Food Antioxidants and Their Interaction with Human Proteins
Abstract
1. Food Antioxidants
2. Food Antioxidants, Their Stability, and Availability under Physiological Conditions
3. Binding Characteristics of Proteins and Their Interaction with Food Antioxidants
4. Methods for Studying Antioxidant/Protein Interactions
4.1. Binding Studies
4.2. Structural Aspects
4.3. Functional Aspects
Antioxidant Class (Subclass) | Chemical Compound | Effects (the Binding Constant in M−1, if Available) [Reference] |
---|---|---|
Flavonoids (Flavonols) | Quercetin | No significant influence on the structure [87]; no effects were studied [88]; inhibition of the oxidation of HSA-bound linoleic acid (1.2 × 105 at 25 °C) [89] |
Fisetin | No effects were studied (1.2 × 105 at 25 °C) [88] | |
Galangin | No effects were studied (2.3 × 105 at 25 °C) [88] | |
Rhamnetin | No effects were studied (1.3 × 105 at 25 °C) [88] | |
Myricetin | No effects were studied [90] | |
Kaempferol | HSA unfolding to some degree (3.5 × 105 at 25 °C) [91]; negligible structural alteration (3.5 × 105 at 25 °C) [92] | |
Morin | Reduction of α-helix and β-sheet structures (1.1 × 105 at 37 °C) [93] | |
Astilbin | Reduction of α-helix content of HSA and antioxidant capacity of astilbin (4.5 × 105 at 37 °C) [94] | |
Flavonoids (Flavones) | Luteolin | Reduction of α-helix and increase in β-turn structures; altered configuration of two disulfide bridges (1.6 × 105 at 25 °C) [95]; HSA stabilization by inhibition of fibrillation and glycation [96] |
Apigenin | No effects were studied (1.3 × 105 at 25 °C [88]; 4.6 × 106 at 20 °C [97]) | |
Rutin | No effects were studied (0.7 × 105 at 25 °C) [98]; reduction in α-helix content (2.4 × 106 at 25 °C) [99] | |
Chrysin | No effects were studied (2.0 × 105 at 25 °C [88]; 2.5 × 105 at 25 °C [100]); stabilization of HSA by inhibition of fibrillation and glycation [96] | |
Diosmetin | No effects were studied [88]; slight alteration of HSA structure (1.2 × 105 at 25 °C) [101] | |
Flavone | No effects were studied (0.6 × 105 at 25 °C) [88] | |
Trimethoxy flavone | Partial unfolding of protein secondary structure (1.0 × 103 at 25 °C) [102] | |
Flavonoids (Isoflavones) | Genistein | Binding of oleic acid decreases affinity to HSA (7.8 × 106 at 20 °C) [103]; reduction in α-helix content (0.2 × 105 at 25 °C) [104]; no effects were studied (0.5 × 105 at 25 °C [88]; 1.5 × 105 at 27 °C [105]); |
Formononetin | No effects were studied (0.2 × 105 at 25 °C) [88]; alteration of HSA structure (0.6 × 105 at 25 °C) [106] | |
Daidzein | No effects were studied [105]; slight alteration of HSA structure (7.8 × 106 at 20 °C) [107] | |
Prunetin | No effects were studied (0.4 × 105 at 25 °C) [88] | |
Biochanin | Reduction of α-helix content (0.2 × 105 at 20 °C) [108] | |
Flavonoids (Flavanols) | Catechin | Reduction of α-helix content (2.9 × 105 at 25 °C [80]; 0.2 × 105 at 20 °C [109]) |
Epicatechin | Prolonged stabilization of ligand [110] | |
Epigallocatechin | Prolonged stabilization of ligand [110] | |
Epicatechin gallate | Prolonged stabilization of ligand [110]; reduction in α-helix content (3.1 × 105 at 25 °C) [80] | |
Epigallocatechin galate | Protection and stabilization of ligand from oxidation [111]; prolonged stabilization of ligand [110]; reduction in α-helix content (3.3 × 105 at 25 °C [80]; 3.2 × 105 at 25 °C [112]); increase in protein aggregation and promotion of heterogeneous aggregate formation [113] | |
Flavonoids (Flavanonols) | Taxifolin | Alteration of HSA conformation (1.8 × 105 at 37 °C) [114]; reduction in α-helix content (1.1 × 105 at 25 °C) [115] |
Flavonoids (Flavanones) | Hesperetin | Reduction of α-helix content (0.2 × 105 at 25 °C [116]; 0.8 × 105 at 25 °C [117]) |
Narirutin | No effects were studied (0.7 × 105 at 27 °C) [118] | |
Naringin | No effects were studied (0.3 × 105 at 27 °C) [118] | |
Nobiletin | No effects were studied (1.3 × 105 at 27 °C) [118] | |
Tangeretin | No effects were studied (1.0 × 105 at 27 °C) [118] | |
Naringenin | The binding of oleic acid decreases its affinity to HSA (5.3 × 106 at 20 °C) [103]; no effects were studied (0.7 × 105 at 27 °C) [118] | |
Flavanone | No effects were studied (0.5 × 105 at 25 °C) [88] | |
Sakuranetin | No effects were studied (0.2 × 105 at 25 °C) [88] | |
Flavonoids (Anthocyanins) | Pelargonidin | Lower pH induces stronger binding (2.1 × 105 at 37 °C) [119] |
Cyanidin | Lower pH induces stronger binding (3.1 × 105 at 37 °C) [119] | |
Delphinidin | Lower pH induces stronger binding (3.4 × 105 at 37 °C) [119] | |
Malvidin | Lower pH induces stronger binding (1.7 × 105 at 37 °C) [119] | |
Pelargonidin-3-O-glucoside | Lower pH induces stronger binding (3.7 × 105 at 37 °C) [119] | |
Flavonoids (Dihydrochalcones) | Phloretin | Reduction of α-helix content; increased resistance to aggregation, fibrillation, and oxidative modification (5.4 × 105 at 37 °C) [120] |
Phenolic acids (Benzoic acid derivatives) | p-hydroxybenzoic acid | No effects were studied (1.0 × 103 at 25 °C) [121] |
Gallic acid | Increase its antioxidant activity (2.0 × 103 at 25 °C) [122]; increase in α-helix content (9.0 × 103 at 25 °C) [79]; transition of α-helix to β-turn structures (1.0 × 104 at 25 °C) [123] | |
Ellagic acid | Reduction of α-helix content (1.6 × 105 at 25 °C) [124] | |
Vanillic acid | No effects were studied (1.0 × 103 at 25 °C) [121] | |
Isovanillic acid | No effects were studied (2.0 × 103 at 25 °C) [122] | |
Syringic acid | Increase in antioxidant activity of ligand [122] | |
Protocatechuic acid | Increase in antioxidant activity of protocatechuic acid (2.0 × 103 at 25 °C) [122] | |
Gentisic acid | Increase in antioxidant activity of gentisic acid (5.0 × 103 at 25 °C) [122] | |
Phenolic acids (Cinnamic acid derivatives) | Cinnamic acid | Reduction of α-helix content (0.4 × 105 at 25 °C) [125] |
Caffeic acid | Reduction of α-helix content (1.6 × 105 at 25 °C) [125]; stabilization of protein structure (0.3 × 105 at 37 °C) [126]; inhibition of the oxidation of HSA-bound linoleic acid [89]; no effects were studied (0.3 × 105 at 37 °C) [127]; alteration of protein structure (0.2 × 105 at 25 °C) [128] | |
Ferulic acid | The partial unfolding of HSA (0.3 × 105 at 25 °C) [129]; binding of ferulic acid inhibits the oxidation of HSA-bound linoleic acid [89]; no effects were studied (2.3 × 106 at 25 °C) [130] | |
Sinapic acid | Transition of α-helix to β-turn structures (6.9 × 107 at 25 °C) [123] | |
Rosmarinic acid | Changes in tertiary structure with the reduction in α-helix content (0.6 × 105 at 37 °C) [131]; Inhibition of protein glycation and aggregation [132] | |
p-Coumaric acid | Reduction of α-helix content (1.1 × 105 at 25 °C) [125] | |
Chlorogenic acid | The partial unfolding of HSA (0.4 × 105 at 25 °C) [129]; binding of chlorogenic acid inhibits oxidation of HSA-bound linoleic acid [89]; no effects were studied (9.2 × 106 at 25 °C) [130] | |
Phenolic aldehydes | Vanillin | Reduction of α-helix content (0.6 × 105 at 37 °C) [133] |
Protocatechuic aldehyde | Disordered structure of HSA (9.8 × 107 at 37 °C) [134] | |
Terpenes (Monoterpenes) | Menthol | Reduction of α-helix content, an increase in β-sheet and random coils [135] |
Cuminaldehyde | Reduction of α-helix content (8.0 × 103 at 25 °C) [136] | |
Cuminol | Reduction of α-helix content (1.0 × 103 at 25 °C) [136] | |
Saphranal | Reduction of α-helix content, an increase in β-sheet and random coils (3.0 × 103 at 25 °C) [137] | |
Terpenes (Diterpenes) | Leoheterin | Increase of α-helix content (1.2 × 105 at 25 °C) [138] |
Cafestol | Reduction of α-helix content, increased affinity for warfarin (5.0 × 103 at 25 °C) [139] | |
16-O-methylcafestol | Reduction of α-helix content, increased affinity for warfarin (8.0 × 103 at 25 °C) [139] | |
Terpenes (Triterpenes) | Betulinic acid | Reduction of α-helix content, an increase in β-sheet and random coils (1.7 × 106 at 25 °C) [140] |
Asiatic acid | Reduction of α-helix content, an increase in β-sheet and random coils (0.4 × 105 at 25 °C) [141] | |
β-Carotene | Reduction of α-helix content, an increase in random coils and β-turns (2.7 × 105 at 37 °C) [142]; reduction in α-helix content, an increase in β-turns (3.0 × 105 at 37 °C) [143] | |
Isorenieratene | Reduction of α-helix content, increase in β-turns (3.5 × 105 at 37 °C) [143] | |
Terpenes (Xanthophylls) | Lutein | Reduction of α-helix content, increase in β-turns (3.5 × 105 at 37 °C) [143] |
Astaxanthin | Reduction of α-helix content, an increase in random coils and β-turns (2.6 × 106 at 37 °C) [142] | |
Apocarotenoids | Crocetin | Reduction of α-helix content, an increase in β-sheet and random coils (2.0 × 103 at 25 °C) [137] |
Stilbenes | Resveratrol | Increase of α-helix content, displacement of aflatoxin B1 (6.4 × 106 at 25 °C) [144,145]; protein thermal stabilization [146] |
Rhaponticin | Reduction of α-helix content (1.4 × 105 at 25 °C) [147] | |
Esculin | Reduction of α-helix content (4.6 × 105 at 25 °C) [148] | |
Esculetin | Reduction of α-helix and increase in β-sheet content (0.3 × 105 at 25 °C) [149]; reduction in α-helix content (0.7 × 105 at 37 °C) [148] | |
Scopoletin | Reduction of α-helix content (2.6 × 105 at 25 °C) [86] | |
Fraxin | Reduction of α-helix content (3.1 × 105 at 25 °C) [148] | |
Fraxetin | Reduction of α-helix content (0.9 × 105 at 25 °C) [148] | |
Daphnetin | Reduction of α-helix content (1.7 × 106 at 37 °C) [150] | |
Osthole | Conformational change of HSA (1.0 × 105 at 25 °C) [151]; slight reduction in α-helix content, inhibition of HSA esterase activity (8.9 × 105 at 25 °C) [152] | |
Vitamins | Ascorbic acid | Reduction of α-helix content and increase in β-sheet and random coils (0.2 × 105 at 25 °C) [153]; reduction in α-helix content (0.2 × 105 at 25 °C) [154]; slight changes in secondary structure (3.0 × 103 at 25 °C) [155] |
α-Tocopherol | Reduction of α-helix content and random coils, an increase in β-sheet and β-turn (4.0 × 103 at 25 °C) [153]; impaired binding of diazepam (7.0 × 106 at 25 °C) [156] | |
Retinol | Protein stabilization: Increase in α-helix content and reduction in β-sheet content (1.3 × 105 at 25 °C) [157] | |
Sulfur-containing compounds | Lipoic/Dihydro- lipoic acid | Restoration of zinc ion binding to protein [63]; thermal stabilization of HSA, no effect on trypsin digestion (0.1 × 105 at 37 °C) [56] |
Phycobilins | Phycocyanobilin | Displacement of bound bilirubin (2.2 × 106 at 25 °C) [37]; increase in α-helix content and reduction in random coils; increased thermal and proteolytic stability; and conformational change of ligand [49] |
Antioxidant Class | Antioxidant Subclass | Chemical Compound | Effects (the Binding Constant in M−1, if Available) [Reference] |
---|---|---|---|
Flavonoids | Flavonols | Quercetin | Reduction of hydrophobicity in the microenvironment of Trp residue; the unfolding of protein backbone; increase in β-sheet followed by reduction in α-helix and β-turn structures [158] |
Fisetin | Moderate interaction; thermal denaturation of protein (1.4 × 106 at 25 °C) [159] | ||
Galangin | Reduction of hydrophobicity in the microenvironment of Trp; unfolding of transferrin backbone; increase in β-sheet followed by reduction in α-helix and β-turn structures [158] | ||
Myricetin | Reduction of hydrophobicity in the microenvironment of Trp; unfolding of transferrin backbone; increase in β-sheet followed by reduction in α-helix and β-turn structures [158] | ||
Kaempferol | Reduction of hydrophobicity in the microenvironment of Trp; unfolding of transferrin backbone; increase in β-sheet followed by reduction in α-helix and β-turn structures [158] | ||
Flavones | Luteolin | Increase in hydrophobicity of the Trp microenvironment and thermal stabilization (1.0 × 105 at 35 °C) [160] | |
Apigenin | Increase in α-helix content (6.7 × 104 at 25 °C) [161] Increase of hydrophobicity in the Trp microenvironment; thermal stabilization (1.0 × 105 at 35 °C) [160] | ||
Rutin | Increase of hydrophobicity in the Trp microenvironment; thermal stabilization (2.1 × 105 at 35 °C) [160] | ||
Isoflavones | Genistein | Slight increase in hydrophobicity in the Trp microenvironment; slight increase in α-helix content (1.3 × 104 at 25 °C) [162] | |
Daidzein | Increase of hydrophobicity in the Trp microenvironment; increase in α-helix content (2.9 × 105 at 25 °C) [162] | ||
Flavanones | Naringenin | Stabilization of transferrin structure; increase in α-helix content; high binding affinity (6.3 × 106 at 25 °C) [161]; high binding affinity; no structural effects were observed [163] | |
Anthocyanins | Cyanidin | Changes of hydrophobicity in the microenvironment of Trp and Tyr [164] | |
Phenolic acids | Cinnamic acid derivatives | Rosmarinic acid | Alteration of protein structure and conformation (4.7 × 107 at 18 °C) [165] |
Carotenoids | Xanthophylls | β-Cryptoxanthin | No effects were studied [166] |
Vitamins | Ascorbic acid | Reduction in α-helix and increase in β-sheet content; inhibition of ligand acid-free radical scavenging activity upon binding (1.1 × 104 at 25 °C) [167] |
Antioxidant Class | Antioxidant Subclass | Chemical Compound | Effects (the Binding Constant in M−1, if Available) [Reference] |
---|---|---|---|
Flavonoids | Flavonols | Quercetin | Reduction of hydrophobicity in the Trp microenvironment and α-helix content; reduction in inhibitory activity (4.4 × 103 at 25 °C) [168] |
Myricetin | Increase of hydrophobicity in the Trp and Tyr microenvironment; slight decrease in α-helix content (2.4 × 103 at 45 °C) [169] | ||
Phenolic acids | Benzoic acid derivatives | Gallic acid | Reduction of hydrophobicity in the Trp microenvironment; increase in the α-helix content; reduction in inhibitory activity (2.9 × 104 at 25 °C) [170] |
Cinnamic acid derivatives | Ferulic acid | No significant structural changes were observed (6.7 × 104 at 25 °C) [171] | |
Vitamins | Ascorbic acid | Induction of slight conformational changes [172] |
Antioxidant Class | Antioxidant Subclass | Chemical Compound | Effects (the Binding Constant in M−1, if Available) [Reference] |
---|---|---|---|
Flavonoids | Flavonols | Myricetin | Reduction of α-helix content (2.0 × 104 at 25 °C) [173] |
Flavones | Rutin | No effects were studied (2.1 × 104 at 25 °C) [173] | |
Isoflavones | Genistein | Reduction of α-helix content (1.7 × 104 at 25 °C) [173] | |
Puerarin | Reduction of α-helix content (8.8 × 103 at 25 °C) [173] | ||
Flavanols | (-)-Epigallocatechin | No effects were studied [174] | |
Flavanones | Hesperidin | Reduction of α-helix content (2.3 × 104 at 25 °C) [173] | |
Naringin | Reduction of α-helix content (1.5 × 104 at 25 °C) [173] | ||
Phenolic acids | Cinnamic acid derivatives | Caffeic acid | No effects were studied [175] |
Ferulic acid | No effects were studied [175] | ||
Stilbenes | Resveratrol | No effects were studied [176]; no fibrinogen unfolding/destabilization; mutually protective effect against free radical-induced oxidation (2.6 × 103 at 25 °C) [36] | |
Tannins | Hydrolyzable tannins | Tannic acid | No effects were studied [176] |
Sulfur- containing compounds | Fatty acids | Dehydrolypoic acid | Slight secondary structural alteration, more ordered protein molecular organization; formation of fibrin with thicker fibers; protection from oxidation (1.0 × 104 at 25 °C) [59] |
Antioxidant Class | Antioxidant Subclass | Chemical Compound | Effects (the Binding Constant in M−1, if Available) [Reference] |
---|---|---|---|
Flavonoids | Flavonols | Quercetin | Reduction of α-helix content (1.2 × 104 at 25 °C) [177] |
Dihydromyricetin | No alteration of secondary structure (2.8 × 104 at 23 °C) [178] | ||
Isoflavones | Genistein | No alteration of secondary structure (3.5 × 104 at 25 °C) [179] | |
Diadzein | No alteration of secondary structure (8.7 × 103 at 25 °C) [180] | ||
Flavanols | Catechin | No alteration of α-helix content; pro-oxidative effect towards metHb formation at higher catechin concentration (7 × 107 at 25 °C) [181] | |
Flavanones | Hesperidin | Stabilization of secondary structure (1.4 × 104 at 25 °C) [182] Slight alteration of secondary structure (2.2 × 104 at 25 °C) [183] | |
Naringenin | No alteration of secondary structure (1.5 × 104 at 25 °C) [184] | ||
Anthocyanidins | Procyanidin B3 | No effects were studied (0.9 × 103 at 37 °C) [185] | |
Carotenoids | Terpenes | Astaxanthin | No effects were studied (2.2 × 109 at 37 °C) [185] |
Carotenes | β-Carotene | No effects were studied (2.3 × 105 at 37 °C) [185] | |
Tannins | Hydrolyzable tannins | Tannic acid | Structural changes and protein denaturation [186]; no effects were studied (1.5 × 104 at 25 °C) [187] |
Vitamins | L-Ascorbic acid | No effects were studied (4.6 × 106 at 37 °C) [185] | |
Tocopherols | α-Tocopherol | No effects were studied (3.2 × 103 at 37 °C) [185] | |
Other | Turmeric | Curcumin | Unfolding of protein; reduction in thermal stability (4.9 × 105 at 20 °C) [188] |
5. Redox Status, Antioxidants, and Diseases
6. Future Perspectives in the Analysis of Antioxidant/Protein Interactions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med. Res. Rev. 2019, 39, 2505–2533. [Google Scholar] [CrossRef]
- Rochette, L.; Ghibu, S.; Muresan, A.; Vergely, C. Alpha-Lipoic Acid: Molecular Mechanisms and Therapeutic Potential in Diabetes. Can. J. Physiol. Pharmacol. 2015, 93, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Thorat, I.D.; Jagtap, D.D.; Mohapatra, D.; Joshi, D.C.; Sutar, R.F.; Kapdi, S.S. Antioxidants, Their Properties, Uses in Food Products and Their Legal Implications. Int. J. Food Stud. 2013, 2, 81–104. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The Total Antioxidant Content of More than 3100 Foods, Beverages, Spices, Herbs and Supplements Used Worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the Determination of Biological Antioxidant Capacity in Vitro: A Review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Cömert, E.D.; Gökmen, V. Physiological Relevance of Food Antioxidants. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2020; pp. 205–250. [Google Scholar]
- Neilson, A.P.; Goodrich, K.M.; Ferruzzi, M.G. Bioavailability and Metabolism of Bioactive Compounds From Foods. In Nutrition in the Prevention and Treatment of Disease; Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Delahanty, L.M., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017; pp. 301–319. [Google Scholar]
- Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, Bioactivity and Impact on Health of Dietary Flavonoids and Related Compounds: An Update. Arch. Toxicol. 2014, 88, 1803–1853. [Google Scholar] [CrossRef]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between Phenolics and Gut Microbiota: Role in Human Health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Cömert, E.D.; Gökmen, V. Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance. Compr. Rev. Food Sci. Food Saf. 2017, 16, 382–399. [Google Scholar] [CrossRef]
- Dupas, C.J.; Marsset-Baglieri, A.C.; Ordonaud, C.S.; Ducept, F.M.G.; Maillard, M.-N. Coffee Antioxidant Properties: Effects of Milk Addition and Processing Conditions. J. Food Sci. 2006, 71, S253–S258. [Google Scholar] [CrossRef]
- Duarte, G.S.; Farah, A. Effect of Simultaneous Consumption of Milk and Coffee on Chlorogenic Acids’ Bioavailability in Humans. J. Agric. Food Chem. 2011, 59, 7925–7931. [Google Scholar] [CrossRef]
- Chima, B.; Mathews, P.; Morgan, S.; Johnson, S.A.; Van Buiten, C.B. Physicochemical Characterization of Interactions between Blueberry Polyphenols and Food Proteins from Dairy and Plant Sources. Foods 2022, 11, 2846. [Google Scholar] [CrossRef] [PubMed]
- Reboul, E. Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand? Nutrients 2019, 11, 838. [Google Scholar] [CrossRef] [PubMed]
- Peinado, J.; López de Lerma, N.; Peinado, R.A. Synergistic Antioxidant Interaction between Sugars and Phenolics from a Sweet Wine. Eur. Food Res. Technol. 2010, 231, 363–370. [Google Scholar] [CrossRef]
- Agulló, V.; Villaño, D.; García-Viguera, C.; Domínguez-Perles, R. Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages. Molecules 2020, 25, 371. [Google Scholar] [CrossRef]
- Cömert, E.D.; Gökmen, V. Effect of Food Combinations and Their Co-Digestion on Total Antioxidant Capacity under Simulated Gastrointestinal Conditions. Curr. Res. Food Sci. 2022, 5, 414–422. [Google Scholar] [CrossRef]
- Kumar, S.; Ma, B.; Tsai, C.-J.; Sinha, N.; Nussinov, R. Folding and Binding Cascades: Dynamic Landscapes and Population Shifts. Protein Sci. 2000, 9, 10–19. [Google Scholar] [CrossRef]
- Weikl, T.R.; Paul, F. Conformational Selection in Protein Binding and Function. Protein Sci. 2014, 23, 1508–1518. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Abyzov, A.; Clarke, D.; Shou, C.; Gerstein, M.B. Integration of Protein Motions with Molecular Networks Reveals Different Mechanisms for Permanent and Transient Interactions. Protein Sci. 2011, 20, 1745–1754. [Google Scholar] [CrossRef]
- Hatasa, Y.; Chikazawa, M.; Furuhashi, N.; Nakashima, F.; Shibata, T.; Kondo, T.; Akagawa, M.; Hamagami, H.; Tanaka, H.; Tachibana, H.; et al. Oxidative Deamination of Serum Albumins by (-)-Epigallocatechin-3-O-Gallate: A Potential Mechanism for the Formation of Innate Antigens by Antioxidants. PLoS ONE 2016, 11, e0153002. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Mori, T.; Tanaka, T.; Mizuno, D.; Yamaji, R.; Kumazawa, R.; Nakayama, T.; Akagawa, M. Covalent modification of proteins by green tea polyphenol (-)-epigallocatechin-3-gallate through autoxidation. Free Radic. Biol. Med. 2008, 45, 1384–1394. [Google Scholar] [CrossRef]
- Walle, T.; Vincent, T.S.; Walle, U.K. Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells. Biochem. Pharmacol. 2003, 65, 1603–1610. [Google Scholar] [CrossRef]
- Kaldas, M.I.; Walle, U.K.; van der Woude, H.; McMillan, J.E.M.; Walle, T. Covalent binding of the flavonoid quercetin to human serum albumin. J. Agric. Food Chem. 2005, 53, 4194–4197. [Google Scholar] [CrossRef] [PubMed]
- Saqib, U.; Kelley, T.T.; Panguluri, S.K.; Liu, D.; Savai, R.; Baig, M.S.; Schürer, S.C. Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets. Front. Pharmacol. 2018, 9, 1201. [Google Scholar] [CrossRef]
- Nwachukwu, J.C.; Srinivasan, S.; Bruno, N.E.; Parent, A.A.; Hughes, T.S.; Pollock, J.A.; Gjyshi, O.; Cavett, V.; Nowak, J.; Garcia-Ordonez, R.D.; et al. Resveratrol Modulates the Inflammatory Response via an Estrogen Receptor-Signal Integration Network. eLife 2014, 3, e02057. [Google Scholar] [CrossRef] [PubMed]
- Baruah, I.; Kashyap, C.; Guha, A.K.; Borgohain, G. Insights into the Interaction between Polyphenols and β-Lactoglobulin through Molecular Docking, MD Simulation, and QM/MM Approaches. ACS Omega 2022, 7, 23083–23095. [Google Scholar] [CrossRef]
- Shafqat, N.; Muniz, J.R.C.; Pilka, E.S.; Papagrigoriou, E.; von Delft, F.; Oppermann, U.; Yue, W.W. Insight into S-Adenosylmethionine Biosynthesis from the Crystal Structures of the Human Methionine Adenosyltransferase Catalytic and Regulatory Subunits. Biochem. J. 2013, 452, 27–36. [Google Scholar] [CrossRef]
- Latruffe, N.; Menzel, M.; Delmas, D.; Buchet, R.; Lançon, A. Compared Binding Properties between Resveratrol and Other Polyphenols to Plasmatic Albumin: Consequences for the Health Protecting Effect of Dietary Plant Microcomponents. Molecules 2014, 19, 17066–17077. [Google Scholar] [CrossRef]
- Gomes, M.B.; Negrato, C.A. Alpha-Lipoic Acid as a Pleiotropic Compound with Potential Therapeutic Use in Diabetes and Other Chronic Diseases. Diabetol. Metab. Syndr. 2014, 6, 80. [Google Scholar] [CrossRef]
- Atukeren, P.; Aydin, S.; Uslu, E.; Gumustas, M.K.; Cakatay, U. Redox Homeostasis of Albumin in Relation to Alpha-Lipoic Acid and Dihydrolipoic Acid. Oxid. Med. Cell. Longev. 2010, 3, 206–213. [Google Scholar] [CrossRef] [PubMed]
- van de Weert, M.; Stella, L. Fluorescence Quenching and Ligand Binding: A Critical Discussion of a Popular Methodology. J. Mol. Struct. 2011, 998, 144–150. [Google Scholar] [CrossRef]
- Zhang, J.; Mi, Q.; Shen, M. Resveratrol Binding to Collagen and Its Biological Implication. Food Chem. 2012, 131, 879–884. [Google Scholar] [CrossRef]
- Gligorijević, N.; Radomirović, M.; Rajković, A.; Nedić, O.; Ćirković Veličković, T. Fibrinogen Increases Resveratrol Solubility and Prevents It from Oxidation. Foods 2020, 9, 780. [Google Scholar] [CrossRef]
- Minic, S.L.; Milcic, M.; Stanic-Vucinic, D.; Radibratovic, M.; Sotiroudis, T.G.; Nikolic, M.R.; Velickovic, T.Ć. Phycocyanobilin, a Bioactive Tetrapyrrolic Compound of Blue-Green Alga Spirulina, Binds with High Affinity and Competes with Bilirubin for Binding on Human Serum Albumin. RSC Adv. 2015, 5, 61787–61798. [Google Scholar] [CrossRef]
- Frazier, R.A.; Papadopoulou, A.; Green, R.J. Isothermal Titration Calorimetry Study of Epicatechin Binding to Serum Albumin. J. Pharm. Biomed. Anal. 2006, 41, 1602–1605. [Google Scholar] [CrossRef]
- Eaton, J.D.; Williamson, M.P. Multi-Site Binding of Epigallocatechin Gallate to Human Serum Albumin Measured by NMR and Isothermal Titration Calorimetry. Biosci. Rep. 2017, 37, BSR20170209. [Google Scholar] [CrossRef]
- Duff, M.R., Jr.; Grubbs, J.; Howell, E.E. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity. J. Vis. Exp. 2011, 55, 2796. [Google Scholar] [CrossRef]
- Rich, R.L.; Day, Y.S.N.; Morton, T.A.; Myszka, D.G. High-Resolution and High-Throughput Protocols for Measuring Drug/Human Serum Albumin Interactions Using BIACORE. Anal. Biochem. 2001, 15, 197–207. [Google Scholar] [CrossRef]
- Ishii, K.; Noda, M.; Uchiyama, S. Mass spectrometric analysis of protein-ligand interactions. Biophys. Physicobiol. 2016, 13, 87–95. [Google Scholar] [CrossRef]
- Minic, S.; Radomirovic, M.; Savkovic, N.; Radibratovic, M.; Mihailovic, J.; Vasovic, T.; Nikolic, M.; Milcic, M.; Stanic-Vucinic, D.; Cirkovic Velickovic, T. Covalent binding of food-derived blue pigment phycocyanobilin to bovine β-lactoglobulin under physiological conditions. Food Chem. 2018, 269, 43–52. [Google Scholar] [CrossRef]
- Stanic-Vucinic, D.; Prodic, I.; Apostolovic, D.; Nikolic, M.; Cirkovic Velickovic, T. Structure and antioxidant activity of β-lactoglobulin-glycoconjugates obtained by high-intensity-ultrasound-induced Maillard reaction in aqueous model systems under neutral conditions. Food Chem. 2013, 138, 590–599. [Google Scholar] [CrossRef]
- Woody, R.W.; Dunker, A.K. Aromatic and Cystine Side-Chain Circular Dichroism in Proteins. In Circular Dichroism and the Conformational Analysis of Biomolecules; Fasman, G., Ed.; Plenum Press: New York, NY, USA, 1996; pp. 110–144. [Google Scholar]
- Micsonai, A.; Moussong, É.; Wien, F.; Boros, E.; Vadászi, H.; Murvai, N.; Lee, Y.-H.; Molnár, T.; Réfrégiers, M.; Goto, Y.; et al. BeStSel: Webserver for Secondary Structure and Fold Prediction for Protein CD Spectroscopy. Nucleic Acids Res. 2022, 50, W90–W98. [Google Scholar] [CrossRef]
- Pelton, J.T.; McLean, L.R. Spectroscopic Methods for Analysis of Protein Secondary Structure. Anal. Biochem. 2000, 277, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Radibratovic, M.; Minic, S.; Stanic-Vucinic, D.; Nikolic, M.; Milcic, M.; Cirkovic Velickovic, T. Stabilization of Human Serum Albumin by the Binding of Phycocyanobilin, a Bioactive Chromophore of Blue-Green Alga Spirulina: Molecular Dynamics and Experimental Study. PLoS ONE 2016, 11, e0167973. [Google Scholar] [CrossRef] [PubMed]
- Doniach, S. Changes in Biomolecular Conformation Seen by Small Angle X-Ray Scattering. Chem. Rev. 2001, 101, 1763–1778. [Google Scholar] [CrossRef]
- Rambo, R.P.; Tainer, J.A. Characterizing Flexible and Intrinsically Unstructured Biological Macromolecules by SAS Using the Porod-Debye Law. Biopolymers 2011, 95, 559–571. [Google Scholar] [CrossRef]
- Minić, S.; Annighöfer, B.; Hélary, A.; Hamdane, D.; Hui Bon Hoa, G.; Loupiac, C.; Brûlet, A.; Combet, S. Effect of Ligands on HP-Induced Unfolding and Oligomerization of β-Lactoglobulin. Biophys. J. 2020, 119, 2262–2274. [Google Scholar] [CrossRef]
- Gligorijević, N.; Minić, S.; Radibratović, M.; Papadimitriou, V.; Nedić, O.; Sotiroudis, T.G.; Nikolić, M.R. Nutraceutical Phycocyanobilin Binding to Catalase Protects the Pigment from Oxidation without Affecting Catalytic Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119483. [Google Scholar] [CrossRef]
- Sjödin, T.; Hansson, R.; Sjöholm, I. Isolation and Identification of a Trypsin-Resistant Fragment of Human Serum Albumin with Bilirubin- and Drug-Binding Properties. Biochim. Biophys. Acta-Protein Struct. 1977, 494, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ghanizadeh, H.; Li, X.; Han, Z.; Qiu, Y.; Zhang, Y.; Chen, X.; Wang, A. A Study of the Interaction, Morphology, and Structure in Trypsin-Epigallocatechin-3-Gallate Complexes. Molecules 2021, 26, 4567. [Google Scholar] [CrossRef] [PubMed]
- Gligorijevic, N.; Sukalovic, V.; Minic, S.; Miljus, G.; Nedic, O.; Penezic, A. Physicochemical Characterisation of Dihydro-Alpha-Lipoic Acid Interaction with Human Serum Albumin by Multi-Spectroscopic and Molecular Modelling Approaches. J. Serb. Chem. Soc. 2021, 86, 795–807. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, J.H.; Lee, S.J.; Oh, J.-H.; Shin, E.; Jang, Y.P.; Lee, Y.-J. The Increased Cellular Uptake and Biliary Excretion of Curcumin by Quercetin: A Possible Role of Albumin Binding Interaction. Drug Metab. Dispos. 2012, 40, 1452–1455. [Google Scholar] [CrossRef]
- Malinowska, J.; Olas, B. Effect of Resveratrol on Hemostatic Properties of Human Fibrinogen and Plasma during Model of Hyperhomocysteinemia. Thromb. Res. 2010, 126, e379–e382. [Google Scholar] [CrossRef]
- Gligorijević, N.; Šukalović, V.; Penezić, A.; Nedić, O. Characterisation of the Binding of Dihydro-Alpha-Lipoic Acid to Fibrinogen and the Effects on Fibrinogen Oxidation and Fibrin Formation. Int. J. Biol. Macromol. 2020, 147, 319–325. [Google Scholar] [CrossRef]
- Rashtbari, S.; Khataee, S.; Iranshahi, M.; Moosavi-Movahedi, A.A.; Hosseinzadeh, G.; Dehghan, G. Experimental Investigation and Molecular Dynamics Simulation of the Binding of Ellagic Acid to Bovine Liver Catalase: Activation Study and Interaction Mechanism. Int. J. Biol. Macromol. 2020, 143, 850–861. [Google Scholar] [CrossRef]
- Collazos, N.; García, G.; Malagón, A.; Caicedo, O.; Vargas, E.F. Binding Interactions of a Series of Sulfonated Water-Soluble Resorcinarenes with Bovine Liver Catalase. Int. J. Biol. Macromol. 2019, 139, 75–84. [Google Scholar] [CrossRef]
- Rashtbari, S.; Dehghan, G.; Yekta, R.; Jouyban, A. Investigation of the Binding Mechanism and Inhibition of Bovine Liver Catalase by Quercetin: Multi-Spectroscopic and Computational Study. BioImpacts 2017, 7, 147–153. [Google Scholar] [CrossRef]
- Al-Harthi, S.; Chandra, K.; Jaremko, Ł. Lipoic Acid Restores Binding of Zinc Ions to Human Serum Albumin. Front. Chem. 2022, 10, 942585. [Google Scholar] [CrossRef]
- Ding, S.; Jiang, H.; Fang, J. Regulation of Immune Function by Polyphenols. J. Immunol. Res. 2018, 2018, 1264074. [Google Scholar] [CrossRef] [PubMed]
- Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018, 10, 1936. [Google Scholar] [CrossRef] [PubMed]
- Oettl, K.; Stauber, R.E. Physiological and Pathological Changes in the Redox State of Human Serum Albumin Critically Influence Its Binding Properties. Br. J. Pharmacol. 2007, 151, 580–590. [Google Scholar] [CrossRef]
- Minic, S.; Stanic-Vucinic, D.; Radomirovic, M.; Radibratovic, M.; Milcic, M.; Nikolic, M.; Cirkovic Velickovic, T. Characterization and Effects of Binding of Food-Derived Bioactive Phycocyanobilin to Bovine Serum Albumin. Food Chem. 2018, 239, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-L.; Wang, G.-H.; Xiang, W.-Z.; Li, T.; He, H. Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina Platensis. Int. J. Food Prop. 2016, 19, 2349–2362. [Google Scholar] [CrossRef]
- Zou, D.; Xie, A. Influence of polyphenol-plasma protein interaction on the antioxidant properties of polyphenols. Curr. Drug Metab. 2013, 14, 451–455. [Google Scholar] [CrossRef]
- Romay, C.C.; Pascual, C.; Lissi, E.A. The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Braz. J. Med. Biol. Res. 1996, 29, 175–183. [Google Scholar]
- Rohn, S.; Rawel, H.M.; Kroll, J. Antioxidant activity of protein-bound quercetin. J. Agric. Food Chem. 2004, 52, 4725–4729. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Q.; Yuan, E.; Yang, J.; Ning, Z. Interaction between four flavonoids and trypsin: Effect on the characteristics of trypsin and antioxidant activity of flavonoids. Int. J. Food Sci. 2014, 49, 1063–1069. [Google Scholar] [CrossRef]
- Mihajlovic, L.; Radosavljevic, J.; Nordlund, E.; Krstic, M.; Bohn, T.; Smit, J.; Buchert, J.; Cirkovic Velickovic, T. Peanut protein structure, polyphenol content and immune response to peanut proteins in vivo are modulated by laccase. Food Funct. 2016, 7, 2357. [Google Scholar] [CrossRef]
- Heck, T.; Faccio, G.; Richter, M.; Thöny-Meyer, L. Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 2013, 97, 461–475. [Google Scholar] [CrossRef]
- Boutureira, O.; Bernardes, G.J.L. Advances in chemical protein modification. Chem. Rev. 2015, 115, 2174–2195. [Google Scholar] [CrossRef]
- Radomirovic, M.; Minic, S.; Stanic-Vucinic, D.; Nikolic, M.; Van Haute, S.; Rajkovic, A.; Cirkovic Velickovic, T. Phycocyanobilin-modified β-lactoglobulin exhibits increased antioxidant properties and stability to digestion and heating. Food Hydrocoll. 2022, 123, 107169. [Google Scholar] [CrossRef]
- Stojadinovic, M.; Pieters, R.; Smit, J.; Velickovic, C. Cross-Linking of β-Lactoglobulin Enhances Allergic Sensitization Through Changes in Cellular Uptake and Processing. Toxicol. Sci. 2014, 140, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Tantoush, Z.; Stanic, D.; Stojadinovic, M.; Ognjenovic, J.; Mihajlovic, L.; Atanaskovic-Markovic, M.; Cirkovic-Velickovic, T. Digestibility and allergenicity of beta-lactoglobulin following laccase-mediated cross-linking in the presence of sour cherry phenolics. Food Chem. 2011, 125, 84–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.; LI, J.; Chen, X. Studies on the Interaction of Gallic Acid with Human Serum Albumin in Membrane Mimetic Environments. Talanta 2008, 76, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Chanphai, P.; Tajmir-Riahi, H.A. Tea Polyphenols Bind Serum Albumins: A Potential Application for Polyphenol Delivery. Food Hydrocoll. 2019, 89, 461–467. [Google Scholar] [CrossRef]
- Beema Shafreen, R.; Dymerski, T.; Namieśnik, J.; Jastrzębski, Z.; Vearasilp, S.; Gorinstein, S. Interaction of Human Serum Albumin with Volatiles and Polyphenols from Some Berries. Food Hydrocoll. 2017, 72, 297–303. [Google Scholar] [CrossRef]
- Beg, M.; Maji, A.; Nayim, S.; Aktara, M.N.; Sahoo, N.K.; Jana, G.C.; Islam, M.M.; Hossain, M. Biophysical Insights into the Interaction of Human Serum Albumin with Cassia Fistula Leaf Extracts Inspired Biogenic Potent Antibacterial and Anticancerous Gold Nanoparticles. J. Biomol. Struct. Dyn. 2021, 39, 4567–4581. [Google Scholar] [CrossRef]
- Roufegarinejad, L.; Jahanban-Esfahlan, A.; Sajed-Amin, S.; Panahi-Azar, V.; Tabibiazar, M. Molecular Interactions of Thymol with Bovine Serum Albumin: Spectroscopic and Molecular Docking Studies. J. Mol. Recognit. 2018, 31, e2704. [Google Scholar] [CrossRef]
- Chaturvedi, S.K.; Ahmad, E.; Khan, J.M.; Alam, P.; Ishtikhar, M.; Khan, R.H. Elucidating the Interaction of Limonene with Bovine Serum Albumin: A Multi-Technique Approach. Mol. Biosyst. 2015, 11, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Galdón, B.; Pinto Corraliza, C.; Cestero Carrillo, J.J.; Macías Laso, P. Spectroscopic Study of the Interaction between Lycopene and Bovine Serum Albumin. Luminescence 2013, 28, 765–770. [Google Scholar] [CrossRef]
- Cheng, Z. Studies on the Interaction between Scopoletin and Two Serum Albumins by Spectroscopic Methods. J. Lumin. 2012, 132, 2719–2729. [Google Scholar] [CrossRef]
- Sengupta, B.; Sengupta, P.K. Binding of Quercetin with Human Serum Albumin: A Critical Spectroscopic Study. Biopolymers 2003, 72, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Rimac, H.; Debeljak, Ž.; Šakić, D.; Weitner, T.; Gabričević, M.; Vrček, V.; Zorc, B.; Bojić, M. Structural and Electronic Determinants of Flavonoid Binding to Human Serum Albumin: An Extensive Ligand-Based Study. RSC Adv. 2016, 6, 75014–75022. [Google Scholar] [CrossRef]
- Roche, M.; Dufour, C.; Loonis, M.; Reist, M.; Carrupt, P.-A.; Dangles, O. Olive Phenols Efficiently Inhibit the Oxidation of Serum Albumin-Bound Linoleic Acid and Butyrylcholine Esterase. Biochim. Biophys. Acta-Gen. Subj. 2009, 1790, 240–248. [Google Scholar] [CrossRef]
- Qin, C.; Xie, M.-X.; Liu, Y. Characterization of the Myricetin−Human Serum Albumin Complex by Spectroscopic and Molecular Modeling Approaches. Biomacromolecules 2007, 8, 2182–2189. [Google Scholar] [CrossRef]
- Matei, I.; Hillebrand, M. Interaction of Kaempferol with Human Serum Albumin: A Fluorescence and Circular Dichroism Study. J. Pharm. Biomed. Anal. 2010, 51, 768–773. [Google Scholar] [CrossRef]
- Das, S.; Hazarika, Z.; Sarmah, S.; Baruah, K.; Rohman, M.A.; Paul, D.; Jha, A.N.; Singha Roy, A. Exploring the Interaction of Bioactive Kaempferol with Serum Albumin, Lysozyme and Hemoglobin: A Biophysical Investigation Using Multi-Spectroscopic, Docking and Molecular Dynamics Simulation Studies. J. Photochem. Photobiol. B Biol. 2020, 205, 111825. [Google Scholar] [CrossRef]
- Xie, M.-X.; Long, M.; Liu, Y.; Qin, C.; Wang, Y.-D. Characterization of the Interaction between Human Serum Albumin and Morin. Biochim. Biophys. Acta-Gen. Subj. 2006, 1760, 1184–1191. [Google Scholar] [CrossRef]
- Han, X.; Sun, J.; Niu, T.; Mao, B.; Gao, S.; Zhao, P.; Sun, L. Molecular Insight into the Binding of Astilbin with Human Serum Albumin and Its Effect on Antioxidant Characteristics of Astilbin. Molecules 2022, 27, 4487. [Google Scholar] [CrossRef] [PubMed]
- Jurasekova, Z.; Marconi, G.; Sanchez-Cortes, S.; Torreggiani, A. Spectroscopic and Molecular Modeling Studies on the Binding of the Flavonoid Luteolin and Human Serum Albumin. Biopolymers 2009, 91, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, S.; Das, S.; Roy, A.S. Protective Actions of Bioactive Flavonoids Chrysin and Luteolin on the Glyoxal Induced Formation of Advanced Glycation End Products and Aggregation of Human Serum Albumin: In Vitro and Molecular Docking Analysis. Int. J. Biol. Macromol. 2020, 165, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.-L.; Lv, Z.; Liu, Z.-G.; Hu, Z.; Zou, G.-L. Study on Interaction between Apigenin and Human Serum Albumin by Spectroscopy and Molecular Modeling. J. Photochem. Photobiol. A Chem. 2007, 191, 104–113. [Google Scholar] [CrossRef]
- Pastukhov, A.V.; Levchenko, L.A.; Sadkov, A.P. Spectroscopic Study on Binding of Rutin to Human Serum Albumin. J. Mol. Struct. 2007, 842, 60–66. [Google Scholar] [CrossRef]
- Sengupta, P.; Sardar, P.S.; Roy, P.; Dasgupta, S.; Bose, A. Investigation on the Interaction of Rutin with Serum Albumins: Insights from Spectroscopic and Molecular Docking Techniques. J. Photochem. Photobiol. B Biol. 2018, 183, 101–110. [Google Scholar] [CrossRef]
- Mohos, V.; Fliszár-Nyúl, E.; Schilli, G.; Hetényi, C.; Lemli, B.; Kunsági-Máté, S.; Bognár, B.; Poór, M. Interaction of Chrysin and Its Main Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide with Serum Albumin. Int. J. Mol. Sci. 2018, 19, 4073. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Pan, J. Probing the Binding of the Flavonoid Diosmetin to Human Serum Albumin by Multispectroscopic Techniques. J. Agric. Food Chem. 2012, 60, 2721–2729. [Google Scholar] [CrossRef]
- Gokara, M.; Sudhamalla, B.; Amooru, D.G.; Subramanyam, R. Molecular Interaction Studies of Trimethoxy Flavone with Human Serum Albumin. PLoS ONE 2010, 5, e8834. [Google Scholar] [CrossRef]
- Bolli, A.; Marino, M.; Rimbach, G.; Fanali, G.; Fasano, M.; Ascenzi, P. Flavonoid Binding to Human Serum Albumin. Biochem. Biophys. Res. Commun. 2010, 398, 444–449. [Google Scholar] [CrossRef]
- Bian, Q.; Liu, J.; Tian, J.; Hu, Z. Binding of Genistein to Human Serum Albumin Demonstrated Using Tryptophan Fluorescence Quenching. Int. J. Biol. Macromol. 2004, 34, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Mahesha, H.G.; Singh, S.A.; Srinivasan, N.; Rao, A.G.A. A Spectroscopic Study of the Interaction of Isoflavones with Human Serum Albumin. FEBS J. 2006, 273, 451–467. [Google Scholar] [CrossRef]
- Li, Y.; He, W.; Dong, Y.; Sheng, F.; Hu, Z. Human Serum Albumin Interaction with Formononetin Studied Using Fluorescence Anisotropy, FT-IR Spectroscopy, and Molecular Modeling Methods. Bioorg. Med. Chem. 2006, 14, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, W.; Liu, H.; Yao, X.; Hu, Z. Daidzein Interaction with Human Serum Albumin Studied Using Optical Spectroscopy and Molecular Modeling Methods. J. Mol. Struct. 2007, 831, 144–150. [Google Scholar] [CrossRef]
- Xue, Z.; Cheng, A.; Li, Y.; Yu, W.; Kou, X. Investigating Interaction Between Biochanin A and Human Serum Albumin by Multi-Spectroscopic and Molecular Simulation Methods. Trans. Tianjin Univ. 2017, 23, 325–333. [Google Scholar] [CrossRef]
- Li, X.; Wang, S. Study on the Interaction of (+)-Catechin with Human Serum Albumin Using Isothermal Titration Calorimetry and Spectroscopic Techniques. New J. Chem. 2015, 39, 386–395. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Scanu, B.; Forteschi, M.; Giordo, R.; Cossu, A.; Posadino, A.M.; Carru, C.; Pintus, G. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions. PLoS ONE 2015, 10, e0134690. [Google Scholar] [CrossRef]
- Bae, M.-J.; Ishii, T.; Minoda, K.; Kawada, Y.; Ichikawa, T.; Mori, T.; Kamihira, M.; Nakayama, T. Albumin Stabilizes (-)-Epigallocatechin Gallate in Human Serum: Binding Capacity and Antioxidant Property. Mol. Nutr. Food Res. 2009, 53, 709–715. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, M.; Sun, B.; Liu, J.; Wei, X.; Wang, Z.; Wang, B.; Han, J. Calorimetric and Spectroscopic Studies on the Competitive Behavior between (−)-Epigallocatechin-3-Gallate and 5-Fluorouracil with Human Serum Albumin. J. Mol. Liq. 2017, 248, 330–339. [Google Scholar] [CrossRef]
- Sun, X.; Ferguson, H.N.; Hagerman, A.E. Conformation and Aggregation of Human Serum Albumin in the Presence of Green Tea Polyphenol (EGCG) and/or Palmitic Acid. Biomolecules 2019, 9, 705. [Google Scholar] [CrossRef]
- Zhang, N.; He, H.; Zhang, M.; Lv, X.; Li, W.; Wang, R.; Chang, J. Investigation of the Interactions between Three Flavonoids and Human Serum Albumin by Isothermal Titration Calorimetry, Spectroscopy, and Molecular Docking. New J. Chem. 2022, 46, 12814–12824. [Google Scholar] [CrossRef]
- Mohseni-Shahri, F.S.; Housaindokht, M.R.; Bozorgmehr, M.R.; Moosavi-Movahedi, A.A. Influence of Taxifolin on the Human Serum Albumin–Propranolol Interaction: Multiple Spectroscopic and Chemometrics Investigations and Molecular Dynamics Simulation. J. Solution Chem. 2016, 45, 265–285. [Google Scholar] [CrossRef]
- Ding, F.; Diao, J.-X.; Sun, Y.; Sun, Y. Bioevaluation of Human Serum Albumin–Hesperidin Bioconjugate: Insight into Protein Vector Function and Conformation. J. Agric. Food Chem. 2012, 60, 7218–7228. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.-X.; Xu, X.-Y.; Wang, Y.-D. Interaction between Hesperetin and Human Serum Albumin Revealed by Spectroscopic Methods. Biochim. Biophys. Acta-Gen. Subj. 2005, 1724, 215–224. [Google Scholar] [CrossRef]
- Cao, H.; Chen, L.; Xiao, J. Binding Citrus Flavanones to Human Serum Albumin: Effect of Structure on Affinity. Mol. Biol. Rep. 2011, 38, 2257–2262. [Google Scholar] [CrossRef]
- Cahyana, Y.; Gordon, M.H. Interaction of Anthocyanins with Human Serum Albumin: Influence of PH and Chemical Structure on Binding. Food Chem. 2013, 141, 2278–2285. [Google Scholar] [CrossRef]
- Barreca, D.; Laganà, G.; Toscano, G.; Calandra, P.; Kiselev, M.A.; Lombardo, D.; Bellocco, E. The Interaction and Binding of Flavonoids to Human Serum Albumin Modify Its Conformation, Stability and Resistance against Aggregation and Oxidative Injuries. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861, 3531–3539. [Google Scholar] [CrossRef]
- Myint, O.; Wattanapongpitak, S.; Supawat, B.; Kothan, S.; Udomtanakunchai, C.; Tima, S.; Tungjai, M. Protein Binding of 4-Hydroxybenzoic Acid and 4-Hydroxy-3-Methoxybenzoic Acid to Human Serum Albumin and Their Anti-Proliferation on Doxorubicin-Sensitive and Doxorubicin-Resistant Leukemia Cells. Toxicol. Rep. 2021, 8, 1381–1388. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Qin, Y.; Liu, J.; Liu, J.; Wang, Q.; Ren, F.; Zhang, H. Interaction of Phenolic Acids and Their Derivatives with Human Serum Albumin: Structure–Affinity Relationships and Effects on Antioxidant Activity. Food Chem. 2018, 240, 1072–1080. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M.-X.; Jiang, M.; Wang, Y.-D. Spectroscopic Investigation of the Interaction between Human Serum Albumin and Three Organic Acids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2245–2251. [Google Scholar] [CrossRef]
- Pattanayak, R.; Basak, P.; Sen, S.; Bhattacharyya, M. An Insight to the Binding of Ellagic Acid with Human Serum Albumin Using Spectroscopic and Isothermal Calorimetry Studies. Biochem. Biophys. Rep. 2017, 10, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Meng-Xia, X.; Dong, Z.; Yuan, L.; Xiao-Yu, L.; Xing, C. Spectroscopic Studies on the Interaction of Cinnamic Acid and Its Hydroxyl Derivatives with Human Serum Albumin. J. Mol. Struct. 2004, 692, 71–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Yue, Y.; Li, J.; Chen, X. Studies on the Interaction of Caffeic Acid with Human Serum Albumin in Membrane Mimetic Environments. J. Photochem. Photobiol. B Biol. 2008, 90, 141–151. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Li, Q.; Chen, J.; Gao, X.; Chen, H.; Xiao, C.; Bian, L.; Zheng, J.; Zhao, X.; Zheng, X. Binding of Caffeic Acid to Human Serum Albumin by the Retention Data and Frontal Analysis. Biomed. Chromatogr. 2014, 28, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Jahanban-Esfahlan, A.; Roufegarinejad, L.; Tabibiazar, M.; Lorenzo, J.; Amarowicz, R. Exploring the Interactions Between Caffeic Acid and Human Serum Albumin Using Spectroscopic and Molecular Docking Techniques. Pol. J. Food Nutr. Sci. 2021, 71, 69–77. [Google Scholar] [CrossRef]
- Kang, J.; Liu, Y.; Xie, M.; Li, S.; Jiang, M.; Wang, Y. Interactions of Human Serum Albumin with Chlorogenic Acid and Ferulic Acid. Biochim. Biophys. Acta-Gen. Subj. 2004, 1674, 205–214. [Google Scholar] [CrossRef]
- Sinisi, V.; Forzato, C.; Cefarin, N.; Navarini, L.; Berti, F. Interaction of Chlorogenic Acids and Quinides from Coffee with Human Serum Albumin. Food Chem. 2015, 168, 332–340. [Google Scholar] [CrossRef]
- Peng, X.; Wang, X.; Qi, W.; Su, R.; He, Z. Affinity of Rosmarinic Acid to Human Serum Albumin and Its Effect on Protein Conformation Stability. Food Chem. 2016, 192, 178–187. [Google Scholar] [CrossRef]
- Shamsi, A.; Ahmed, A.; Khan, M.S.; Husain, F.M.; Bano, B. Rosmarinic Acid Restrains Protein Glycation and Aggregation in Human Serum Albumin: Multi Spectroscopic and Microscopic Insight—Possible Therapeutics Targeting Diseases. Int. J. Biol. Macromol. 2020, 161, 187–193. [Google Scholar] [CrossRef]
- Wang, X.; Xie, X.; Ren, C.; Yang, Y.; Xu, X.; Chen, X. Application of Molecular Modelling and Spectroscopic Approaches for Investigating Binding of Vanillin to Human Serum Albumin. Food Chem. 2011, 127, 705–710. [Google Scholar] [CrossRef]
- Tian, J.; Chen, C.; Xue, M. The Interaction between Protocatechuic Aldehyde and Human Serum Albumin Using Three-Dimensional Fluorescence Techniques. Spectroscopy 2011, 26, 195–201. [Google Scholar] [CrossRef]
- Yeggoni, D.P.; Rachamallu, A.; Dubey, S.; Mitra, A.; Subramanyam, R. Probing the Interaction Mechanism of Menthol with Blood Plasma Proteins and Its Cytotoxicity Activities. J. Biomol. Struct. Dyn. 2018, 36, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Rehman, M.T.; Al-Lohedan, H.; AlAjmi, M.F. Spectroscopic and Molecular Docking Investigation on the Interaction of Cumin Components with Plasma Protein: Assessment of the Comparative Interactions of Aldehyde and Alcohol with Human Serum Albumin. Int. J. Mol. Sci. 2022, 23, 4078. [Google Scholar] [CrossRef] [PubMed]
- Kanakis, C.D.; Tarantilis, P.A.; Tajmir-Riahi, H.A.; Polissiou, M.G. Crocetin, Dimethylcrocetin, and Safranal Bind Human Serum Albumin: Stability and Antioxidative Properties. J. Agric. Food Chem. 2007, 55, 970–977. [Google Scholar] [CrossRef]
- Ali, M.S.; Amina, M.; Al-Lohedan, H.A.; Al Musayeib, N.M. Human Serum Albumin Binding to the Biologically Active Labdane Diterpene “Leoheterin”: Spectroscopic and in Silico Analysis. J. Photochem. Photobiol. B Biol. 2018, 182, 9–17. [Google Scholar] [CrossRef]
- Guercia, E.; Forzato, C.; Navarini, L.; Berti, F. Interaction of Coffee Compounds with Serum Albumins. Part II: Diterpenes. Food Chem. 2016, 199, 502–508. [Google Scholar] [CrossRef]
- Subramanyam, R.; Gollapudi, A.; Bonigala, P.; Chinnaboina, M.; Amooru, D.G. Betulinic Acid Binding to Human Serum Albumin: A Study of Protein Conformation and Binding Affinity. J. Photochem. Photobiol. B Biol. 2009, 94, 8–12. [Google Scholar] [CrossRef]
- Gokara, M.; Malavath, T.; Kalangi, S.K.; Reddana, P.; Subramanyam, R. Unraveling the Binding Mechanism of Asiatic Acid with Human Serum Albumin and Its Biological Implications. J. Biomol. Struct. Dyn. 2014, 32, 1290–1302. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Chen, D.; Lu, Y. β-Carotene and Astaxanthin with Human and Bovine Serum Albumins. Food Chem. 2015, 179, 213–221. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Y.; Chen, M.; Xie, B.; Yang, J.; Chen, J.; Sun, Z. Isorenieratene Interaction with Human Serum Albumin: Multi-Spectroscopic Analyses and Docking Simulation. Food Chem. 2018, 258, 393–399. [Google Scholar] [CrossRef]
- N’ soukpoé-Kossi, C.N.; St-Louis, C.; Beauregard, M.; Subirade, M.; Carpentier, R.; Hotchandani, S.; Tajmir-Riahi, H.A. Resveratrol Binding to Human Serum Albumin. J. Biomol. Struct. Dyn. 2006, 24, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.A.; Javed, S. Investigating Binding Dynamics of Trans Resveratrol to HSA for an Efficient Displacement of Aflatoxin B1 Using Spectroscopy and Molecular Simulation. Sci. Rep. 2022, 12, 2400. [Google Scholar] [CrossRef]
- Stirpe, A.; Pantusa, M.; Rizzuti, B.; De Santo, M.P.; Sportelli, L.; Bartucci, R.; Guzzi, R. Resveratrol Induces Thermal Stabilization of Human Serum Albumin and Modulates the Early Aggregation Stage. Int. J. Biol. Macromol. 2016, 92, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ji, Z.; Liang, X.; Li, G.; Yang, S.; Wei, S.; Zhao, Y.; Hu, X.; Fan, J. Studies on the Binding of Rhaponticin with Human Serum Albumin by Molecular Spectroscopy, Modeling and Equilibrium Dialysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 87, 171–178. [Google Scholar] [CrossRef]
- Xu, L.; Yang, H.; Hu, R.; Liang, Y.; Li, Y.; Xu, W.; Fan, X.; Liu, Y. Comparing the Interaction of Four Structurally Similar Coumarins from Fraxinus Chinensis Roxb. with HSA through Multi-Spectroscopic and Docking Studies. J. Mol. Liq. 2021, 340, 117234. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, Y.; Qin, J.; Chen, X. Study of the Interaction between Esculetin and Human Serum Albumin by Multi-Spectroscopic Method and Molecular Modeling. J. Mol. Struct. 2008, 888, 25–32. [Google Scholar] [CrossRef]
- Liu, J.; Tian, J.; Li, Y.; Yao, X.; Hu, Z.; Chen, X. Binding of the Bioactive Component Daphnetin to Human Serum Albumin Demonstrated Using Tryptophan Fluorescence Quenching. Macromol. Biosci. 2004, 4, 520–525. [Google Scholar] [CrossRef]
- Yang, G.-D.; Li, C.; Zeng, A.-G.; Zhao, Y.; Yang, R.; Bian, X.-L. Fluorescence Spectroscopy of Osthole Binding to Human Serum Albumin. J. Pharm. Anal. 2013, 3, 200–204. [Google Scholar] [CrossRef]
- Bijari, N.; Shokoohinia, Y.; Ashrafi-Kooshk, M.R.; Ranjbar, S.; Parvaneh, S.; Moieni-Arya, M.; Khodarahmi, R. Spectroscopic Study of Interaction between Osthole and Human Serum Albumin: Identification of Possible Binding Site of the Compound. J. Lumin. 2013, 143, 328–336. [Google Scholar] [CrossRef]
- Li, X.; Chen, D.; Wang, G.; Lu, Y. Study of Interaction between Human Serum Albumin and Three Antioxidants: Ascorbic Acid, α-Tocopherol, and Proanthocyanidins. Eur. J. Med. Chem. 2013, 70, 22–36. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Z.; Ni, Y. Interaction between Aspirin and Vitamin C with Human Serum Albumin as Binary and Ternary Systems. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 236, 118356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Z.-Q.; Liu, X.-R.; Qi, Z.-D.; Jiang, F.-L.; Liu, Y. Conformation and Thermodynamic Properties of the Binding of Vitamin C to Human Serum Albumin. J. Solut. Chem. 2012, 41, 351–366. [Google Scholar] [CrossRef]
- Fanali, G.; Fasano, M.; Ascenzi, P.; Zingg, J.-M.; Azzi, A. α-Tocopherol Binding to Human Serum Albumin. BioFactors 2013, 39, 294–303. [Google Scholar] [CrossRef] [PubMed]
- N’soukpoé-Kossi, C.N.; Sedaghat-Herati, R.; Ragi, C.; Hotchandani, S.; Tajmir-Riahi, H.A. Retinol and Retinoic Acid Bind Human Serum Albumin: Stability and Structural Features. Int. J. Biol. Macromol. 2007, 40, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, L.; Song, Z.; Xu, R.; Wang, L. Comparative Study on the Interaction between Transferrin and Flavonols: Experimental and Computational Modeling Approaches. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 288, 122128. [Google Scholar] [CrossRef]
- Sandu, N.; Popescu, A.I.; Chilom, C.G. Probing the Interaction of Fisetin with Human Serum Transferrin via Spectroscopic and Molecular Docking Approaches. J. Biomol. Struct. Dyn. 2022, 40, 9613–9619. [Google Scholar] [CrossRef] [PubMed]
- Sandu, N.; Chilom, C.G.; Popescu, A.I. Structural and molecular aspects of flavonoids as ligands for serum transferrin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 254, 119600. [Google Scholar] [CrossRef]
- Zhang, X.; Han, R.; Sun, X.; Li, G.; Yang, Q.; Li, Q.; Gai, W.; Zhang, M.; Chen, L.; Yang, G.; et al. The Effect of the Skeleton Structure of Flavanone and Flavonoid on Interaction with Transferrin. Bioorg. Med. Chem. Lett. 2013, 23, 6677–6681. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Liu, Y.; Han, R.; Lan, L.; Chen, H.; Sun, X.; Li, Q.; Tang, Y.-L. Interaction of Isoflavones with Different Structures and Transferrin. Spectrosc. Lett. 2016, 49, 596–601. [Google Scholar] [CrossRef]
- Khan, S.; Alhumaydhi, F.A.; Khan, M.S.; Sharaf, S.E.; Al Abdulmonem, W.; Hassan, M.I.; Shamsi, A.; Kumar Yadav, D. Exploring Binding Mechanism of Naringenin to Human Transferrin Using Combined Spectroscopic and Computational Methods: Towards Therapeutic Targeting of Neurodegenerative Diseases. J. Mol. Liq. 2022, 356, 119001. [Google Scholar] [CrossRef]
- Khashkhashi-Moghadam, S.; Ezazi-Toroghi, S.; Kamkar-Vatanparast, M.; Jouyaeian, P.; Mokaberi, P.; Yazdyani, H.; Amiri-Tehranizadeh, Z.; Reza Saberi, M.; Chamani, J. Novel Perspective into the Interaction Behavior Study of the Cyanidin with Human Serum Albumin-Holo Transferrin Complex: Spectroscopic, Calorimetric and Molecular Modeling Approaches. J. Mol. Liq. 2022, 356, 119042. [Google Scholar] [CrossRef]
- Shamsi, A.; Anwar, S.; Shahbaaz, M.; Mohammad, T.; Alajmi, M.F.; Hussain, A.; Hassan, I.; Ahmad, F.; Islam, A. Evaluation of Binding of Rosmarinic Acid with Human Transferrin and Its Impact on the Protein Structure: Targeting Polyphenolic Acid-Induced Protection of Neurodegenerative Disorders. Oxid. Med. Cell. Longev. 2020, 2020, 1245875. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Hazra, U.; Dutta, D. Role of β-Cryptoxanthin as an Antioxidant and Its Ability to Bind with Transferrin. Int. J. Biosci. Biochem. Bioinforma. 2019, 9, 258–264. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, L.; Zhou, B.; Zhang, S.; Ma, X.; Zhou, H.; Tuo, X. Elucidation on the Interaction between Transferrin and Ascorbic Acid: A Study Based on Spectroscopic Analysis, Molecular Docking Technology, and Antioxidant Evaluation. J. Mol. Liq. 2022, 360, 119413. [Google Scholar] [CrossRef]
- Siddiqui, T.; Zia, M.K.; Ahsan, H.; Khan, F.H. Quercetin-Induced Inactivation and Conformational Alterations of Alpha-2-Macroglobulin: Multi-Spectroscopic and Calorimetric Study. J. Biomol. Struct. Dyn. 2020, 38, 4107–4118. [Google Scholar] [CrossRef]
- Ansari, S.; Ahsan, H.; Zia, M.K.; Gatasheh, M.K.; Khan, F.H. Exploring the Interaction of Myricetin with Human Alpha-2-Macroglobulin: Biophysical and in-Silico Analysis. J. Biol. Phys. 2023, 20, 29–48. [Google Scholar] [CrossRef]
- Siddiqui, T.; Zia, M.K.; Ali, S.S.; Ahsan, H.; Khan, F.H. Inactivation of Alpha-2-Macroglobulin by Photo-Illuminated Gallic Acid. J. Fluoresc. 2019, 29, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.A.; Sarwar, T.; Arif, H.; Ali, S.S.; Ahsan, H.; Tabish, M.; Khan, F.H. Spectroscopic and Thermodynamic Studies on Ferulic Acid—Alpha-2-Macroglobulin Interaction. J. Mol. Struct. 2017, 1144, 254–259. [Google Scholar] [CrossRef]
- Ali, S.S.; Zia, M.K.; Siddiqui, T.; Ahsan, H.; Khan, F.H. Influence of Ascorbic Acid on the Structure and Function of Alpha-2- Macroglobulin: Investigations Using Spectroscopic and Thermodynamic Techniques. Protein Pept. Lett. 2020, 27, 201–209. [Google Scholar] [CrossRef]
- Li, X.; Duan, H.; Song, Z.; Xu, R. Comparative Study on the Interaction between Fibrinogen and Flavonoids. J. Mol. Struct. 2022, 1262, 132963. [Google Scholar] [CrossRef]
- Suzuki, Y.; Isemura, M. Binding Interaction between (−)-Epigallocatechin Gallate Causes Impaired Spreading of Cancer Cells on Fibrinogen. Biomed. Res. 2013, 34, 301–308. [Google Scholar] [CrossRef]
- Shafreen, R.M.B.; Lakshmi, S.A.; Pandian, S.K.; Park, Y.S.; Kim, Y.M.; Paśko, P.; Deutsch, J.; Katrich, E.; Gorinstein, S. Unraveling the Antioxidant, Binding and Health-Protecting Properties of Phenolic Compounds of Beers with Main Human Serum Proteins: In Vitro and In Silico Approaches. Molecules 2020, 25, 4962. [Google Scholar] [CrossRef] [PubMed]
- Shafreen, R.M.B.; Lakshmi, S.A.; Pandian, S.K.; Kim, Y.-M.; Deutsch, J.; Katrich, E.; Gorinstein, S. In Vitro and In Silico Interaction Studies with Red Wine Polyphenols against Different Proteins from Human Serum. Molecules 2021, 26, 6686. [Google Scholar] [CrossRef] [PubMed]
- Sett, R.; Paul, B.K.; Guchhait, N. Deciphering the Fluorescence Quenching Mechanism of a Flavonoid Drug Following Interaction with Human Hemoglobin. J. Phys. Org. Chem. 2022, 35, e4307. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, S.; Shang, Y.; Ge, C.; Jiang, G. Binding of Dihydromyricetin to Human Hemoglobin: Fluorescence and Circular Dichroism Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Pahari, B.; Chakraborty, S.; Sengupta, B.; Chaudhuri, S.; Martin, W.; Taylor, J.; Henley, J.; Davis, D.; Biswas, P.K.; Sharma, A.K.; et al. Biophysical Characterization of Genistein in Its Natural Carrier Human Hemoglobin Using Spectroscopic and Computational Approaches. Food Nutr. Sci. 2013, 4, 83–92. [Google Scholar] [CrossRef]
- Sengupta, B.; Chakraborty, S.; Crawford, M.; Taylor, J.M.; Blackmon, L.E.; Biswas, P.K.; Kramer, W.H. Characterization of Diadzein–Hemoglobin Binding Using Optical Spectroscopy and Molecular Dynamics Simulations. Int. J. Biol. Macromol. 2012, 51, 250–258. [Google Scholar] [CrossRef]
- Das, D.; Sen, S.; Sen, K. Caffeine and Catechin towards Prevention of Drug Induced Oxidation of Hemoglobin: A Spectroscopic Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 232, 118167. [Google Scholar] [CrossRef]
- Ding, F.; Sun, Y.; Diao, J.-X.; Li, X.-N.; Yang, X.-L.; Sun, Y.; Zhang, L. Features of the Complex of Food Additive Hesperidin to Hemoglobin. J. Photochem. Photobiol. B Biol. 2012, 106, 53–60. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chaudhuri, S.; Pahari, B.; Taylor, J.; Sengupta, P.K.; Sengupta, B. A Critical Study on the Interactions of Hesperitin with Human Hemoglobin: Fluorescence Spectroscopic and Molecular Modeling Approach. J. Lumin. 2012, 132, 1522–1528. [Google Scholar] [CrossRef]
- Maity, S.; Chakraborty, S.; Chakraborti, A.S. Critical Insight into the Interaction of Naringenin with Human Haemoglobin: A Combined Spectroscopic and Computational Modeling Approaches. J. Mol. Struct. 2017, 1129, 256–262. [Google Scholar] [CrossRef]
- Yang, Z.; Cheng, X.; Li, X. Investigation of the Interaction between Human Hemoglobin and Five Antioxidants by Fluorescence Spectroscopy and Molecular Modeling. J. Iran. Chem. Soc. 2018, 15, 245–257. [Google Scholar] [CrossRef]
- Grigoryan, K.R.; Sargsyan, L.S. Denaturation of Hemoglobin in the Presence of Tannic Acid. Proc. Yerevan State Univ. 2014, 48, 23–27. [Google Scholar] [CrossRef]
- Sargsyan, L.C.; Grigoryan, K.R.; Markarian, S.A.; Burkholz, T.; Jacob, C. Fluorescence Characterization of Human Hemoglobin Binding with Tannic Acid. Chem. J. Armen. 2014, 67, 181–187. [Google Scholar]
- Basu, A.; Kumar, G.S. Interaction of the Dietary Pigment Curcumin with Hemoglobin: Energetics of the Complexation. Food Funct. 2014, 5, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, A.; Sahu, R.P. Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr. Cancer Ther. 2018, 17, 210–216. [Google Scholar] [CrossRef]
- Wieland, L.S.; Moffet, I.; Shade, S.; Emadi, A.; Knott, C.; Gorman, E.F.; D’Adamo, C. Risks and Benefits of Antioxidant Dietary Supplement Use during Cancer Treatment: Protocol for a Scoping Review. BMJ Open 2021, 11, e047200. [Google Scholar] [CrossRef]
- Ambrosone, C.B.; Zirpoli, G.R.; Hutson, A.D.; McCann, W.E.; McCann, S.E.; Barlow, W.E.; Kelly, K.M.; Cannioto, R.; Sucheston-Campbell, L.E.; Hershman, D.L.; et al. Dietary Supplement Use During Chemotherapy and Survival Outcomes of Patients With Breast Cancer Enrolled in a Cooperative Group Clinical Trial (SWOG S0221). J. Clin. Oncol. 2020, 38, 804–814. [Google Scholar] [CrossRef]
- Reddy, P.H. Amyloid Precursor Protein-Mediated Free Radicals and Oxidative Damage: Implications for the Development and Progression of Alzheimer’s Disease. J. Neurochem. 2006, 96, 1–13. [Google Scholar] [CrossRef]
- Bajaj, S.; Khan, A. Antioxidants and Diabetes. Indian J. Endocrinol. Metab. 2012, 16, 267. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef] [PubMed]
- Riaz Rajoka, M.S.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef]
- Gammoh, S.; Alhamad, M.N.; Rababah, T.; Ereifej, K.; Almajwal, A. Characterization of phenolic compounds extracted from wheat protein fractions using high-performance liquid chromatography/liquid chromatography mass spectrometry in relation to an-ti-allergenic, anti-oxidant, anti-hypertension, and anti-diabetic properties. Int. J. Food Prop. 2017, 20, 2383–2395. [Google Scholar] [CrossRef]
- Nagy, K.; Courtet-Compondu, M.-C.; Williamson, G.; Rezzi, S.; Kussmann, M.; Rytz, A. Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence. Food Chem. 2012, 132, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Mirzaee, F.; Hosseinzadeh, L.; Ashrafi-Kooshk, M.R.; Esmaeili, S.; Ghobad, S.; Farzaei, M.H.; Zad-Bari, M.R.; Khodarahmi, R. Diverse Effects of Different “Protein-Based” Vehicles on the Stability and Bioavailability of Curcumin: Spectroscopic Evaluation of the Antioxidant Activity and Cytotoxicity In Vitro. Protein Pept. Lett. 2019, 26, 132–147. [Google Scholar] [CrossRef]
- Ponomarenko, E.A.; Poverennaya, E.V.; Ilgisonis, E.V.; Pyatnitskiy, M.A.; Kopylov, A.T.; Zgoda, V.G.; Lisitsa, A.V.; Archakov, A.I. The Size of the Human Proteome: The Width and Depth. Int. J. Anal. Chem. 2016, 2016, 7436849. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedić, O.; Penezić, A.; Minić, S.; Radomirović, M.; Nikolić, M.; Ćirković Veličković, T.; Gligorijević, N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants 2023, 12, 815. https://doi.org/10.3390/antiox12040815
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants. 2023; 12(4):815. https://doi.org/10.3390/antiox12040815
Chicago/Turabian StyleNedić, Olgica, Ana Penezić, Simeon Minić, Mirjana Radomirović, Milan Nikolić, Tanja Ćirković Veličković, and Nikola Gligorijević. 2023. "Food Antioxidants and Their Interaction with Human Proteins" Antioxidants 12, no. 4: 815. https://doi.org/10.3390/antiox12040815
APA StyleNedić, O., Penezić, A., Minić, S., Radomirović, M., Nikolić, M., Ćirković Veličković, T., & Gligorijević, N. (2023). Food Antioxidants and Their Interaction with Human Proteins. Antioxidants, 12(4), 815. https://doi.org/10.3390/antiox12040815