Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases
Abstract
:1. Introduction
1.1. Structure, Expression and Isoforms of Metallothioneins (MTs)
1.2. Functions of MTs
1.3. Expression of MTs in the Ocular Environment (Human Eye)
2. MTs in Ocular Diseases
2.1. Age-Related Macular Degeneration (AMD)
2.2. Retinitis Pigmentosa (RP)
2.3. Diabetic Retinopathy (DR)
2.4. Glaucoma
2.5. Cataracts
3. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zalewska, M.; Trefon, J.; Milnerowicz, H. The Role of Metallothionein Interactions with Other Proteins. Proteomics 2014, 14, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.Y.K.; Bennett, W.R.; Herbert, R.P.; West, A.K.; Lee, P.R.; Wake, H.; Fields, R.D.; Inn Chuah, M.; Chung, R.S. Metallothionein Promotes Regenerative Axonal Sprouting of Dorsal Root Ganglion Neurons after Physical Axotomy. Cell. Mol. Life Sci. 2012, 69, 809–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Shimazawa, M.; Hara, H. Physiological Roles of Metallothioneins in Central Nervous System Diseases. Biol. Pharm. Bull. 2018, 41, 1006–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignesh, K.S.; Deepe, G.S. Metallothioneins: Emerging Modulators in Immunity and Infection. Int. J. Mol. Sci. 2017, 18, 2197. [Google Scholar] [CrossRef] [Green Version]
- Margoshes, M.; Valiee, B.L. A Cadmium Protein from Equine Kidney Cortex. J. Am. Chem. Soc. 1957, 79, 4813–4814. [Google Scholar] [CrossRef]
- Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: The Multipurpose Protein. Cell. Mol. Life Sci. 2002, 59, 627–647. [Google Scholar] [CrossRef]
- Takahashi, S. Molecular Functions of Metallothionein and Its Role in Hematological Malignancies. J. Hematol. Oncol. 2012, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Portbury, S.D.; Adlard, P.A. Zinc Signal in Brain Diseases. Int. J. Mol. Sci. 2017, 18, 2506. [Google Scholar] [CrossRef] [Green Version]
- Chung, R.S.; Penkowa, M.; Dittmann, J.; King, C.E.; Bartlett, C.; Asmussen, J.W.; Hidalgo, J.; Carrasco, J.; Leung, Y.K.J.; Walker, A.K.; et al. Redefining the Role of Metallothionein within the Injured Brain: Extracellular Metallothioneins Play an Important Role in the Astrocyte-Neuron Response to Injury*. J. Biol. Chem. 2008, 283, 15349–15358. [Google Scholar] [CrossRef] [Green Version]
- Si, M.; Lang, J. The Roles of Metallothioneins in Carcinogenesis. J. Hematol. Oncol. 2018, 11, 107. [Google Scholar] [CrossRef]
- Haq, F.; Mahoney, M.; Koropatnick, J. Signaling Events for Metallothionein Induction. Mutat. Res. Mol. Mech. Mutagen. 2003, 533, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Méplan, C.; Richard, M.J.; Hainaut, P. Metalloregulation of the Tumor Suppressor Protein P53: Zinc Mediates the Renaturation of P53 after Exposure to Metal Chelators in Vitro and in Intact Cells. Oncogene 2000, 19, 5227–5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, N.; Liu, L.; Yi, X.; Wang, J. Studies of Interaction of Tumor Suppressor P53 with Apo-MT Using Surface Plasmon Resonance. Anal. Bioanal. Chem. 2009, 395, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Ostrakhovitch, E.A.; Olsson, P.E.; Jiang, S.; Cherian, M.G. Interaction of Metallothionein with Tumor Suppressor P53 Protein. FEBS Lett. 2006, 580, 1235–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijova, E. Metallothioneins and Zinc: Their Functions and Interactions. Bratisl. Lek. List. 2004, 105, 230–234. [Google Scholar]
- Abdel-Mageed, A.B.; Agrawal, K.C. Activation of Nuclear Factor KappaB: Potential Role in Metallothionein-Mediated Mitogenic Response. Cancer Res. 1998, 58, 2335–2338. [Google Scholar]
- Butcher, H.L.; Kennette, W.A.; Collins, O.; Zalups, R.K.; Koropatnick, J. Metallothionein Mediates the Level and Activity of Nuclear Factor Kappa B in Murine Fibroblasts. J. Pharmacol. Exp. Ther. 2004, 310, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Rana, U.; Kothinti, R.; Meeusen, J.; Tabatabai, N.M.; Krezoski, S.; Petering, D.H. Zinc Binding Ligands and Cellular Zinc Trafficking: Apo-Metallothionein, Glutathione, TPEN, Proteomic Zinc, and Zn-Sp1. J. Inorg. Biochem. 2008, 102, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Shaw, C.F.; Petering, D.H. Interprotein Metal Exchange between Transcription Factor IIIa and Apo-Metallothionein. J. Inorg. Biochem. 2004, 98, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Liu, X.; Pan, Z. Zinc Deficiency and Cellular Oxidative Stress: Prognostic Implications in Cardiovascular Diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [Green Version]
- Milnerowicz, H.; Jabłonowska, M.; Bizoń, A. Change of Zinc, Copper, and Metallothionein Concentrations and the Copper-Zinc Superoxide Dismutase Activity in Patients with Pancreatitis. Pancreas 2009, 38, 681–688. [Google Scholar] [CrossRef]
- Piacenza, F.; Malavolta, M.; Cipriano, C.; Costarelli, L.; Giacconi, R.; Muti, E.; Tesei, S.; Pierpaoli, S.; Basso, A.; Bracci, M.; et al. L-Arginine Normalizes NOS Activity and Zinc-MT Homeostasis in the Kidney of Mice Chronically Exposed to Inorganic Mercury. Toxicol. Lett. 2009, 189, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Flora, G.; Bhatnagar, P.; Flora, S.J.S. Comparative Oxidative Stress, Metallothionein Induction and Organ Toxicity Following Chronic Exposure to Arsenic, Lead and Mercury in Rats. Cell. Mol. Biol. 2014, 60, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Aquime, J.R.H.S.; Zampieri, L.C.D.A.P.; Kataoka, M.S.d.S.; Ribeiro, N.A.B.; Jaeger, R.G.; da Silva, A.L.; Ramos, R.T.J.; Alves Júnior, S.d.M.; Pinheiro, J.d.J.V. Metallothionein Expression and Its Influence on the In Vitro Biological Behavior of Mucoepidermoid Carcinoma. Cells 2020, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Maret, W. Catalytic Selenols Couple the Redox Cycles of Metallothionein and Glutathione. Eur. J. Biochem. 2001, 268, 3346–3353. [Google Scholar] [CrossRef] [PubMed]
- Maret, W.; Krȩzel, A. Cellular Zinc and Redox Buffering Capacity of Metallothionein/Thionein in Health and Disease. Mol. Med. 2007, 13, 371–375. [Google Scholar] [CrossRef]
- Álvarez-Barrios, A.; Álvarez, L.; García, M.; Artime, E.; Pereiro, R.; González-Iglesias, H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants 2021, 10, 89. [Google Scholar] [CrossRef]
- Krezel, A.; Hao, Q.; Maret, W. The Zinc/Thiolate Redox Biochemistry of Metallothionein and the Control of Zinc Ion Fluctuations in Cell Signaling. Arch. Biochem. Biophys. 2007, 463, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Muraoka, S.; Ogiso, T. Antioxidant Activity of Metallothionein Compared with Reduced Glutathione. Life Sci. 1997, 60, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.K.J.; Pankhurst, M.; Dunlop, S.A.; Ray, S.; Dittmann, J.; Eaton, E.D.; Palumaa, P.; Sillard, R.; Chuah, M.I.; West, A.K.; et al. Metallothionein Induces a Regenerative Reactive Astrocyte Phenotype via JAK/STAT and RhoA Signalling Pathways. Exp. Neurol. 2010, 221, 98–106. [Google Scholar] [CrossRef]
- West, A.K.; Leung, J.Y.K.; Chung, R.S. Neuroprotection and Regeneration by Extracellular Metallothionein via Lipoprotein-Receptor-Related Proteins. J. Biol. Inorg. Chem. 2011, 16, 1115–1122. [Google Scholar] [CrossRef]
- Lewis, K.E.A.; Bennett, W.; Blizzard, C.L.; West, A.K.; Chung, R.S.; Chuah, M.I. The Influence of Metallothionein Treatment and Treadmill Running Exercise on Disease Onset and Survival in SOD1G93A Amyotrophic Lateral Sclerosis Mice. Eur. J. Neurosci. 2020, 52, 3223–3241. [Google Scholar] [CrossRef]
- Landowski, L.M.; Pavez, M.; Brown, L.S.; Gasperini, R.; Taylor, B.V.; West, A.K.; Foa, L. Low-Density Lipoprotein Receptor-Related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration. J. Biol. Chem. 2016, 291, 1092–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morellini, N.M.; Fear, M.W.; Rea, S.; West, A.K.; Wood, F.M.; Dunlop, S.A. Burn Injury Has a Systemic Effect on Reinnervation of Skin and Restoration of Nociceptive Function. Wound Repair Regen. 2012, 20, 367–377. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Nairn, P.; Bartlett, C.A.; Chung, R.S.; West, A.K.; Beazley, L.D. Metallothionein-IIA Promotes Neurite Growth via the Megalin Receptor. Exp. Brain Res. 2007, 183, 171–180. [Google Scholar] [CrossRef]
- Suemori, S.; Shimazawa, M.; Kawase, K.; Satoh, M.; Nagase, H.; Yamamoto, T.; Hara, H. Metallothionein, an Endogenous Antioxidant, Protects against Retinal Neuron Damage in Mice. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3975–3982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, M.; Larsen, A.; Stoltenberg, M.; Penkowa, M. Cell Death in the Injured Brain: Roles of Metallothioneins. Prog. Histochem. Cytochem. 2009, 44, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Penkowa, M.; Tio, L.; Giralt, M.; Quintana, A.; Molinero, A.; Atrian, S.; Vašák, M.; Hidalgo, J. Specificity and Divergence in the Neurobiologic Effects of Different Metallothioneins after Brain Injury. J. Neurosci. Res. 2006, 83, 974–984. [Google Scholar] [CrossRef]
- Pietrucha-Dutczak, M.; Smedowski, A.; Liu, X.; Matuszek, I.; Varjosalo, M.; Lewin-Kowalik, J. Candidate Proteins from Predegenerated Nerve Exert Time-Specific Protection of Retinal Ganglion Cells in Glaucoma. Sci. Rep. 2017, 7, 14540. [Google Scholar] [CrossRef] [Green Version]
- Arriaga, J.M.; Levy, E.M.; Bravo, A.I.; Bayo, S.M.; Amat, M.; Aris, M.; Hannois, A.; Bruno, L.; Roberti, M.P.; Loria, F.S.; et al. Metallothionein Expression in Colorectal Cancer: Relevance of Different Isoforms for Tumor Progression and Patient Survival. Hum. Pathol. 2012, 43, 197–208. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, L.; Hu, Y.; Xiao, C.; Xu, N.; Zhou, J.; Zhou, X. Metallothionein 1H (MT1H) Functions as a Tumor Suppressor in Hepatocellular Carcinoma through Regulating Wnt/β-Catenin Signaling Pathway. BMC Cancer 2017, 17, 161. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.; Larsen, A.; Stoltenberg, M.; Penkowa, M. The Role of Metallothionein in Oncogenesis and Cancer Prognosis. Prog. Histochem. Cytochem. 2009, 44, 29–64. [Google Scholar] [CrossRef] [PubMed]
- Demidenko, R.; Daniunaite, K.; Bakavicius, A.; Sabaliauskaite, R.; Skeberdyte, A.; Petroska, D.; Laurinavicius, A.; Jankevicius, F.; Lazutka, J.R.; Jarmalaite, S. Decreased Expression of MT1E Is a Potential Biomarker of Prostate Cancer Progression. Oncotarget 2017, 8, 61709–61718. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Iglesias, H.; Alvarez, L.; García, M.; Petrash, C.; Sanz-Medel, A.; Coca-Prados, M. Metallothioneins (MTs) in the Human Eye: A Perspective Article on the Zinc-MT Redox Cycle. Metallomics 2014, 6, 201–208. [Google Scholar] [CrossRef]
- Alvarez, L.; Gonzalez-Iglesias, H.; Garcia, M.; Ghosh, S.; Sanz-Medel, A.; Coca-Prados, M. The Stoichiometric Transition from Zn6Cu1-Metallothionein to Zn7-Metallothionein Underlies the Up-Regulation of Metallothionein (MT) Expression: Quantitative Analysis of Mt-Metal Load in Eye Cells*. J. Biol. Chem. 2012, 287, 28456–28469. [Google Scholar] [CrossRef] [Green Version]
- Oppermann, B.; Zhang, W.; Magabo, K.; Kantorow, M. Identification and Spatial Analysis of Metallothioneins Expressed by the Adult Human Lens. Investig. Ophthalmol. Vis. Sci. 2001, 42, 188–193. [Google Scholar]
- Tate, D.J.; Miceli, M.V.; Newsome, D.A. Expression of Metallothionein Isoforms in Human Chorioretinal Complex. Curr. Eye Res. 2002, 24, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Beatty, S.; Koh, H.H.; Phil, M.; Henson, D.; Boulton, M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Surv. Ophthalmol. 2000, 45, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Association between Systemic Oxidative Stress and Visual Field Damage in Open-Angle Glaucoma. Sci. Rep. 2016, 6, 25792. [Google Scholar] [CrossRef] [Green Version]
- Kowluru, R.A.; Kowluru, A.; Mishra, M.; Kumar, B. Oxidative Stress and Epigenetic Modifications in the Pathogenesis of Diabetic Retinopathy. Prog. Retin. Eye Res. 2015, 48, 40–61. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Strauss, R.W.; Lu, L.; Hafiz, G.; Wolfson, Y.; Shah, S.M.; Sophie, R.; Mir, T.A.; Scholl, H.P. Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa? Antioxid. Redox Signal. 2015, 23, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Domènech, E.B.; Marfany, G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants 2020, 9, 347. [Google Scholar] [CrossRef] [Green Version]
- Ezquerra-Inchausti, M.; Anasagasti, A.; Barandika, O.; Garai-Aramburu, G.; Galdós, M.; López de Munain, A.; Irigoyen, C.; Ruiz-Ederra, J. A New Approach Based on Targeted Pooled DNA Sequencing Identifies Novel Mutations in Patients with Inherited Retinal Dystrophies. Sci. Rep. 2018, 8, 15457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, L.; Bramanti, P.; Scimone, C.; Rinaldi, C.; D’Angelo, R.; Sidoti, A. miRNAexpression Profile of Retinal Pigment Epithelial Cells under Oxidative Stress Conditions. FEBS Open Bio 2018, 8, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Tuson, M.; Garanto, A.; Gonzàlez-Duarte, R.; Marfany, G. Overexpression of CERKL, a Gene Responsible for Retinitis Pigmentosa in Humans, Protects Cells from Apoptosis Induced by Oxidative Stress. Mol. Vis. 2009, 15, 168–180. [Google Scholar] [PubMed]
- Golestaneh, N.; Chu, Y.; Xiao, Y.Y.; Stoleru, G.L.; Theos, A.C. Dysfunctional Autophagy in RPE, a Contributing Factor in Age-Related Macular Degeneration. Cell Death Dis. 2017, 8, e2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decanini, A.; Nordgaard, C.L.; Feng, X.; Ferrington, D.A.; Olsen, T.W. Changes in Select Redox Proteins of the Retinal Pigment Epithelium in Age-Related Macular Degeneration. Am. J. Ophthalmol. 2007, 143, 607–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, E.W.T.; Wong, T.Y.; Kreis, A.J.; Simpson, J.A.; Guymer, R.H. Dietary Antioxidants and Primary Prevention of Age Related Macular Degeneration: Systematic Review and Meta-Analysis. BMJ 2007, 335, 755–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriarty-Craige, S.E.; Adkison, J.; Lynn, M.; Gensler, G.; Bressler, S.; Jones, D.P.; Sternberg, P. Antioxidant Supplements Prevent Oxidation of Cysteine/Cystine Redox in Patients with Age-Related Macular Degeneration. Am. J. Ophthalmol. 2005, 140, 1020–1026. [Google Scholar] [CrossRef]
- Evans, J.R.; Lawrenson, J.G. Antioxidant Vitamin and Mineral Supplements for Preventing Age-Related Macular Degeneration. Cochrane Database Syst. Rev. 2017, 7, CD000253. [Google Scholar] [CrossRef]
- Gil-Martínez, M.; Santos-Ramos, P.; Fernández-Rodríguez, M.; Abraldes, M.J.; Rodríguez-Cid, M.J.; Santiago-Varela, M.; Fernández-Ferreiro, A.; Gómez-Ulla, F. Pharmacological Advances in the Treatment of Age-Related Macular Degeneration. Curr. Med. Chem. 2020, 27, 583–598. [Google Scholar] [CrossRef]
- Carneiro, Â.; Andrade, J.P. Nutritional and Lifestyle Interventions for Age-Related Macular Degeneration: A Review. Oxid. Med. Cell. Longev. 2017, 2017, 6469138. [Google Scholar] [CrossRef]
- Miceli, M.V.; Tatejr, D.J.; Alcock, N.W.; Newsome, D.A. Zinc Deficiency and Oxidative Stress in the Retina of Pigmented Rats. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1238–1244. [Google Scholar]
- Kassoff, A.; Kassoff, J.; Buehler, J.; Eglow, M.; Kaufman, F.; Mehu, M.; Kieval, S.; Mairs, M.; Graig, B.; Quattrocchi, A.; et al. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss: AREDS Report No. 8. Arch. Ophthalmol. 2001, 119, 1417–1436. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wang, L.; Gu, S.; Yu, Y.; Huang, H.; Mo, K.; Xu, H.; Zeng, F.; Xiao, Y.; Peng, L.; et al. D609 Protects Retinal Pigmented Epithelium as a Potential Therapy for Age-Related Macular Degeneration. Signal Transduct. Target. Ther. 2020, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, C.M.; Biswal, M.R.; Li, H.; Han, P.; Ildefonso, C.J.; Lewin, A.S. Repurposing an Orally Available Drug for the Treatment of Geographic Atrophy. Mol. Vis. 2016, 22, 294–310. [Google Scholar]
- Biswal, M.R.; Ahmed, C.M.; Ildefonso, C.J.; Han, P.; Li, H.; Jivanji, H.; Mao, H.; Lewin, A.S. Systemic Treatment with a 5HT1a Agonist Induces Anti-Oxidant Protection and Preserves the Retina from Mitochondrial Oxidative Stress. Exp. Eye Res. 2015, 140, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis Pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Boughman, J.A.; Conneally, P.M.; Nance, W.E. Population Genetic Studies of Retinitis Pigmentosa. Am. J. Hum. Genet. 1980, 32, 223–235. [Google Scholar]
- Wunderlich, K.A.; Leveillard, T.; Penkowa, M.; Zrenner, E.; Perez, M.T. Altered Expression of Metallothionein-I and -II and Their Receptor Megalin in Inherited Photoreceptor Degeneration. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4809–4820. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related Vision Loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, S.P.; Di Marco, E.; Okabe, J.; Szyndralewiez, C.; Heitz, F.; Montezano, A.C.; De Haan, J.B.; Koulis, C.; El-Osta, A.; Andrews, K.L.; et al. NADPH Oxidase 1 Plays a Key Role in Diabetes Mellitus-Accelerated Atherosclerosis. Circulation 2013, 127, 1888–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, A.S.; Kelly, M.; Berg, R.M.G.; Møller, K.; Pedersen, B.K. Type 2 Diabetes Is Associated with Altered NF-ΚB DNA Binding Activity, JNK Phosphorylation, and AMPK Phosphorylation in Skeletal Muscle after LPS. PLoS ONE 2011, 6, e23999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Zhuo, L. Longitudinal in Vivo Imaging of Retinal Gliosis in a Diabetic Mouse Model. Exp. Eye Res. 2010, 91, 530–536. [Google Scholar] [CrossRef]
- Frank, R.N. Diabetic Retinopathy. N. Engl. J. Med. 2004, 350, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Kan, E.; Alici, Ö.; Kan, E.K.; Ayar, A. Effects of Alpha-Lipoic Acid on Retinal Ganglion Cells, Retinal Thicknesses, and VEGF Production in an Experimental Model of Diabetes. Int. Ophthalmol. 2017, 37, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhu, Q.; Xia, X.; Zhang, S.; Gu, Q.; Luo, D. Blood-Retinal Barrier Breakdown Induced by Activation of Protein Kinase C via Vascular Endothelial Growth Factor in Streptozotocin-Induced Diabetic Rats. Curr. Eye Res. 2004, 28, 251–256. [Google Scholar] [CrossRef]
- Pe’er, J.; Shweiki, D.; Itin, A.; Hemo, I.; Gnessin, H.; Keshet, E. Hypoxia-Induced Expression of Vascular Endothelial Growth Factor by Retinal Cells Is a Common Factor in Neovascularizing Ocular Diseases. Lab. Investig. 1995, 72, 638–645. [Google Scholar]
- Barber, A.J.; Gardner, T.W.; Abcouwer, S.F. The Significance of Vascular and Neural Apoptosis to the Pathology of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Midena, E. Retinal Layers Changes in Human Preclinical and Early Clinical Diabetic Retinopathy Support Early Retinal Neuronal and Müller Cells Alterations. J. Diabetes Res. 2013, 2013, 905058. [Google Scholar] [CrossRef] [Green Version]
- Fresta, C.G.; Fidilio, A.; Caruso, G.; Caraci, F.; Giblin, F.J.; Leggio, G.M.; Salomone, S.; Drago, F.; Bucolo, C. A New Human Blood-Retinal Barrier Model Based on Endothelial Cells, Pericytes, and Astrocytes. Int. J. Mol. Sci. 2020, 21, 1636. [Google Scholar] [CrossRef] [Green Version]
- Catalani, E.; Cervia, D. Diabetic Retinopathy: A Matter of Retinal Ganglion Cell Homeostasis. Neural Regen. Res. 2020, 15, 1253–1254. [Google Scholar] [CrossRef]
- Nakamura, S.; Shimazawa, M.; Inoue, Y.; Takata, S.; Ito, Y.; Tsuruma, K.; Ikeda, T.; Honda, A.; Satoh, M.; Hara, H. Role of Metallothioneins 1 and 2 in Ocular Neovascularization. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6851–6860. [Google Scholar] [CrossRef] [Green Version]
- Van Wouwe, J.P.; Uijlenbroek, J.J.M. The Role of the Pancreas in the Regulation of Zinc Status. Biol. Trace Elem. Res. 1994, 42, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.V. Zinc and Insulin in Pancreatic Beta-Cells. Endocrine 2014, 45, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Chausmer, A.B. Zinc, Insulin and Diabetes. J. Am. Coll. Nutr. 1998, 17, 109–115. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc: Role in Immunity, Oxidative Stress and Chronic Inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 646–652. [Google Scholar] [CrossRef]
- Miao, X.; Sun, W.; Miao, L.; Fu, Y.; Wang, Y.; Su, G.; Liu, Q. Zinc and Diabetic Retinopathy. J. Diabetes Res. 2013, 2013, 425854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moustafa, S.A. Zinc Might Protect Oxidative Changes in the Retina and Pancreas at the Early Stage of Diabetic Rats. Toxicol. Appl. Pharmacol. 2004, 201, 149–155. [Google Scholar] [CrossRef]
- Zangger, K.; Öz, G.; Haslinger, E.; Kunert, O.; Armitage, I.M. Nitric Oxide Selectively Releases Metals from the Amino-Terminal Domain of Metallothioneins: Potential Role at Inflammatory Sites. FASEB J. 2001, 15, 1303–1305. [Google Scholar] [CrossRef] [PubMed]
- Spahl, D.U.; Berendji-Grün, D.; Suschek, C.V.; Kolb-Bachofen, V.; Kröncke, K.D. Regulation of Zinc Homeostasis by Inducible NO Synthase-Derived NO: Nuclear Metallothionein Translocation and Intranuclear Zn2+ Release. Proc. Natl. Acad. Sci. USA 2003, 100, 13952–13957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.D.; Luo, L.J.; Yang, C.J.; Lai, J.Y. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS Nano 2023, 17, 168–183. [Google Scholar] [CrossRef]
- Dziedziak, J.; Kasarełło, K.; Cudnoch-Jędrzejewska, A. Dietary Antioxidants in Age-Related Macular Degeneration and Glaucoma. Antioxidants 2021, 10, 1743. [Google Scholar] [CrossRef] [PubMed]
- Kumaramanickavel, G.; Jadhav, S.; Ramsait, S.P.; Davey, P.G. Molecular Genomics of Glaucoma: An Update. Intechopen 2022, 1, 1–47. [Google Scholar]
- Kamińska, A.; Romano, G.L.; Rejdak, R.; Zweifel, S.; Fiedorowicz, M.; Rejdak, M.; Bajka, A.; Amato, R.; Bucolo, C.; Avitabile, T.; et al. Influence of Trace Elements on Neurodegenerative Diseases of the Eye—The Glaucoma Model. Int. J. Mol. Sci. 2021, 22, 4323. [Google Scholar] [CrossRef]
- Aranaz, M.; Costas-Rodríguez, M.; Lobo, L.; García, M.; González-Iglesias, H.; Pereiro, R.; Vanhaecke, F. Homeostatic Alterations Related to Total Antioxidant Capacity, Elemental Concentrations and Isotopic Compositions in Aqueous Humor of Glaucoma Patients. Anal. Bioanal. Chem. 2022, 414, 515–524. [Google Scholar] [CrossRef]
- Iwase, A.; Suzuki, Y.; Araie, M.; Yamamoto, T.; Abe, H.; Shirato, S.; Kuwayama, Y.; Mishima, H.K.; Shimizu, H.; Tomita, G.; et al. The Prevalence of Primary Open-Angle Glaucoma in Japanese: The Tajimi Study. Ophthalmology 2004, 111, 1641–1648. [Google Scholar] [CrossRef]
- Hohberger, B.; Chaudhri, M.A.; Michalke, B.; Lucio, M.; Nowomiejska, K.; Schlötzer-Schrehardt, U.; Grieb, P.; Rejdak, R.; Jünemann, A.G.M. Levels of Aqueous Humor Trace Elements in Patients with Open-Angle Glaucoma. J. Trace Elem. Med. Biol. 2017, 45, 150–155. [Google Scholar] [CrossRef]
- Gonzalez, P.; Epstein, D.L.; Borrás, T. Genes Upregulated in the Human Trabecular Meshwork in Response to Elevated Intraocular Pressure. Investig. Ophthalmol. Vis. Sci. 2000, 41, 352–361. [Google Scholar]
- DeToma, A.S.; Dengler-Crish, C.M.; Deb, A.; Braymer, J.J.; Penner-Hahn, J.E.; van der Schyf, C.J.; Lim, M.H.; Crish, S.D. Abnormal Metal Levels in the Primary Visual Pathway of the DBA/2J Mouse Model of Glaucoma. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecino, E.; Ugarte, M.; Nash, M.S.; Osborne, N.N. NMDA Induces BDNF Expression in the Albino Rat Retina in vivo. Neuroreport 1999, 10, 1103–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecino, E.; García-Grespo, D.; García, M.; Martinez-Millán, L.; Sharma, S.C.; Carrascal, E. Rat Retinal Ganglion Cells Co-Express Brain Derived Neurotrophic Factor (BDNF) and Its Receptor TrkB. Vision Res. 2002, 42, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weintraub, J.M.; Taylor, A.; Jacques, P.; Willett, W.C.; Rosner, B.; Colditz, G.A.; Chylack, L.T.; Hankinson, S.E. Postmenopausal Hormone Use and Lens Opacities. Ophthalmic Epidemiol. 2002, 9, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Asbell, P.A.; Dualan, I.; Mindel, J.; Brocks, D.; Ahmad, M.; Epstein, S. Age-Related Cataract. Lancet 2005, 365, 599–609. [Google Scholar] [CrossRef]
- Lee, C.M.; Afshari, N.A. The Global State of Cataract Blindness. Curr. Opin. Ophthalmol. 2017, 28, 98–103. [Google Scholar] [CrossRef]
- Kantorow, M.; Kays, T.; Horwitz, J.; Huang, Q.; Sun, J.; Piatigorsky, J.; Carper, D. Differential Display Detects Altered Gene Expression between Cataractous and Normal Human Lenses. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2344–2354. [Google Scholar]
- Hawse, J.R.; Padgaonkar, V.A.; Leverenz, V.R.; Pelliccia, S.E.; Kantorow, M.; Giblin, F.J. The Role of Metallothionein IIa in Defending Lens Epithelial Cells against Cadmium and TBHP Induced Oxidative Stress. Mol. Vis. 2006, 12, 342–349. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamrozik, D.; Dutczak, R.; Machowicz, J.; Wojtyniak, A.; Smędowski, A.; Pietrucha-Dutczak, M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants 2023, 12, 1251. https://doi.org/10.3390/antiox12061251
Jamrozik D, Dutczak R, Machowicz J, Wojtyniak A, Smędowski A, Pietrucha-Dutczak M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants. 2023; 12(6):1251. https://doi.org/10.3390/antiox12061251
Chicago/Turabian StyleJamrozik, Daniel, Radosław Dutczak, Joanna Machowicz, Alicja Wojtyniak, Adrian Smędowski, and Marita Pietrucha-Dutczak. 2023. "Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases" Antioxidants 12, no. 6: 1251. https://doi.org/10.3390/antiox12061251
APA StyleJamrozik, D., Dutczak, R., Machowicz, J., Wojtyniak, A., Smędowski, A., & Pietrucha-Dutczak, M. (2023). Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants, 12(6), 1251. https://doi.org/10.3390/antiox12061251