Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Animals and Feeding Management
2.2. Sample Collection
2.3. Determination of Antioxidant Indexes in Each Tissue
2.4. Determination of Amino Acids and Fatty Acids in Muscle of Hu Sheep
2.5. Statistical Analysis
3. Results
3.1. Effects of Temperament on the Antioxidant Capacity of Muscles and Organs of Hu Sheep
3.1.1. Effects of Temperament on the Antioxidant Capacity of Hu Sheep Muscles
3.1.2. Effects of Temperament on the Antioxidant Capacity of Liver of Hu Sheep
3.1.3. Effects of Temperament on the Antioxidant Capacity of Spleen of Hu Sheep
3.1.4. Effects of Temperament on the Antioxidant Capacity of Kidney in Hu Sheep
3.1.5. Effects of Temperament on the Antioxidant Capacity of Pancreatic in Hu Sheep
3.1.6. Effects of Temperament on the Intestinal Antioxidant Capacity of Hu Sheep
3.2. Comparison of the Antioxidant Capacity of Different Organs of Hu Sheep
3.3. Effects of Temperament on Amino Acid and Fatty Acid Contents in Muscle Tissue of Hu Sheep
3.4. Correlation Analysis of Amino Acid and Fatty Acid Contents and Antioxidant Capacity in the Muscle of Hu Sheep
4. Discussion
4.1. Comparison of Antioxidant Capacity between Calm and Nervous Hu Sheep
4.2. Comparison of Amino Acids and Fatty Acids in Muscle of Hu Sheep with Different Temperaments
4.3. Relationship between Antioxidant Capacity and Amino Acid Content of Hu Sheep with Different Temperaments
4.4. Relationship between Antioxidant Capacity and Fatty Acid Content of Hu Sheep with Different Temperaments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burdick, N.C.; Randel, R.D.; Carroll, J.A.; Welsh, T.H. Interactions between Temperament, Stress, and Immune Function in Cattle. Int. J. Zool. 2011, 2011, 1687–8477. [Google Scholar] [CrossRef]
- Napolitano, F.; Serrapica, M.; Braghieri, A.; Claps, S.; Serrapica, F.; De, R. Can we monitor adaptation of juvenile goats to a new social environment through continuous qualitative behaviour assessment? PLoS ONE 2018, 13, e0200165. [Google Scholar] [CrossRef]
- Bickell, S.; Nowak, R.; Poindron, P. Challenge by a novel object does not impair the capacity of ewes and lambs selected for a nervous temperament to display early preference for each other. Anim. Prod. Sci. 2011, 51, 575–581. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, S.; Chen, J. Calm Hu ram lambs assigned by temperament classification are healthier and have better meat quality than nervous Hu ram lambs. Meat Sci. 2021, 175, 08436. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.J.; Dou, M.L.; Wang, X.Y. Relationship between postmortem muscle antioxidant capacity and meat quality. Chin. J. Anim. Nutr. 2018, 30, 1676–1680. [Google Scholar]
- Blache, D.; Bickell, S.L. Temperament and reproductive biology: Emotional reactivity and reproduction in sheep. Rev. Bras. Zootec. 2010, 39, 401–408. [Google Scholar] [CrossRef]
- The National Health and Family Planning Commission of the People’s Republic of China, the China Food and Drug Administration. Determination of Amino acids in Food, a National Standard for Food Safety: GB 5009.124–2016; China Standards Press: Beijing, China, 2016.
- The National Health and Family Planning Commission of the People’s Republic of China, the China Food and Drug Administration. Determination of Fatty Acids in Food, a National Standard for Food Safety: GB 5009.168–2016; China Standards Press: Beijing, China, 2016.
- Yin, J.; Han, H.; Liu, Z. Research progress of functional amino acids regulating oxidative stress in pigs. China Rev. Life Sci. 2019, 49, 193–201. [Google Scholar]
- Lu, Y.; Yu, X.; Lu, Z.Q.; Wang, M.Z. Straw tail food storage for fattening sheep slaughter performance and meat quality. J. Feed Ind. 2020, 9, 18–23. [Google Scholar]
- Xiang, Y.Z.; Da, C.C.; Mei, H.X. Plasma total antioxidant status and cognitive impairments in schizophrenia. Schizophr. Res. 2012, 139, 66–72. [Google Scholar]
- Zhen, H.L. Adjuvant treatment of constipation-type irritable bowel syndrome with Clostridium butyrate Enterococcus triple viable tablets and its effect on plasma 5-HT and oxidative stress in patients. J. Qiqihar Med. College 2020, 41, 435–436. [Google Scholar]
- Li, Z. Effect of emotional disclosure on lipid peroxidation and 5-HT in rat brain tissue. Anim. Sci. Anim. Med. 2001, 6, 20–21. [Google Scholar]
- Li, X.L.; Li, D.Y. The behavioral spectrum influenced by serotonin. Psychiatry 1999, 3, 172–175. [Google Scholar]
- Sutherland, M.A.; Rogers, A.R.; Verkerk, G.A. The effect of temperament and responsiveness towards humans on the behavior, physiology and milk production of multi-parous dairy cows in a familiar and novel milking environment. Physiol. Behav. 2012, 107, 329–337. [Google Scholar] [CrossRef]
- Han, Y.N.; Yang, C.Y.; Wang, Z.X. Effects of 5-HT on intestinal antioxidant function during stress diarrhea in weaned rats. J. Anim. Sci. Vet. Med. 2014, 45, 2067–2073. [Google Scholar]
- Wang, Y. Comparison of antioxidant capacity of liver between Red belly and pheasant. J. Tianshui Nor. Univ. 2012, 32, 17–19. [Google Scholar]
- Hu, X.X.; Zhao, L.H.; Zhang, Y.; Gao, S.F.; Zhou, Y.H.; Zhang, D.Y.; Liu, H.Z. Research progress of carnosine. Feed Ind. 2013, 34, 59–62. [Google Scholar]
- Larroque-Cardoso, P.; Camare, C.; Nadal-Wollbold, F. Elastin modification by 4-hydroxynonenal in hairless mice exposed to UV-A.Role in photoaging and actinic elastosis. J. Investig. Dermatol. 2015, 135, 1873–1881. [Google Scholar] [CrossRef]
- Yang, B.; Xia, X.L.; WU, W.X. Effects of Different levels of amino acids on Immune and Antioxidant Properties of Xiaoxiang chickens. Agric. J. Jiangxi Prov. 2011, 23, 158–160+171. [Google Scholar]
- Van, J.S. Formation of flavour compounds in the Maillard reaction. Biotechnol. Adv. 2006, 24, 230–233. [Google Scholar]
- Zhang, X.; Wang, Y.B.; Huang, Z.Q.; Su, Y.; Li, F.N.; Yin, J.D. Research progress on Nutrition regulation of Pork quality. Chin. J. Anim. Nutr. 2020, 32, 4555–4564. [Google Scholar]
- Han, L.Q.; Yang, G.Y.; Wang, Y.L. Study on free radical scavenging and antioxidant properties of carnosine. J. Henan. Univ. Technol. 2006, 27, 43–46. [Google Scholar]
- Wood, J.D.; Richardson, R.I.; Nute, G.R. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.W.; Huang, W.; Cao, Z.Y. Comparative analysis of nutritional constituents of Longissimus dorsi muscle in southern Yunnan Smallear pigs. Chin. Anim. Husb. Vet. Med. 2016, 43, 1743–1748. [Google Scholar]
- Zhang, N.; Deng, Y.; Li, F. Effects of weaning time and age on fatty acid composition in muscle of Hu sheep lambs. J. Anim. Nutr. 2016, 28, 2250–2259. [Google Scholar]
- Kim, M.J.; Parvin, R.; Mushtaq, M.M. Inflfluence of monochromatic light on quality traits, nutritional, fatty acid, and amino acid profifiles of broiler chicken meat. Poult. Sci. 2013, 92, 2844–2852. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Ma, Y.J. Effects of compound Chinese herbal additives on slaughter performance, meat Quality and rumen histomorphology of Hu Sheep. China Herbivore Sci. 2019, 39, 22–25. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Zhang, Y.Y.; Ren, H. Comparison of Amino acid and Fatty acid contents in muscle of Meishan Pig and its Bachsia hybrid Pig. Anim. Husb. Vet. Med. 2020, 52, 17–20. [Google Scholar]
- Koolhaas, J.M.; Korte, S.M.; Boer, S. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Wu, H.P.; Chen, X.Q.; Fu, M.Z. Character behavior of Boer goats. Northwest. Agric. J. 2008, 04, 10–13. [Google Scholar]
- Wang, J.S.; Yu, X.; Mao, J.Y. Comparison and correlation analysis of behavior, growth and slaughter performance between quiet and tense Hu sheep. J. Anim. Nutr. 2020, 32, 806–814. [Google Scholar]
- Gaskin, F.S.; Farr, S.A.; Banks, W.A. Ghre-lin-induced feeding is dependent on nitric oxide. Peptides 2003, 24, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Zhang, J.F. Treatment of pica in cattle with Pingwei Powder. Chin. J. Vet. Med. 2006, 2, 38–39. [Google Scholar]
- Vandermeerschen, D.; Paouay, R. Effects of continuous long-term intravenous infusion of long-chain fatty acidson feeding behaviour and blood components of adult sheep. Appetite 1984, 5, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Li, G.Q. Effects of amino acid supplement on exercise performance and antioxidant capacity of Yili horse. Chin. Feed 2020, 7, 61–64. [Google Scholar]
- Tian, Z.M.; Lu, H.J.; Deng, D. Effects of Lactobacillus reuteri LR1 on gene expression of porcine protein digestive enzyme, muscle antioxidant indexes and amino acid composition. Chin. Anim. Husb. Vet. Med. 2021, 48, 2045–2055. [Google Scholar]
- Choe, E.; Min, D.B. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.F.; Kong, X.F. Effects of Dietary Arginine and alanine on Quality, Amino Acid Composition and Antioxidant Function of Huanjiangxiang Pork. Chin. J. Anim. Nutr. 2012, 24, 528–533. [Google Scholar]
- Wu, G.; Bazer, F.W.; Davis, T.A. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009, 37, 153–168. [Google Scholar] [CrossRef]
- Huang, C.Z.; Yu, Q.N.; Tao, L.L. Effects of oxidative stress on weaned piglets and regulation of amino acid on oxidative stress. Raise Pigs 2013, 1, 49–51. [Google Scholar]
- Kato, N.; Sato, S.; Yamanaka, A. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar] [CrossRef]
- Cao, L.P.; Zang, C.J.; Xu, X.J. Effects of Dietary Amino acids on exercise performance, Plasma Antioxidant Capacity and Metabolic indices of Yanqi Horse. Chin. Anim. Husb. Vet. Med. 2015, 42, 896–902. [Google Scholar]
- Li, X. Study on the Combined Antioxidant Effect of Amino Acids and Phenolic Compounds. Master Dissertation, Jilin University, Changchun, China, 2017. [Google Scholar]
- Liang, M.C.; Yang, L. Mechanism of antioxidant action of arginine. Bioinformatics. 2020, 18, 201–205. [Google Scholar]
- Dong, M.Y.; Wang, Q.Y.; Liu, K.M. Structure-activity relationship of free radical scavenging peptides calculated by quantum chemistry. Food Ind. Sci. Tec. 2018, 39, 21–26. [Google Scholar]
- Guo, T.T. Coordination between Aerobic Glycolysis and Glutamate Metabolism in Glioma Cells. Master’s Thesis, Shanxi University, Taiyuan, China, 2020. [Google Scholar]
- Hwang, L.G.; Kim, H.Y.; Woo, K.S. Biological activities of Maillard reaction products (MRPs) in a sugar-amino acid model system. Food Chem. 2011, 126, 221–227. [Google Scholar] [CrossRef]
- Wang, L.L. Construction of a Novel Fluorescent Probe for Detection of Intracellular Reactive Oxygen Species based on Antioxidant Amino Acids and Peptides. Master’s Thesis, Shandong Normal University, Jinan, China, 2010. [Google Scholar]
- Baymyn, J. Effects of Different Fatty Acids on Lipid Metabolism and Endoplasmic Reticulum Stress in Hepatocytes and Its Mechanisms. Master’s Thesis, Chongqing Medical University, Chongqing, China, 2008. [Google Scholar]
- Dai, S.H. Study on Oxidative Stress Induced by Palmitic Acid in Dairy Cows and Its Mechanism. Master Dissertation, Northwest A&F University, Xianyang, China, 2018. [Google Scholar]
- Xu, W.; Guo, Y.B.; Li, X. Palmitic acid activates inflammatory bodies through oxidative stress response of hepatocytes. J. South. Med. Univ. 2016, 36, 655–659. [Google Scholar]
- Li, Z.; Chen, S.N.; Ge, C.C. Effects of heat stress on lactation ability and milk composition of milk fat fatty acid composition of Holstein dairy cows. Chin. Dai. Ind. 2020, 48, 19–21+25. [Google Scholar]
- Luo, H.G.; Chen, J.X.; Yue, G.X. Metabolic regulation of Xiaoyao Powder in chronic bondage stress rats. Chin. J. Int.Tra. Wes. Med. 2008, 28, 1112–1117. [Google Scholar]
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
SOD, U/mL | 263.63 | 211.07 | 69.76 | 0.506 |
MDA, mmol/mL | 1.19 | 2.11 * | 0.20 | 0.019 |
GSH-Px, U/mL | 231.78 | 240.26 | 110.20 | 0.943 |
CAT, U/mL | 2.83 | 3.61 | 1.06 | 0.518 |
T-AOC, U/mL | 0.60 | 0.65 | 0.05 | 0.444 |
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
SOD, U/mL | 2 049.50 | 2 018.53 | 241.88 | 0.906 |
MDA, mmol/mL | 1.55 | 1.76 | 0.66 | 0.771 |
GSH-Px, U/mL | 160.34 * | 66.41 | 29.44 | 0.050 |
CAT, U/mL | 113.25 | 114.45 | 10.83 | 0.919 |
T-AOC, U/mL | 0.03 | 0.06 | 0.01 | 0.205 |
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
SOD, U/mL | 165.85 | 65.05 | 92.81 | 0.473 |
MDA, mmol/mL | 3.19 | 1.85 | 1.73 | 0.580 |
GSH-Px, U/mL | 1 007.75 | 837.88 | 204.75 | 0.453 |
CAT, U/mL | 2.20 | 2.93 | 1.04 | 0.598 |
T-AOC, U/mL | 0.03 | 0.03 | 0.20 | 1.000 |
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
SOD, U/mL | 751.65 | 917.45 | 80.53 | 0.132 |
MDA, mmol/mL | 1.30 | 2.35 | 0.90 | 0.325 |
GSH-Px, U/mL | 723.60 | 529.55 | 242.11 | 0.563 |
CAT, U/mL | 28.76 | 26.17 | 8.54 | 0.811 |
T-AOC, U/mL | 0.02 | 0.01 | 0.00 | 0.219 |
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
SOD, U/mL | 468.54 | 404.71 | 58.89 | 0.470 |
MDA, mmol/mL | 4.56 | 2.98 | 0.52 | 0.202 |
GSH-Px, U/mL | 214.12 | 217.43 | 33.07 | 0.927 |
CAT, U/mL | 3.74 | 4.46 | 0.82 | 0.445 |
T-AOC, U/mL | 0.05 | 0.04 | 0.01 | 0.205 |
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
SOD, U/mL | 231.14 | 518.17 ** | 11.35 | <0.01 |
MDA, mmol/mL | 1.01 | 2.73 ** | 0.23 | 0.005 |
GSH-Px, U/mL | 207.49 | 425.71 | 75.25 | 0.062 |
CAT, U/mL | 7.25 | 12.94 | 4.80 | 0.321 |
T-AOC, U/mL | 0.06 | 0.04 | 0.02 | 0.196 |
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
Glu | 3.24 ** | 2.79 | 0.02 | <0.01 |
Ser | 0.82 * | 0.75 | 0.02 | 0.016 |
Gly | 0.94 | 0.53 | 0.43 | 0.517 |
Ala | 1.23 | 1.22 | 0.02 | 0.799 |
Ile | 0.98 ** | 0.86 | 0.01 | 0.003 |
Asp | 1.99 | 1.86 | 0.09 | 0.252 |
Thr | 1.01 | 0.99 | 0.03 | 0.576 |
Lys | 1.96 | 1.87 | 0.10 | 0.443 |
Arg | 1.38 | 1.25 | 0.04 | 0.062 |
Item | Calm Sheep | Nervous Sheep | SEM | p Value |
---|---|---|---|---|
SFA | ||||
C12:0 | 0.0032 | 0.0063 * | 0.0010 | 0.047 |
C13:0 | 0.0015 | 0.0031 * | 0.0005 | 0.051 |
C14:0 | 0.07 | 0.24 ** | 0.01 | 0.001 |
C15:0 | 0.0174 | 0.0360 | 0.0075 | 0.088 |
C16:0 | 0.39 | 0.85 ** | 0.05 | 0.002 |
C18:0 | 0.52 | 0.68 | 0.06 | 0.075 |
MUFA | ||||
C14:1 | 0.0050 | 0.0076 | 0.0020 | 0.294 |
C16:1 | 0.08 | 0.13 | 0.04 | 0.290 |
C18:1n9c | 1.84 | 2.62 | 0.79 | 0.397 |
PUFA | ||||
C18:2n6c | 0.26 | 0.28 | 0.03 | 0.597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, Y.; Wang, J.; Jin, H.; Qian, S.; Chen, P.; Wang, M.; Chen, N.; Ding, L. Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep. Antioxidants 2023, 12, 459. https://doi.org/10.3390/antiox12020459
Zhang J, Zhang Y, Wang J, Jin H, Qian S, Chen P, Wang M, Chen N, Ding L. Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep. Antioxidants. 2023; 12(2):459. https://doi.org/10.3390/antiox12020459
Chicago/Turabian StyleZhang, Jinying, Yifan Zhang, Jiasheng Wang, Hengyu Jin, Shuhan Qian, Peigen Chen, Mengzhi Wang, Ning Chen, and Luoyang Ding. 2023. "Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep" Antioxidants 12, no. 2: 459. https://doi.org/10.3390/antiox12020459
APA StyleZhang, J., Zhang, Y., Wang, J., Jin, H., Qian, S., Chen, P., Wang, M., Chen, N., & Ding, L. (2023). Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep. Antioxidants, 12(2), 459. https://doi.org/10.3390/antiox12020459