 2022, 10, 876803. [Google Scholar] [CrossRef]
- Petrussa, L.; Van de Velde, H.; De Rycke, M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies. Mol. Hum. Reprod. 2014, 20, 861–874. [Google Scholar] [CrossRef]
- De Waal, E.; McCarrey, J. Effects of exogenous endocrine stimulation on epigenetic programming of the female germline genome. Anim. Reprod. 2018, 7, 154. [Google Scholar]
- van Montfoort, A.P.; Hanssen, L.L.; de Sutter, P.; Viville, S.; Geraedts, J.P.; Boer, P. Assisted reproduction treatment and epigenetic inheritance. Hum. Reprod. Update 2012, 18, 171–197. [Google Scholar] [CrossRef]
- Denomme, M.M.; Mann, M.R. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 2012, 144, 393–409. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Ghosh, J.; Mainigi, M.; Turan, N.; Weinerman, R.; Truongcao, M.; Coutifaris, C.; Sapienza, C. DNA methylation differences between in vitro and in vivo-conceived children are associated with ART procedures rather than infertility. Clin. Epigenet. 2015, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Pan, H.; Rusty, L.; Montgomery, R.L.; Olson, E.N.; Schultz, R.M. Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc. Natl. Acad. Sci. USA 2012, 109, E481–E489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.W.; Ma, J.Y.; Schatten, H.; Sun, Q.Y. Epigenetic changes associated with oocyte aging. Sci. China Life Sci. 2012, 8, 670–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, S.; Tatemizo, A.; Iwamoto, D.; Taniguchi, S.; Hoshino, Y.; Amano, T.; Matsumoto, Y.; Iritani, A.; Saeki, K. Enhancement of histone acetylation by trichostatin A during in vitro fertilization of bovine oocytes affects cell number of the inner cell mass of the resulting blastocysts. Zygote 2009, 17, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.C.; Yan, L.Y.; Lei, Z.L.; Miao, Y.L.; Shi, L.H.; Yang, J.W.; Wang, Q.; Ouyang, Y.C.; Sun, Q.Y.; Chen, D.Y. Changes in histone acetylation during postovulatory aging of mouse oocytes. Biol. Reprod. 2007, 77, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Le, F.; Zhan, Q.T.; Min-Yue Dong, L.L.; Ding, G.L.; Xu, C.M.; Jiang, S.W.; Huang, H.F.; Jin, F. Effects of in vitro maturation on histone acetylation in metaphase II oocytes and early cleavage embryos. Obstet. Gynecol. Int. 2010, 2010, 989278. [Google Scholar] [CrossRef] [Green Version]
- Anckaert, E.; Adriaenssens, T.; Romero, S.; Dremier, S.; Smitz, J. Unaltered Imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle culture under variable follicle-stimulating hormone exposure. Int. J. Dev. Biol. 2009, 53, 541–548. [Google Scholar] [CrossRef] [Green Version]
- North, B.J.; Verdin, E. sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004, 5, 224. [Google Scholar] [CrossRef] [Green Version]
- Satoh, A.; Stein, L.; Imai, S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb. Exp. Pharmacol. 2011, 206, 125–162. [Google Scholar]
- Zhang, X.M.; Li, L.; Xu, J.J.; Wang, N.; Liu, W.J.; Lin, X.H.; Fu, Y.C.; Luo, L.L. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene 2013, 523, 82–87. [Google Scholar] [CrossRef]
- Bordone, L.; Cohen, D.; Robinson, A.; Motta, M.C.; van Veen, E.; Czopik, A.; Steele, A.D.; Crowe, H.; Marmor, M.; Luo, J.; et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007, 6, 759–767. [Google Scholar] [CrossRef]
- Fu, H.; Wada-Hiraike, O.; Hirano, M.; Kawamura, Y.; Sakurabashi, A.; Shirane, A.; Morita, Y.; Isono, W.; Oishi, H.; Koga, K.; et al. SIRT3 positively regulates the expression of folliculogenesis- and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology 2014, 155, 3079–3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kugel, S.; Mostoslavsky, R. Chromatin and beyond. the multitasking roles for SIRT6. Trends Biochem. Sci. 2014, 39, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, T.; Nagata, M.; Aoki, F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice. Proc. Natl. Acad. Sci. USA 2006, 103, 7339–7344. [Google Scholar] [CrossRef] [Green Version]
- Dean, W. DNA methylation and demethylation. A pathway to gametogenesis and development. Mol. Reprod. Dev. 2014, 81, 113–125. [Google Scholar] [CrossRef]
- Tompson, L.P.; Al-Hassan, Y. Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef]
- Keefe, D.L.; Marquard, K.; Liu, L. The telomere theory of reproductive senescence in women. Curr. Opin. Obstet. Gynecol. 2006, 18, 280–285. [Google Scholar] [CrossRef]
- Bódis, J.; Sulyok, E.; Kőszegi, T.; Gödöny, K.; Várnagy, Á. Serum and follicular fluid levels of sirtuin 1, sirtuin 6, and resveratrol in women undergoing in vitro fertilization. an observational, clinical study. J. Int. Med. Res. 2019, 47, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Szalai, S.; Bódis, J.; Varjas, T.; Várnagy, Á.; Gödöny, K.; Szenczi, Á.; Sulyok, E.; Farkas, B. Expression of mRNAs for DNA methyltransferases and histone deacetylases in granulosa cells and follicular fluid of women undergoing in vitro fertilization: A pilot study. Int. J. life Sci. Res. Arch. 2023, 4, 069–079. [Google Scholar] [CrossRef]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, I.; Kotaja, N.; Goldman-Wohl, D.; Imbar, T. MicroRNA in human reproduction. Adv. Exp. Med. Biol. 2015, 888, 353–387. [Google Scholar]
- Grossman, H.; Shalgi, R. A role of MicroRNAs in cell differentiation during gonad development. Results Probl. Cell Differ. 2016, 58, 309–336. [Google Scholar]
- Ali, A.; Hadlich, F.; Abbas, M.W.; Iqbal, M.A.; Tesfaye, D.; Bouma, G.J.; Winger, Q.A.; Posuksili, S. MicroRNA-mRNA networks in pregnancy complications: A comprehensive downstream analysis of potential biomarkers. Int. J. Mol. Sci. 2021, 22, 2313. [Google Scholar] [CrossRef]
- Xu, N.; Zhou, X.; Shi, W.; Ye, M.; Cao, X.; Chen, S.; Xu, C. Integrative analysis of circulating microRNAs and the placental transcriptome in recurrent pregnancy loss. Front. Physiol. 2022, 13, 893744. [Google Scholar] [CrossRef] [PubMed]
- Sanli, E.; Kabaran, S. Maternal obesitiy, maternal overnutrition and fetal programming: Effects of epigenetic mechanisms on the development of metabolic disorders. Curr. Genom. 2019, 20, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cao, F.; Li, X. Epigenetic programming and fetal metabolic programming. Front. Endocrinol. 2019, 10, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vo, T.; Hardy, D.B. Molecular mechanisms underlying the fetal programming of adult disease. J. Cell Commun. Signal. 2012, 6, 139–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, D.K.; Wale, P.L. Analysis of metabolism to select viable human embryos for transfer. Fertil. Steril. 2013, 99, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.K.; Babu, N.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Upper control limit or reactive oxygen species in follicular fluid beyond which viable embryo formation is not favourable. Reprod. Toxicol. 2010, 29, 447–451. [Google Scholar] [CrossRef]
- Cuffe, J.S.M.; Holland, O.; Salomon, C.; Rice, G.E.; Perkins, A.V. Placental biomarkers of pregnancy disorders. Placenta 2017, 54, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, K.; Nakamura, S.; Koyano, K.; Konishi, Y.; Kondo, M.; Kusaka, T. Neonatal asphysia as an inflammatory disease. Reactive oxygen species and cytokines. Front. Pediatr. 2023, 11, 1070743. [Google Scholar] [CrossRef]
- Sweetman, D.U.; Onwuneme, C.; Watson, W.R.; Murphy, J.F.A.; Molloy, E.J. Perinatal asphyxia and erythropoietin and VEGF. Serial serum and cerebrospinal fluid responses. Neonatology 2017, 111, 253–259. [Google Scholar] [CrossRef]
- Teramo, K.; Pineiro-Ramos, J.D. Fetal chronic hypoxia and oxidative stress in diabetic pregnancy. Could fetal erythropoietin improve offspring outcomes? Free Radic. Biol. Med. 2019, 142, 32–37. [Google Scholar] [CrossRef]
- Wu, Y.W.; Comstock, B.A.; Gonzalez, F.F.; Mayock, D.E.; Goodman, A.M.; Maitre, N.L.; Chang, T.; Van Meurs, K.P.; Lampland, A.L.; Bendel-Stenzel, E.; et al. Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns. N. Engl. J. Med. 2022, 387, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Sultana, Z.; Maiti, K.; Aitken, J.; Morris, J.; Dedman, L.; Smith, R. Oxidative stress placental ageing-related pathogenesis and adverse pregnancy outcomes. Am. J. Reprod. Immunol. 2017, 77, e12653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.; Rogers, J.M.; Desai, M.; Ross, M.G. Fetal programming of adult diseases implications for prenatal care. Obstet. Gynecol. 2011, 117, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Thakor, A.S.; Richter, H.G.; Kane, A.D.; Dunster, C.; Kelly, F.; Poston, L.; Giussani, D.A. Redox modulation of the fetal cardiovascular defense to hypoxemia. J. Physiol. 2010, 58, 4235–4247. [Google Scholar] [CrossRef]
- Peyter, A.C.; Armengaud, J.-B.; Guillot, E.; Yzydorczyk, C. Endothelial progenitor cells dysfunctions and cardiometabolic disorders. From mechanisms to therapeutic approaches. Int. J. Mol. Sci. 2021, 22, 6667. [Google Scholar] [CrossRef]
- Oliveira, V.; de Souza, L.V.; Fernandes, T.; Junior, S.D.S.; Carvalho, M.H.C.; Akamine, E.H.; deOliveira, E.M.; Franco, M.D.C. Intrauterine growth restriction-induced deleterious adaptations in endothelial progenitor cells. possible mechanism to impair endothelial function. J. Dev. Orig. Health Dis. 2017, 8, 665–673. [Google Scholar] [CrossRef]
- Adeoye, O.O.; Bouthors, V.; Hubbel, M.C.; Williams, J.M.; Pearce, W.J. VEGF receptors mediate hypoxic remodeling of adult ovine carotid arteries. J. Appl. Physiol. 2014, 117, 777–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, W.J.; Khorram, O. Maturation and differentiation of the fetal vasculature. Clin. Obstet. Gynecol. 2013, 56, 537–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machnik, A.; Neuhofer, W.; Jantsch, J.; Dahlmann, A.; Tammela, T.; Machura, K.; Park, J.K.; Beck, F.X.; Müller, D.N.; Derer, W.; et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular growth factor C-dependent buffering mechanisms. Nat. Med. 2009, 15, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Bódis, J.; Farkas, B.; Nagy, B.; Kovács, K.; Sulyok, E. The role of l-arginine-NO system in female reproduction. A narrative review. Int. J. Mol. Sci. 2022, 23, 14908. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.B. Arginase: A multifaceted enzyme important in health and disease. Physiol. Rev. 2018, 98, 641–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cziráki, A.; Lenkey Zs Sulyok, E.; Szokodi, I.; Koller, Á. L-arginine-nitric oxide-asymetric dimethylarginine pathway and the coronary circulation. translation of basic science result to clinical practice. Front. Pharmacol. 2020, 11, 569914. [Google Scholar] [CrossRef]
- Sydow, K.; Münzel, T. ADMA and oxidative stress. Atherosclerosis 2003, 4, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, P.; Ramiro-Cortijo, D.; Reyes-Hernández, C.G.; Lopez de Pablo, A.L.; González, M.C.; Arribas, S.M. Implication of oxidative stress in fetal programming of cardiovascular diseases. Front. Physiol. 2018, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Keany, J.F. Reactive oxygen species-mediated signal transduction in the endothelium. Endothelium 2004, 11, 109–121. [Google Scholar] [CrossRef]
- Buhimschi, I.; Yallampalli, C.; Chawakisz, K.; Garfield, R.E. Pre-eclampsia-like conditions produced by nitric oxide inhibition. effects of L-arginine, D-arginine and steroid hormones. Hum. Reprod. 1995, 10, 2723–2730. [Google Scholar] [CrossRef]
- Ayling, L.J.; Whitley, G.S.J.; Aplin, J.D.; Cartwright, J.E. Dimethylarginine dimethylaminohydrolase (DDAH) regulates trophoblast invasion and motility through effects on nitric oxide. Hum. Reprod. 2006, 21, 2527–2530. [Google Scholar] [CrossRef] [Green Version]
- Lash, G.E.; Cartwright, J.E.; Whitely, G.S.; Trew, A.J.; Baker, P.N. The effects of angiogenic growth factors on extravillous trophoblast invasion and motility. Placenta 1999, 20, 661–667. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hsu, C.N. Targeting on asymmetric dimethylarginine-related nitric oxide-reactive species imbalance to reprogram the development of hypertension. Int. J. Mol. Sci. 2016, 17, 2020. [Google Scholar] [CrossRef] [Green Version]
- Tain, Y.-L.; Hsu, C.-N. Oxidative stress-induced hypertension of developmental origins. preventive aspects of antioxidant therapy. Antioxidant 2022, 11, 511. [Google Scholar] [CrossRef] [PubMed]
- Skilton, M.R.; Evans, N.; Griffiths, K.A.; Harmer, J.A.; Celemajer, D.S. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet 2005, 365, 1484–1486. [Google Scholar] [CrossRef]
- Akira, M.; Yoshiyuki, S. Placental circulation, fetal growth, and stiffness of abdominal aorta in newborn infants. J. Pediatr. 2006, 148, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Cosmi, E.; Visentin, S.; Fanelli, T.; Mautone, A.J.; Zanardo, V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet. Gynecol. 2009, 114, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Giussani, D.A.; Camm, E.J.; Niu, Y.; Richter, H.G.; Blanco, C.E.; Gottschalk, R.; Blake, E.Z.; Horder, K.A.; Thakor, A.S.; Hansell, J.A.; et al. Developmental programming of cardiovascular dysfunction by perinatal hypoxia and oxidative stress. PLoS ONE 2012, 7, e31017. [Google Scholar] [CrossRef] [Green Version]
- Etzschig, H.K. Adenosine an old drug newly discovered. J. Am. Soc. Anestesiol. 2009, 111, 904–915. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.; Subiabre, M.; Araos, J.; Sáez, T.; Salsoso, R.; Pardo, F.; Leiva, A.; San Martin, R.; Toledo, F.; Sobrevia, L. Insulin/adenosine axis linked signaling. Mol. Aspects Med. 2017, 55, 45–61. [Google Scholar] [CrossRef]
- Gessi, S.; Merighi, S.; Fazzi, D.; Stefanelli, A.; Varani, K.; Borea, P.A. Adenosine receptor targeting in health and disease. Expert Opin. Investig. Drugs 2011, 20, 1591–1609. [Google Scholar] [CrossRef]
- Seth, S.; Brito, R.; Mukherjea, B.; Rybak, L.P.; Ramkumar, V. Adenosine receptors. expression, function and regulation. Int. J. Mol. Sci. 2014, 15, 2024–2052. [Google Scholar] [CrossRef] [Green Version]
- Subiabre, M.; Villalobos-Labra, R.; Silva, L.; Fuentes, G.; Toledo, F.; Sobrevia, L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. BBA Mol. Basis Dis. 2018, 1866, 165370. [Google Scholar] [CrossRef] [PubMed]
- Feoktistov, I.; Ryzhov, S.; Zhong, H.; Goldstein, A.E.; Matafonov, A.; Zeng, D.; Biaggioni, I. Hypoxia modulates adenosine receptors in human endothelial smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 2004, 44, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Martin, R.; Sobrevia, L. Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta 2006, 27, 1–10. [Google Scholar] [CrossRef]
- Silva, L.; Plösch, T.; Toledo, F.; Faas, M.; Sobrevia, L. Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus. BBA Mol. Basis Dis. 2019, 1866, 165397. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.; Rivera, I.; Martins, C.; Struys, E.A.; Jansen, E.E.W.W.; Clode, N.; Graca, L.M.; Blom, H.J.; Jakobs, C.; Tavares De Almeida, I. Intracellular S-adenosylhomocysteine increased levels are associated with DNA hypomethylation in HUVEC. J. Mol. Med. 2005, 83, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.C.; Song, A.; Hart, L.A.; Blackwell, S.C.; Sibai, B.M.; Chan, L.-N.L. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia. Circulation 2015, 131, 730–741. [Google Scholar]
- Guyton, A.C.; Hall, J.E. Dominant role of the kidney in long-term regulation of arterial pressure and in hypertension. the integrated system for pressure control. In Textbook of Medical Physiology, 10th ed.; WB. Saunders Co.: Philadelphia, PA, USA, 2001; pp. 201–203. [Google Scholar]
- Lavoie, J.L.; Sigmund, C.D. Minireview: Overview of the renin-angiotensin system—An endocrine and paracrine system. Endocrinology 2003, 144, 2179–2183. [Google Scholar] [CrossRef] [Green Version]
- Danilczyk, U.; Penninger, J.M. Angiotensin-converting enzyme II in the heart and the kidney. Circ. Res. 2006, 98, 463–471. [Google Scholar] [CrossRef]
- Fyhlquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef]
- Vernerová, Z.; Kujal, P.; Kramer, H.J.; Bäcker, A.; Cervenka, L.; Vanecková, I. End-organ damage in hypertensive transgenic Ren-2 rat. Influence of early and late endothelin receptor blockade. Physiol. Res. 2009, 58 (Suppl. 2), S69–S78. [Google Scholar] [CrossRef]
- Wagner, J.; Thiele, F.; Ganten, D. The renin-angiotensin system in transgenic rats. Pediatr. Nephrol. 1996, 10, 108–112. [Google Scholar] [CrossRef]
- Yamaoto, K.; Ohishi, M.; Katasuya, T.; Ito, N.; Ikushima, M.; Kaibe, M.; Tatara, Y.; Shiota, A.; Sugano, S.; Takeda, S.; et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension 2006, 47, 718–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, W.O.; Hernandez-Diaz, S.; Arbogast, P.G.; Dudley, J.A.; Dyer, S.; Gideon, P.S.; Hall, K.; Ray, W.A. Major congenital malformations after first-trimester exposure to ACE inhibitors. N. Engl. J. Med. 2006, 354, 2443–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabacova, S.; Little, R.; Tsong, Y.; Vega, A.; Kimmel, C.A. Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol. Drug Saf. 2003, 12, 633–646. [Google Scholar] [CrossRef]
- Schaefer, C. Angiotensin II-receptor-antagonists. further evidence of fetotoxicity but not teratogenicity. Birth Defects Res. Part A Clin. Mol. Teratol. 2003, 67, 591–594. [Google Scholar] [CrossRef]
- Yart, L.; Bahmanyar, E.R.; Cohen, M.; Martinez de Tejada, B. Role of uteroplacental renin-angiotensin system in placental development and function, and its implication in the preeclampsia pathogenesis. Biomedicines 2021, 9, 1332. [Google Scholar] [CrossRef]
- Delforce, S.J.; Lumbers, E.R.; Ellery, S.J.; Murthi, P.; Pringle, K. Dysregulation of the placental renin-angiotensin system in human fetal growth restriction. Reproduction 2019, 158, 237–245. [Google Scholar] [CrossRef]
- Scaife, P.J.; Mohaupt, M.G. Salt, aldosterone and extrarenal Na+-sensitive responses in pregnancy. Placenta 2017, 65, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Mannaerts, D.; Faes, E.; Gielis, J.; Van Craenenbroeck, E.; Cos, P.; Spaanderman, M.; Gyselaers, W.; Cornette, J. Oxidative stress and endothelial function in normal pregnancy versus pre-eclampsia, a combined longitudinal and case control study. BMC Pregnancy Childbirth 2018, 18, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaka, R.; Deer, E.; LaMarca, B. Is mitochondrial oxidative stress a viable therapeutic target in preeclampsia? Antioxidants 2022, 11, 210. [Google Scholar] [CrossRef]
- Sulyok, E.; Németh, M.; Tényi, I.; Csaba, I.F.; Győri, E.; Ertl, T.; Varga, F. Postnatal development of renin-angiotensin-aldosterone system, RAAS, in relation to electrolyte balance in premature infants. Pediatr. Res. 1979, 13, 817–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vida, G.; Sulyok, E.; Lakatos, O.; Ertl, T.; Martens-Lobenhoffer, J.; Bode-Böger, S.M. Plasma levels of asymmetric dimethylargnine in premature neonates. Its possible involvement in developmental programming of chronic diseases. Acta Pediatr. 2009, 98, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Worgall, S.; Rascher, W.; Gyódi Gy Nyul, Z.; Baranyai, Z.; Sulyok, E. Urinary excretion of endogenous ouabain-like substance is reduced in NaCl supplemented premature infants. Biol. Neonate 1997, 72, 337–344. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F. Endothelial membrane potential regulates production of both nitric oxide and superoxide- a fundamental determinant of vascular health. Med. Hypotheses 1999, 53, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Kenney, D.J.; Vetteth, S.; Xie, M.; Periyasamy, S.M.; Xie, Z.; Han, C.; Basrur, V.; Mutgi, K.; Fedorov, V.; Malhotra, D.; et al. Quabain decreases sarco(endo) plasmatic reticulum calcium ATP-ase activity in rat hearts by a process involving protein oxidation. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H3003-11. [Google Scholar] [CrossRef]
- Guignard, J.-P.; Sulyok, E. Renal morphogenesis and development of renal function. In Avery’s Diseases of the Newborn, 9th ed.; Gleason, C.A., Devaskar, S.U., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 1165–1175. [Google Scholar]
- Boubred, F.; Buffat, C.; Laimann, D.; Simeoni, U. The developing kidney and the fetal origins of adult cardiovascular disease. In Nephrology and Fluid/Electrolyte Physiology; Oh, W., Guignard, J.-P., Baumgart, S., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 139–153. [Google Scholar]
- Mendez, N.; Torrez-Farfan, C.; Salazar, E.; Bascur, P.; Bastidas, C.; Vergara, K.; Spichiger, C.; Halabi, D.; Vio, C.P.; Richter, H.G. Fetal programming of renal dysfunction and high blood pressure by chronodisruption. Front. Endocrinol. 2019, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Halabi, D.; Richter, H.G.; Mendez, N.; Kahne, T.; Spichiger, C.; Salazar, E.; Torres, F.; Vergara, K.; Seron-Ferre, M.; Torres-Farfan, C. Maternal chronodisruption throughout pregnancy impairs glucose homeostasis and adipose tissue physiology in the male rat offspring 2. Front. Endocrinol. 2021, 12, 678468. [Google Scholar] [CrossRef] [PubMed]
- Mendez, N.; Halabi, D.; Salazar-Petres, E.R.; Vergara, K.; Corvalan, F.; Richter, H.G.; Bastidas, C.; Bascur, P.; Ehrenfeld, P.; Seron-Ferre, M.; et al. Maternal melatonin treatment rescuses endocrine, inflammatory, and transcriptional deregulation in the adult rat female offspring from gestational chronodistruption. Front. Neurosci. 2022, 16, 1039977. [Google Scholar] [CrossRef]
- Carriazo, S.; Ramos, A.M.; Sanz, A.B.; Sanchez-Nino, M.D.; Kanbay, M.; Ortil, A. Cronodisruption: A poorly recognized feature of CKD. Toxins 2020, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Ingelfinger, J.R.; Woods, L.L. Perinatal programming, renal development and adult renal function. Am. J. Hypertens. 2002, 15, 46S–49S. [Google Scholar] [CrossRef] [Green Version]
- Moritz, K.M.; Dodic, M.; Wintour, E.M. Kidney development and the fetal programming of adult disease. BioEssays 2003, 25, 212–220. [Google Scholar] [CrossRef]
- Bogdarina, I.; Welham, S.; King, P.J.; Burns, S.P.; Clark, A.J.L. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ. Res. 2007, 100, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Rosenblum, S.; Pal, A.; Reidy, K. Renal develoment in the fetus and premature infant. Semin. Fetal Neonatal Med. 2017, 22, 58–66. [Google Scholar] [CrossRef]
- Nüsken, E.; Dötsch, J.; Weber, L.T.; Nüsken, K.-D. Developmental programming of renal function and re-programming approaches. Front. Pediatr. 2018, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- South, A.M.; Shaltout, H.A.; Washburn, L.K.; Hendricks, A.S.; Diz, D.I.; Chappell, M.C. Fetal programming and the angiotensin-(1-7) axis. a review of the experimental and clinical data. Clin. Sci. 2019, 133, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.F.; Tofteng, S.S.; Madsen, K.; Jensen, B.L. Role of the renin-angiotensin system in kidney development and programming of adult blood pressure. Clin. Sci. 2020, 134, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.N.; Tain, Y.L. Targeting the renin-angiotensin-aldosterone system to prevent hypertension and kidney disease of developmental origins. Int. J. Mol. Sci. 2021, 22, 2298. [Google Scholar] [CrossRef]
- Sequeria Lopez, M.L.; Pentz, E.S.; Robert, B.; Abrahamson, D.A.; Gomez, R.A. Embryonic origins and lineage of juxtaglomerular cells. Am. J. Physiol. Ren. Physiol. 2001, 281, F345–F356. [Google Scholar] [CrossRef] [Green Version]
- Bensoussan, M.; Heudes, D.; Nahmias, C.; Delauche, M.; Lelongt, B.; Ronco, P.M. Organ culture of rat kidney: A model for angiotensin II receptor ontogenic studies. Kidney Int. 1995, 48, 1635–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogo, A.; Yoshida, Y.; Yared AIchikawa, I. Importance of angiogenic action of angiotensin II in the glomerular growth of maturing kidney. Kidneys Int. 1990, 38, 1068–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, H.; Yerkes, E.; Hohenfellner, K.; Miyazaki, Y.; Ma, J.; Hunley, T.E.; Yoshida, H.; Ichiki, T.; Threadgill, D.; Philipps, J.A., III; et al. Role of angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract. CAKUT, of mice and men. Mol. Cell 1999, 3, 1–10. [Google Scholar] [CrossRef]
- Carey, R.; Wang, Z.Q.; Siragy, H.M. Role of the angiotensin type 2, receptor in the regulation of blood pressure and renal function. Hypertension 2000, 35, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; Groen, A.; Molostvov, G.; Lu, T.; Lilley, K.S.; Snead, D.; James, S.; Wilkinson, I.B.; Ting, S.; Hsiao, L.-L.; et al. α-Klotho expression in human tissues. J. Clin. Endocrinol. Metab. 2015, 100, E1308–E1318. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Sun, Q.; Yu, X.; Chen, W.; Wei, H.; Jiang, J.; Xu, Y.; Lu, W. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors. Oxidative Med. Cell. Longev. 2021, 2021, 1470380. [Google Scholar]
- Herrera, E.A.; Kane, A.D.; Hansell, J.A.; Thakor, A.S.; Allison, B.J.; Niu, A.Y.; Giusanni, D.A. A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep. J. Physiol. 2012, 590, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Torrance, H.L.; Benders, M.J.; Derks, J.B.; Rademaker, C.M.A.; Venegas, M.E.; Baquero, H.; Visser, G.H.A.; Van Bel, F. Maternal allopurinol during fetal hypoxia lowers cord bood levels of the brain injury marker S-100B. Pediatrics 2009, 124, 350. [Google Scholar] [CrossRef] [Green Version]
- Boda, D. Results of and further prevention of hypoxic fetal brain damage by inhibition of xanthine oxidase enzyme with allopurinol. J. Perinat. Med. 2011, 39, 441–444. [Google Scholar] [CrossRef]
- Brenner, B.M.; Mackenzie, H.S. Nephron mass as a risk factor for progression of renal disease. Kidney Int. Suppl. 1997, 63, S124–S127. [Google Scholar] [PubMed]
- Mackenzie, H.S.; Brenner, B.M. Fewer nephrons aat birth. a missing link in the etiology of essential hypertension? Am. J. Kidney Dis. 1995, 26, 91–98. [Google Scholar] [CrossRef]
- Lumbers, E.R.; Kandasamy, Y.; Delforce, S.J.; Boyce, A.C.; Gibson, K.J.; Pringle, K.G. Programming of renal development and chronic disease in adult life. Front. Physiol. 2020, 11, 757. [Google Scholar] [CrossRef]
- Keller, G.; Zimmer, G.; Mall, G.; Ritz, E.; Amann, K. Nephron number in patients with primary hypertension. N. Engl. J. Med. 2003, 348, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.; Beutler, K.; Knepper, M.A.; Vehaskari, V.M. Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am. J. Physiol. Renal. Physiol. 2002, 283, F202–F206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagan, A.; Gattineni, J.; Cook, V.; Baum, M. Prenatal programming of rat proximal tubule Na+/H+ exchanger by dexamethasone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1230–R1235. [Google Scholar] [CrossRef] [Green Version]
- Kerpel-Fronius, E.; Heim, T.; Sulyok, E. The development of the renal acidifying processes and their relation to acidosis in low-birth-weight infants. Biol. Neonate 1970, 15, 156–168. [Google Scholar] [CrossRef]
- Sulyok, E. The relationship between electrolyte and acid-base balance in the premature infant during early postnatal life. Biol. Neonate 1971, 17, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.M.; Rohatgi, R.; Khan, S.; Holzman, I.R.; Satlin, L.M. Sodium and potassium clearances by the maturing kidney. Clinical-molecular correlates. Pediatr. Nephrol. 2003, 18, 759–767. [Google Scholar] [CrossRef]
- Dagenais, A.; Kothary, R.; Berthiaume, Y. The α-subunit of the epithelial sodium channel in the mouse. Developmental regulation of its expression. Pediatr. Res. 1997, 42, 327–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vehaskari, V.M.; Hempe, J.M.; Manning, J.; Aviles, D.H.; Carmichael, M.C. Developmental regulation of ENaC subunit mRNA levels in rat kidney. Am. J. Physiol. 1998, 247, C1661–C1666. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, V.A.; Brenner, B.M. Clinical consequences of developmental programming of low nephron number. Anat. Rec. 2020, 303, 2613–2630. [Google Scholar] [CrossRef]
- Gluckman, P.D. Editorial. nutrition, glucocorticoid, birth size and adult disease. J. Clin. Endocrinol. Metab. 2001, 142, 1689–1691. [Google Scholar] [CrossRef]
- Kanaka-Gantenbein, C. Fetal orogons of adult diabetes. Ann. N. Y. Acad. Sci. 2010, 1205, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.G.; Desai, M. Developmental programming of offspring obesity, adipogenesis and appetite. Clin. Obstet. Gynecol. 2013, 56, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Pardo, F.; Silva, L.; Sáez, T.; Salsoso, R.; Gutéerrez, J.; Sanhueza, C.; Leiva, A.; Sobrevia, L. Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int. J. Obes. 2015, 39, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Gutiérrez, E.; Arroyo, P.; Salsoso, R.; Fuenzalida, B.; Sáez, T.; Leiva, A.; Pardo, F.; Sobrevia, L. Role of insulin and adenosine in the human placenta microvascular and macrovascular endothelial cell dysfunction in gestational diabetes mellitus. Microcirculation 2013, 21, 26–37. [Google Scholar] [CrossRef]
- Nielsen, J.H.; Haase, T.N.; Jaksch, C.; Nalla, A.; Sostrup, B.; Nalla, A.A.; Larsen, L.; Rasmussen, M.; Dalgaard, L.T.; Gaarn, L.W.; et al. Impact of fetal and neonatal environment on beta cell function and development of diabetes. Acta Obstet. Gynecol. Scand. 2014, 93, 1109–1122. [Google Scholar] [CrossRef]
- Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev. 2009, 30, 586–623. [Google Scholar] [CrossRef] [Green Version]
- Muniyappa, R.; Sowers, J.R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 2013, 14, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Janus, A.; Szahidewicz-Krupska, E.; Mazur, G.; Dorszko, A. Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediat. Inflamm. 2016, 2016, 3634948. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Li, Q.; Liu, J.; Jia, S. Irisin, an exercise-induced myokine as a metabolic regulator. An updated narrative review. Diabetes Metab. Res. Rev. 2016, 32, 51–59. [Google Scholar] [CrossRef]
- Baka, S.; Malamitsi-Puchner, A.; Boutsikou, T.; Boutsikou, M.; Marmarinos, A.; Hassiakos, D.; Gourgiotis, D.; Briana, D.D. Cord blood irisin at the extremes of fetal growth. Metabolism 2015, 64, 1515–1520. [Google Scholar] [CrossRef]
- Ökdemir, D.; Hatipoglu, N.; Kurtoglu, S.; Siraz, Ü.G.; Akar, H.H.; Muhtaroglu, S.; Kütük, M.S. The role of irisin, insulin and leptin in maternal and fetal interaction. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Malamitsi-Puchner, A.; Boutsikou, M.; Baka, S.; Ristani, A.; Hassiakos, D.; Gourgiotis, D.; Boutsikou, T. Myokine irisin is down-regulated in fetal growth restriction. Endocrinol. Metab. 2014, 99, A126. [Google Scholar] [CrossRef] [Green Version]
- Al-Maini, E.H.H.; Mizher, M.S.; Shafi, F.F. The correlation of maternal and fetal blood irisin with fetal growth pattern and birth weight. Syst. Rev. Pharm. 2021, 12, 359–366. [Google Scholar]
- Zhang, Y.; Proence, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriaucines, A.; Stephens, T.N.; Nyce, M.R.; Ohanhesian, J.P.; Marco, C.C.; McKee, L.M.; Bauer, T.L.; et al. The protein product of ob gene is elevated in human obesity. Effect of weight loss, fasting and feeding. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef]
- Stephens, T.W.; Basinski, M.; Bristov, P.K.; Bue-Valleskey, J.M.; Burgett, S.G.; Craft, L.; Hale, J.; Hoffmann, J.; Hsiung, H.M.; Kriauciunas, A.; et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995, 377, 530–532. [Google Scholar] [CrossRef]
- Blum, W.F. Leptin: The voice of the adipose tissue. Horm. Res. 1997, 48 (Suppl. 4), 2–8. [Google Scholar] [CrossRef]
- Tamás, P.; Sulyok, E.; Szabó, I.; Vizer, M.; Ertl, T.; Rascher, W.; Blum, W.F. Changes of maternal serum leptin levels during pregnancy. Gynecol. Obstet. Investig. 1998, 46, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Ertl, T.; Funke Simone Sárkány, I.; Szabó, I.; Rascher, W.; Blum, W.F.; Sulyok, E. Postnatal changes of leptin levels in full-term and preterm neonates. Biol. Neonate 1999, 75, 167–176. [Google Scholar] [CrossRef]
- Lewandowski, K.C.; Biesiada, L.; Grzesiak, M.; Sakowicz, A. C-peptide and leptin system in dichorionic, small and appropriate for gestational age twins-possible link to metabolic programming? Nutr. Diabetes 2020, 10, 29. [Google Scholar] [CrossRef]
- Schubring, C.; Kiess, W.; Englaro, P.; Rascher, W.; Dötsh, J.; Hanitsch, S.; Attanasio, A.; Blum, W.F. Levels of leptin in maternal serum, amniotic fluid and arterial and venous cord blood. Relation to neonatal and placental weight. J. Clin. Endocrinol. Metab. 1997, 82, 1480–1483. [Google Scholar] [CrossRef]
- Hawssink, S.G.; de Lancey, E.; Sheslow, D.V.; Smith-Kirwin, S.M.; O’Conner, D.M.; Considine, R.V.; Opentanova, I.; Dostal, K.; Spear, M.L.; Leef, K.; et al. Placental leptin: An important new growth factor in intrauterine and neonatal development? Pediatrics 1997, 100, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harigaya, A.; Nawgashima, K.; Nako, Y.; Morikawa, A. Relationship between concentration of serum leptin and fetal growth. J. Clin. Endocrinol. Metab. 1997, 82, 3281–3284. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biochem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef] [Green Version]
- Gianessi, D.; Maltini, M.; Del Ry, S. Adiponectin circulation levels: A new emerging biomarker of cardiovasular risk. Pharmacol. Res. 2007, 56, 459–467. [Google Scholar]
- Shimabukuro, M.; Higa, N.; Asahi, T.; Oshiro, Y.; Takasu, N.; Tagawa, T.; Ueda, S.; Shimomura, I.; Funahashi, T.; Matsuzawa, Y. Hypoadiponectinemia is closely linked to endothelial dysfunction in man. J. Clin. Endocrinol. Metab. 2003, 88, 3236–3240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo-Jousse, V.; Jaramillo, A.; Castano-Moreno, E.; Lépez, M.; Carrasco-Negüe, K.; Casanello, P. Adipokines underlie the early origins of obesity and associated metabolic comorbidities in the offspring of women with pregestational obesity. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165558. [Google Scholar] [CrossRef]
- Shrestha, M.M.; Wermelin, S.; Stener-Victorin, E.; Wernstedt, A.; Benricj, A. Adiponectin deficiency alter placenta function but does not affect fetal growth in mice. Int. J. Mol. Sci. 2022, 23, 4939. [Google Scholar] [CrossRef]
- Aye, I.L.M.H.; Rosario, F.J.; Powell, T.L.; Jansson, T. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity of placental function and fetal growth. Proc. Natl. Acad. Sci. USA 2015, 112, 12858–12863. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, L.; Hiveert, M.-F.; Guay, S.-P.; St-Pierre, J.; Perron, P.; Brisson, D. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes 2012, 61, 1272–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulyok, E.; Farkas, B.; Bodis, J. Pathomechanisms of Prenatally Programmed Adult Diseases. Antioxidants 2023, 12, 1354. https://doi.org/10.3390/antiox12071354
Sulyok E, Farkas B, Bodis J. Pathomechanisms of Prenatally Programmed Adult Diseases. Antioxidants. 2023; 12(7):1354. https://doi.org/10.3390/antiox12071354
Chicago/Turabian StyleSulyok, Endre, Balint Farkas, and Jozsef Bodis. 2023. "Pathomechanisms of Prenatally Programmed Adult Diseases" Antioxidants 12, no. 7: 1354. https://doi.org/10.3390/antiox12071354