Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Preparation of Extracts
2.2. Total Phenolic and Flavonoid Content
2.3. LC-HRMS/MS Analysis
2.4. Antioxidant and Enzyme Inhibitory Activity
2.5. Anti-Mycobacterium Activity
2.5.1. Inoculum Preparation
2.5.2. MIC Determination
2.6. Data Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoid Content
3.2. LC-HRMS/MS Analysis
3.3. Antioxidant Activity
3.4. Enzyme Inhibitory Activity
3.5. Anti-Mycobacterium Activity
3.6. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [PubMed]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Com. 2019, 14, 1934578X19850354. [Google Scholar]
- Pellicer, J.; Garcia, S.; Canela, M.; Garnatje, T.; Korobkov, A.A.; Twibell, J.; Vallès, J. Genome size dynamics in Artemisia L. (Asteraceae): Following the track of polyploidy. Plant Biol. 2010, 12, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Abbasi, B.H.; Ahmad, N.; Khan, H.; Ali, G.S. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia–current trends. Crit. Rev. Biotechnol. 2017, 37, 833–851. [Google Scholar] [CrossRef]
- Turi, C.E.; Shipley, P.R.; Murch, S.J. North American Artemisia species from the subgenus Tridentatae (Sagebrush): A phytochemical, botanical and pharmacological review. Phytochemistry 2014, 98, 9–26. [Google Scholar] [CrossRef]
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus Artemisia. Arch. Pharm. Res. 2021, 44, 439–474. [Google Scholar] [CrossRef]
- Taleghani, A.; Emami, S.A.; Tayarani-Najaran, Z. Artemisia: A promising plant for the treatment of cancer. Bioorg. Med. Chem. 2020, 28, 115180. [Google Scholar] [CrossRef]
- Trendafilova, A.; Moujir, L.M.; Sousa, P.M.; Seca, A.M. Research advances on health effects of edible Artemisia species and some sesquiterpene lactones constituents. Foods 2020, 10, 65. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singh, P. The genus Artemisia: A 2012–2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines 2017, 4, 68. [Google Scholar] [CrossRef]
- Sârbu, I.; Ştefan, N.; Oprea, A. Plante Vasculare din România: Determinator Ilustrat de Teren; Editura Victor B Victor: Bucuresti, Romania, 2013; pp. 810–816. [Google Scholar]
- Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L.—Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants 2020, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Bordean, M.-E.; Muste, S.; Marțiș, G.S.; Mureșan, V.; Buican, B.-C. Health effects of wormwood (Artemisia absinthium L.): From antioxidant to nutraceutical. J. Agroalim. Proc. Technol. 2021, 27, 211–218. [Google Scholar]
- Batiha, G.E.-S.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A. Bioactive compounds, pharmacological actions, and pharmacokinetics of wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cao, S.; Qiu, F.; Zhang, B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. Ther. 2020, 216, 107650. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Su, X.-Z. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti Infect. Ther. 2009, 7, 999–1013. [Google Scholar] [CrossRef]
- Ekiert, H.; Pajor, J.; Klin, P.; Rzepiela, A.; Ślesak, H.; Szopa, A. Significance of Artemisia vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules 2020, 25, 4415. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Lalarizo Rakoto, M.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P. Artemisia annua, a traditional plant brought to light. Int. J. Mol. Sci. 2020, 21, 4986. [Google Scholar] [CrossRef]
- Efferth, T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2017; pp. 65–83. [Google Scholar]
- Sadiq, A.; Hayat, M.Q.; Ashraf, M. Ethnopharmacology of Artemisia annua L.: A review. In Artemisia Annua-Pharmacology and Biotechnology; Aftab, T., Ferreira, J.F.S., Khan, M.M.A., Naeem, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–25. [Google Scholar]
- Willcox, M. Artemisia species: From traditional medicines to modern antimalarials—And back again. J. Altern. Complement. Med. 2009, 15, 101–109. [Google Scholar] [CrossRef]
- Adekenov, S. Chemical study of Artemisia austriaca Jacq. Int. J. Biol. Chem. 2021, 14, 156–163. [Google Scholar] [CrossRef]
- Costa, R.; De Fina, M.R.; Valentino, M.R.; Rustaiyan, A.; Dugo, P.; Dugo, G.; Mondello, L. An investigation on the volatile composition of some Artemisia species from Iran. Flavour Fragr. J. 2009, 24, 75–82. [Google Scholar] [CrossRef]
- Kikhanova, Z.S.; Iskakova, Z.B.; Dzhalmakhanbetova, R.; Seilkhanov, T.; Ross, S.; Suleimen, E. Constituents of Artemisia austriaca and their biological activity. Chem. Nat. Compd. 2013, 49, 967–968. [Google Scholar] [CrossRef]
- Cubukcu, B.; Melikoğlu, G. Flavonoids of Artemisia austriaca. Planta Med. 1995, 61, 488. [Google Scholar] [CrossRef] [PubMed]
- Valant-Vetschera, K.M.; Wollenweber, E. Flavonoid aglycones from the leaf surfaces of some Artemisia spp. (Compositae-Anthemideae). Z. Naturforsch. C 1995, 50, 353–357. [Google Scholar] [CrossRef]
- Ivashchenko, I. Fungicidal properties of artemisia aromatic plants towards Fusarium oxysporum. Ukr. J. Ecol. 2015, 5, 44. [Google Scholar]
- Mercan, U.; Öner, A.C.; Öntürk, H.; Cengiz, N.; Erten, R.; Özgökç, F.; Özbek, H. Investigation of acute liver toxicity and anti-inflammatory effects of Artemisia austriaca J. Jacq. Pharmacologyonline 2008, 1, 131–138. [Google Scholar]
- Altunkaya, A.; Yıldırım, B.; Ekici, K.; Terzioğlu, Ö. Determining essential oil composition, antibacterial and antioxidant activity of water wormwood extracts. GIDA 2014, 39, 17–24. [Google Scholar]
- Smirnova, G.; Samoilova, Z.; Muzyka, N.; Oktyabrsky, O. Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli. J. Appl. Microbiol. 2012, 113, 192–199. [Google Scholar] [CrossRef]
- Yiğit, D.; Yiğit, N.; Özgen, U. An investigation on the anticandidal activity of some traditional medicinal plants in Turkey. Mycoses 2009, 52, 135–140. [Google Scholar] [CrossRef]
- Kiplimo, J.J.; Chichira, D.; Kaiyonia, B.; Yugi, J.; Kebenei, S.J. Chemical composition and larvicidal activity of essential oil of Artemisia pontica. J. Afr. Res. Dev. 2016, 1, 1–7. [Google Scholar]
- Bos, R.; Stojanova, A.S.; Woerdenbag, H.J.; Koulman, A.; Quax, W.J. Volatile components of the aerial parts of Artemisia pontica L. grown in Bulgaria. Flav. Fragr. J. 2005, 20, 145–148. [Google Scholar] [CrossRef]
- Talzhanov, N.; Sadyrbekov, D.; Smagulova, F.; Mukanov, R.; Raldugin, V.; Shakirov, M.; Tkachev, A.; Atazhanova, G.; Tuleuov, B.; Adekenov, S. Components of Artemisia pontica. Chem. Nat. Compd. 2005, 41, 178–181. [Google Scholar] [CrossRef]
- Ivanescu, B.; Corciova, A.; Vlase, L.; Gheldiu, A.M.; Miron, A.; Ababei, D.C.; Bild, V. Analgesic and anti-inflammatory activity of Artemisia extracts on animal models of nociception. Balneo PRM Res. J. 2021, 12, 34–39. [Google Scholar] [CrossRef]
- Nikolova, M.; Gussev, C.; Nguyen, T. Evaluation of the Antioxidant action and flavonoid composition of Artemisia species extracts. Biotechnol. Biotechnol. Equip. 2010, 24, 101–103. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical compositions and insectisidal activity of essential oils of three plants Artemisia sp: Artemisia herba-alba, Artemisia absinthium and Artemisia pontica (Morocco). Elec. J. Env. Agricult. Food Chem. 2009, 8, 1202–1211. [Google Scholar]
- Bisset, N.G.; Wichtl, M. Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis; Medpharm GmbH Scientific Publishers Stuttgart, CRC Press: Boca Raton, FL, USA, 1994; pp. 88–89. [Google Scholar]
- Moacă, E.-A.; Pavel, I.Z.; Danciu, C.; Crăiniceanu, Z.; Minda, D.; Ardelean, F.; Antal, D.S.; Ghiulai, R.; Cioca, A.; Derban, M. Romanian wormwood (Artemisia absinthium L.): Physicochemical and nutraceutical screening. Molecules 2019, 24, 3087. [Google Scholar] [CrossRef]
- Marinas, I.C.; Oprea, E.; Chifiriuc, M.C.; Badea, I.A.; Buleandra, M.; Lazar, V. Chemical composition and antipathogenic activity of Artemisia annua essential oil from Romania. Chem. Biodiv. 2015, 12, 1554–1564. [Google Scholar] [CrossRef] [PubMed]
- Badea, M.L.; Delian, E. In vitro antifungal activity of the essential oils from Artemisia spp. L. on Sclerotinia sclerotiorum. Rom. Biotechnol. Lett. 2014, 19, 9345–9352. [Google Scholar]
- Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem. Cent. J. 2014, 8, 6. [Google Scholar] [CrossRef]
- Craciunescu, O.; Constantin, D.; Gaspar, A.; Toma, L.; Utoiu, E.; Moldovan, L. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem. Cent. J. 2012, 6, 97. [Google Scholar] [CrossRef]
- Stan, R.L.; Sevastre, B.; Ionescu, C.; Olah, N.K.; Vicaș, L.G.; Páll, E.; Moisa, C.; Hanganu, D.; Sevastre-Berghian, A.C.; Andrei, S. Artemisia annua L. extract: A new phytoproduct with sod-like and antitumour activity. Farmacia 2020, 68, 812–821. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Ali, M.; Iqbal, R.; Safdar, M.; Murtaza, S.; Mustafa, M.; Sajjad, M.; Bukhari, S.A.; Huma, T. Antioxidant and antibacterial activities of Artemisia absinthium and Citrus paradisi extracts repress viability of aggressive liver cancer cell line. Mol. Biol. Rep. 2021, 48, 7703–7710. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Ma, J.; Xing, Y.; Xu, Y.; Jin, X.; Yan, S.; Shi, B. Artemisia annua L. aqueous extract as an alternative to antibiotics improving growth performance and antioxidant function in broilers. Ital. J. Anim. Sci. 2020, 19, 399–409. [Google Scholar] [CrossRef]
- Larrazábal-Fuentes, M.J.; Fernández-Galleguillos, C.; Palma-Ramírez, J.; Romero-Parra, J.; Sepúlveda, K.; Galetovic, A.; González, J.; Paredes, A.; Bórquez, J.; Simirgiotis, M.J. Chemical profiling, antioxidant, anticholinesterase, and antiprotozoal potentials of Artemisia copa Phil. (Asteraceae). Front. Pharmacol. 2020, 11, 1911. [Google Scholar] [CrossRef]
- Jakovljević, M.R.; Grujičić, D.; Vukajlović, J.T.; Marković, A.; Milutinović, M.; Stanković, M.; Vuković, N.; Vukić, M.; Milošević-Djordjević, O. In vitro study of genotoxic and cytotoxic activities of methanol extracts of Artemisia vulgaris L. and Artemisia alba Turra. S. Afr. J. Bot. 2020, 132, 117–126. [Google Scholar] [CrossRef]
- Xiao, J.-Q.; Liu, W.-Y.; Sun, H.-p.; Li, W.; Koike, K.; Kikuchi, T.; Yamada, T.; Li, D.; Feng, F.; Zhang, J. Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi. Bioorg. Chem. 2019, 92, 103268. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Suberu, J.; Gromski, P.S.; Nordon, A.; Lapkin, A. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar. J. Pharm. Biomed. Anal. 2016, 117, 522–531. [Google Scholar] [CrossRef]
- Singh, P.; Bajpai, V.; Khandelwal, N.; Varshney, S.; Gaikwad, A.N.; Srivastava, M.; Singh, B.; Kumar, B. Determination of bioactive compounds of Artemisia Spp. plant extracts by LC–MS/MS technique and their in-vitro anti-adipogenic activity screening. J. Pharm. Biomed. Anal. 2021, 193, 113707. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.E.-H.H.; El-Sayed, M.; Hegazy, M.E.; Helaly, S.E.; Esmail, A.M.; Mohamed, N.S. Chemical constituents and biological activities of Artemisia herba-alba. Rec. Nat. Prod. 2010, 4, 1–25. [Google Scholar]
- Melguizo-Melguizo, D.; Diaz-de-Cerio, E.; Quirantes-Piné, R.; Švarc-Gajić, J.; Segura-Carretero, A. The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J. Funct. Foods 2014, 10, 192–200. [Google Scholar] [CrossRef]
- Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.-r.; Guo, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Bourgou, S.; Rebey, I.B.; Mkadmini, K.; Isoda, H.; Ksouri, R.; Ksouri, W.M. LC-ESI-TOF-MS and GC-MS profiling of Artemisia herba-alba and evaluation of its bioactive properties. Food Res. Int. 2017, 99, 702–712. [Google Scholar] [CrossRef]
- Nagy, C.; Pesti, A.; Andrási, M.; Vasas, G.; Gáspár, A. Determination of artemisinin and its analogs in Artemisia annua extracts by capillary electrophoresis–mass spectrometry. J. Pharm. Biomed. Anal. 2021, 202, 114131. [Google Scholar] [CrossRef]
- Bajomo, E.M.; Aing, M.S.; Ford, L.S.; Niemeyer, E.D. Chemotyping of commercially available basil (Ocimum basilicum L.) varieties: Cultivar and morphotype influence phenolic acid composition and antioxidant properties. NFS J. 2022, 26, 1–9. [Google Scholar] [CrossRef]
- Zannou, O.; Pashazadeh, H.; Ibrahim, S.A.; Koca, I.; Galanakis, C.M. Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESs) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction. Arab. J. Chem. 2022, 15, 103752. [Google Scholar] [CrossRef]
- Dargham, M.B.; Boumosleh, J.M.; Farhat, A.; Abdelkhalek, S.; Bou-Maroun, E.; El Hosry, L. Antioxidant and anti-diabetic activities in commercial and homemade pomegranate molasses in Lebanon. Food Biosci. 2022, 46, 101540. [Google Scholar] [CrossRef]
- Chen, M.; He, X.; Sun, H.; Sun, Y.; Li, L.; Zhu, J.; Xia, G.; Guo, X.; Zang, H. Phytochemical analysis, UPLC-ESI-Orbitrap-MS analysis, biological activity, and toxicity of extracts from Tripleurospermum limosum (Maxim.) Pobed. Arab. J. Chem. 2022, 15, 103797. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Bouasla, I.; Hamel, T.; Barour, C.; Bouasla, A.; Hachouf, M.; Bouguerra, O.M.; Messarah, M. Evaluation of solvent influence on phytochemical content and antioxidant activities of two Algerian endemic taxa: Stachys marrubiifolia Viv. and Lamium flexuosum Ten. (Lamiaceae). Eur. J. Integr. Med. 2021, 42, 101267. [Google Scholar] [CrossRef]
- Rocchetti, G.; Miras-Moreno, M.B.; Zengin, G.; Senkardes, I.; Sadeer, N.B.; Mahomoodally, M.F.; Lucini, L. UHPLC-QTOF-MS phytochemical profiling and in vitro biological properties of Rhamnus petiolaris (Rhamnaceae). Ind. Crops Prod. 2019, 142, 111856. [Google Scholar] [CrossRef]
- Minda, D.; Ghiulai, R.; Banciu, C.D.; Pavel, I.Z.; Danciu, C.; Racoviceanu, R.; Soica, C.; Budu, O.D.; Muntean, D.; Diaconeasa, Z. Phytochemical Profile, Antioxidant and Wound Healing Potential of Three Artemisia Species: In Vitro and In Ovo Evaluation. Appl. Sci. 2022, 12, 1359. [Google Scholar] [CrossRef]
- Kamarauskaite, J.; Baniene, R.; Raudone, L.; Vilkickyte, G.; Vainoriene, R.; Motiekaityte, V.; Trumbeckaite, S. Antioxidant and Mitochondria-Targeted Activity of Caffeoylquinic-Acid-Rich Fractions of Wormwood (Artemisia absinthium L.) and Silver Wormwood (Artemisia ludoviciana Nutt.). Antioxidants 2021, 10, 1405. [Google Scholar] [CrossRef]
- Ferrante, C.; Zengin, G.; Menghini, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Recinella, L.; Chiavaroli, A.; Leone, S.; Brunetti, L. Qualitative Fingerprint Analysis and Multidirectional Assessment of Different Crude Extracts and Essential Oil from Wild Artemisia santonicum L. Processes 2019, 7, 522. [Google Scholar] [CrossRef]
- Kooltheat, N.; Chujit, K.; Nuangnong, K.; Nokkaew, N.; Bunluepuech, K.; Yamasaki, K.; Chatatikun, M. Artemisia lactiflora Extracts Prevent Inflammatory Responses of Human Macrophages Stimulated with Charcoal Pyrolysis Smoke. J. Evid. Based Integr. Med. 2021, 26, 2515690X211068837. [Google Scholar] [CrossRef]
- Dahal, P.; Bista, G.; Dahal, P. Phytochemical screening, antioxidant, antibacterial, and antidandruff activities of leaf extract of Artemisia indica. J. Rep. Pharm. Sci. 2021, 10, 231. [Google Scholar] [CrossRef]
- Nowsheen, T.; Hazrat, A.; Shah, S.W.A.; Bibi, S.; Begum, A.; Mukhtiar, M.; Khan, A. Phytochemical, antibacterial and antioxidant screening of Artemisia santolinifolia various parts. J. Biosci. 2021, 37, e37061. [Google Scholar] [CrossRef]
- Romeilah, R.M.; El-Beltagi, H.S.; Shalaby, E.A.; Younes, K.M.; Hani, E.; Rajendrasozhan, S.; Mohamed, H. Antioxidant and cytotoxic activities of Artemisia monosperma L. and Tamarix aphylla L. essential oils. Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 12233. [Google Scholar] [CrossRef]
- Taqui, R.; Debnath, M.; Ahmed, S.; Ghosh, A. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease. Phytomed. Plus 2022, 2, 100184. [Google Scholar] [CrossRef]
- Ayua, E.O.; Nkhata, S.G.; Namaumbo, S.J.; Kamau, E.H.; Ngoma, T.N.; Aduol, K.O. Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems. Heliyon 2021, 7, e06245. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Khan, S.T.; Zargaham, M.K.; Khan, A.U.; Khan, S.; Hussain, A.; Uddin, J.; Khan, A.; Al-Harrasi, A. Potential therapeutic natural products against Alzheimer’s disease with Reference of Acetylcholinesterase. Biomed. Pharmacother. 2021, 139, 111609. [Google Scholar] [CrossRef]
- Rauf, A.; Jehan, N. Natural products as a potential enzyme inhibitors from medicinal plants. In Enzyme Inhibitors and Activators; Senturk, M., Ed.; IntechOpen Limited: London, UK, 2017; pp. 165–177. [Google Scholar]
- El-Askary, H.; Salem, H.H.; Abdel Motaal, A. Potential Mechanisms Involved in the Protective Effect of Dicaffeoylquinic Acids from Artemisia annua L. Leaves against Diabetes and Its Complications. Molecules 2022, 27, 857. [Google Scholar] [CrossRef]
- Bhat, S.H.; Ullah, M.F.; Abu-Duhier, F.M. Bioactive extract of Artemisia judaica causes in vitro inhibition of dipeptidyl peptidase IV and pancreatic/intestinal enzymes of the carbohydrate absorption cascade: Implication for anti-diabetic new molecular entities (NMEs). Orient. Pharm. Exp. Med. 2019, 19, 71–80. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, I.; Adikhari, A.; Ali, N.; Ayub, T.; Ul-Haq, Z.; Ali Shah, S.W. Isolation of flavonoides from Artemisia macrocephala anticholinesterase activity: Isolation, characterization and its in vitro anticholinesterse activity supported by molecular docking. Pak. J. Pharm. Sci. 2018, 31, 1347–1354. [Google Scholar] [PubMed]
- Zengin, G.; Mollica, A.; Aktumsek, A.; Picot, C.M.N.; Mahomoodally, M.F. In vitro and in silico insights of Cupressus sempervirens, Artemisia absinthium and Lippia triphylla: Bridging traditional knowledge and scientific validation. Eur. J. Integr. Med. 2017, 12, 135–141. [Google Scholar] [CrossRef]
- Raza, M.A.; Danish, M.; Mushtaq, M.; Sumrra, S.H.; Saqib, Z.; Rehman, S.U. Phenolic profiling and therapeutic potential of local flora of Azad Kashmir; In vitro enzyme inhibition and antioxidant. Open Chem. 2017, 15, 371–379. [Google Scholar] [CrossRef][Green Version]
- Allué-Guardia, A.; García, J.I.; Torrelles, J.B. Evolution of drug-resistant Mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front. Microbiol. 2021, 12, 612675. [Google Scholar] [CrossRef]
- Choi, W.H. Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents. J. Clin. Med. 2017, 6, 30. [Google Scholar] [CrossRef]
- Zheng, H.; Colvin, C.J.; Johnson, B.K.; Kirchhoff, P.D.; Wilson, M.; Jorgensen-Muga, K.; Larsen, S.D.; Abramovitch, R.B. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat. Chem. Biol. 2017, 13, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.C.; Zhang, T.; Williams, J.T.; Abramovitch, R.B.; Weathers, P.J.; Shell, S.S. Artemisia annua and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. J. Ethnopharmcol. 2020, 262, 113191. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Lima, M.; de Medeiros, A.A.; Silva, K.S.; Cardoso, G.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017, 27, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.; Baptista, R.; Fazakerley, D.; Whatley, K.E.; Hoffmann, K.F.; Shen, J.; Mur, L.A. The anti-mycobacterial activity of Artemisia annua L. is based on deoxyartemisinin and artemisinic acid. bioRxiv 2020. [Google Scholar] [CrossRef]
- Stavri, M.; Mathew, K.; Gordon, A.; Shnyder, S.D.; Falconer, R.A.; Gibbons, S. Guaianolide sesquiterpenes from Pulicaria crispa (Forssk.) oliv. Phytochemistry 2008, 69, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Franzblau, S.G.; Fischer, N.H. Antimycobacterial plant terpenoids. Planta Med. 2001, 67, 685–694. [Google Scholar] [CrossRef]
Artemisia Species | Part | Extraction Solvent | Yield (%) | TPC (mg GAE/g) | TFC (mg RE/g) |
---|---|---|---|---|---|
A. absinthium L. | Roots | MeOH | 15.66 | 19.77 ± 0.20 f | 2.35 ± 0.04 e |
CHCl3 | 5.79 | 5.78 ± 0.10 g | 0.37 ± 0.02 g | ||
Aerial parts | MeOH | 18.75 | 53.38 ± 0.16 d | 28.74 ± 0.51 d | |
CHCl3 | 9.47 | 18.28 ± 0.15 i | 24.25 ± 1.28 e | ||
A. annua L. | Roots | MeOH | 2.19 | 76.35 ± 0.75 a | 10.41 ± 0.27 a |
CHCl3 | 0.68 | 26.10 ± 0.10 d | 1.41 ± 0.07 f | ||
Aerial parts | MeOH | 17.57 | 60.00 ± 0.24 c | 47.74 ± 0.79 a | |
CHCl3 | 10.69 | 25.27 ± 0.20 g | 35.36 ± 0.30 c | ||
A. austriaca Jacq. | Roots | MeOH | 11.73 | 41.68 ± 0.25 c | 4.65 ± 0.20 c |
CHCl3 | 1.57 | 26.59 ± 0.23 d | 2.37 ± 0.01 e | ||
Aerial parts | MeOH | 13.88 | 48.42 ± 0.49 e | 40.30 ± 0.94 b | |
CHCl3 | 8.12 | 24.50 ± 0.14 g | 32.89 ± 1.58 c | ||
A. pontica L. | Roots | MeOH | 6.55 | 65.65 ± 0.46 b | 6.99 ± 0.17 b |
CHCl3 | 1.16 | 23.59 ± 0.58 e | 2.46 ± 0.03 e | ||
Aerial parts | MeOH | 22.95 | 65.06 ± 0.59 b | 33.01 ± 0.43 c | |
CHCl3 | 9.46 | 22.65 ± 0.18 h | 26.85 ± 1.02 de | ||
A. vulgaris L. | Roots | MeOH | 12.45 | 27.36 ± 0.99 d | 3.29 ± 0.12 d |
CHCl3 | 1.03 | 22.21 ± 0.82 e | 1.13 ± 0.17 f | ||
Aerial parts | MeOH | 15.67 | 106.34 ± 0.61 a | 39.39 ± 0.86 b | |
CHCl3 | 5.86 | 37.62 ± 0.09 f | 11.02 ± 0.78 f |
No. | Proposed Identity | Class | TR (min) | HRMS | Exp. (m/z) | Calcd. (m/z) | Δ (ppm) | HRMS/MS (m/z) |
---|---|---|---|---|---|---|---|---|
1 | Quinic acid * | Organic acid | 1.83 | [M − H]− | 191.0557 | 191.0561 | 2.14 | 173.0381, 127.0340, 111.0384 |
2 | Sucrose | Sugar | 1.86 | [M − H]− | 341.1097 | 341.1089 | −2.24 | 179.0571, 119.0312 |
3 | Dihydroxybenzoic acid hexoside | Phenolic acid | 7.58 | [M − H]− | 315.0706 | 315.0722 | 4.92 | 153.0105, 109.0215 |
4 | Hydroxybenzoic acid * | Phenolic acid | 9.98 | [M − H]− | 137.0241 | 137.0244 | 2.30 | 109.0358 |
5 | Neochlorogenic acid | Phenolic acid | 10.27 | [M − H]− | 353.0893 | 353.0878 | −4.22 | 191.0484, 179.0252, 135.0370 |
6 | Esculetin-O-hexoside I | Coumarin | 10.91 | [M − H]− | 339.0715 | 339.0722 | 1.93 | 177.0233, 149.0157, 133.0217, 105.0327 |
7 | Esculetin | Coumarin | 14.41 | [M − H]− | 177.0207 | 177.0193 | −7.68 | 133.0227, 105.0266 |
8 | Cyrptochlorogenic acid | Phenolic acid | 15.71 | [M − H]− | 353.0880 | 353.0878 | −0.55 | 191.0488, 173.0429, 161.0239, 135.0412 |
9 | Chlorogenic acid * | Phenolic acid | 16.69 | [M − H]− | 353.0893 | 353.0878 | −4.22 | 191.0568, 173.0429, 135.0461 |
10 | Tuberonic acid-O-hexoside | Fatty acid | 17.48 | [M − H]− | 387.1681 | 387.1661 | −5.27 | 207.1010, 163.1121, 119.0376 |
11 | Esculetin-O-hexoside II | Coumarin | 18.19 | [M − H]− | 339.0728 | 339.0722 | −1.89 | 177.0203, 149.0144, 133.0215 |
12 | Mearnsetin-di-O-hexoside | Flavonoid | 18.57 | [M − H]− | 655.1575 | 655.1516 | −1.39 | 493.1190, 331.0475, 315.0138 |
13 | Chrysartemin A | Sesquiterpene | 18.99 | [M − H]− | 277.1072 | 277.1081 | 3.41 | 233.1193, 218.0969, 215.1098, 191.1061, 175.0763, 135.0835 |
14 | Caffeic acid-O-pentoside | Phenolic acid | 19.50 | [M − H]− | 311.0767 | 311.0772 | 1.73 | 179.0343, 149.0461, 135.0440 |
15 | Chrysartemin B | Sesquiterpene | 20.38 | [M − H]− | 277.1066 | 277.1081 | 5.56 | 233.1165, 215.0981, 191.1034, 175.0705, 160.0463, 135.0839 |
16 | Feruloylquinic acid | Phenolic acid | 20.52 | [M − H]− | 367.1049 | 367.1035 | −3.92 | 191.0563, 173.0460, 134.0349 |
17 | Artabsinolide A | Sesquiterpene | 20.60 | [M − H]− | 279.1237 | 279.1237 | 0.35 | 261.1027, 243.0906, 217.1121, 199.1051, 175.1082 |
18 | Dicaffeoylquinic acid I | Phenolic acid | 20.65 | [M − H]− | 515.1198 | 515.1195 | −0.58 | 353.0763, 191.0485, 179.0265, 135.0373 |
19 | Coumaroylquinic acid | Phenolic acid | 20.67 | [M − H]− | 337.0926 | 337.0929 | 0.86 | 191.0589, 173.0462, 145.0322, 109.0380 |
20 | Artecanin hydrate | Sesquiterpene | 21.15 | [M − H]− | 295.1187 | 296.1187 | −4.69 | 251.1300, 207.1409, 189.1280, 151.0831 |
21 | Apigenin-C-hexoside-C-pentoside I | Flavonoid | 21.33 | [M − H]− | 563.1404 | 563.1406 | 0.41 | 503.1277, 383.0784, 353.0680, 325.0671, 297.0714 |
22 | Quercetin-di-O-hexoside | Flavonoid | 21.51 | [M − H]− | 625.1418 | 625.1410 | −1.24 | 463.0810, 300.0246, 271.0240, 151.0020 |
23 | Coumaric acid-O-pentoside | Phenolic acid | 21.81 | [M − H]− | 295.0819 | 295.0823 | 1.44 | 163.0416, 149.0463, 119.0494 |
24 | Apigenin-C-hexoside-C-pentoside II | Flavonoid | 22.12 | [M − H]− | 563.1414 | 563.1406 | −1.37 | 443.1010, 383.0747, 353.0663, 325.0728, 297.0763 |
25 | Quercetin-O-deoxyhexoside-O-hexoside | Flavonoid | 23.15 | [M − H]− | 609.1476 | 609.1461 | −2.44 | 300.0167, 271.0154, 150.994 |
26 | Mearnsetin-O-hexoside | Flavonoid | 23.91 | [M − H]− | 493.0998 | 493.0988 | −2.10 | 331.0495, 315.0183, 287.0218, 271.0266 |
27 | Quercetin-O-hexoside | Flavonoid | 24.10 | [M − H]− | 463.0860 | 463.0882 | 4.74 | 300.0210, 255.0139, 150.9999 |
28 | Luteolin-O-deoxyhexoside-O-hexoside | Flavonoid | 24.79 | [M − H]− | 593.1540 | 593.1512 | −4.72 | 285.0443, 255.0292, 227.0355, 151.0042 |
29 | Eupatolitin-O-deoxyhexoside-O-hexoside | Flavonoid | 25.01 | [M − H]− | 653.1729 | 653.1723 | −0.88 | 345.0825, 330.0441, 301.0478, 287.0236 |
30 | Dicaffeoylquinic acid II | Phenolic acid | 25.92 | [M − H]− | 515.1198 | 515.1195 | −0.58 | 353.0763, 191.0485, 179.0265, 135.0373 |
31 | Tracheloside | Lignan | 26.38 | [M − H]− | 549.1985 | 549.1978 | −1.36 | 505.1054, 387.1727, 301.0335, 207.1026, 161.0258 |
32 | Dicaffeoylquinic acid III | Phenolic acid | 26.78 | [M − H]− | 515.1188 | 515.1195 | 1.36 | 353.0773, 191.0481, 179.0258, 173.0390 |
33 | Coumaroylcaffeoylquinic acid | Phenolic acid | 27.81 | [M − H]− | 499.1307 | 499.1246 | −1.63 | 353.0922, 337.0981, 191.0566, 163.0440 |
34 | Eupatolitin-di-O-hexoside | Flavonoid | 27.98 | [M − H]− | 669.1645 | 669.1672 | 4.09 | 345.0667, 330.0402, 301.0186, 179.0381, 161.0253 |
35 | Feruloylcaffeoylquinic acid I | Phenolic acid | 28.31 | [M − H]− | 529.1397 | 529.1351 | 0.85 | 367.1386, 353.1172, 191.0748, 179.0486, 161.0397 |
36 | Rhamnetin-di-O-hexoside | Flavonoid | 28.95 | [M − H]− | 639.1527 | 639.1567 | 6.21 | 413.1265, 315.0608, 300.0298, 284.0403, 271.0291, 255.0388 |
37 | Rhamnetin-O-hexoside | Flavonoid | 29.02 | [M − H]− | 477.1016 | 477.1038 | 4.71 | 433.1382, 315.0767, 161.0276, 153.0227, 109.0304 |
38 | Feruloylcaffeoylquinic acid II | Phenolic acid | 29.12 | [M − H]− | 529.1353 | 529.1351 | −0.28 | 367.1035, 353.0930, 191.0589, 179.0320, 173.0484 |
39 | Eriodictyol | Flavonoid | 29.39 | [M − H]− | 287.0567 | 287.0561 | −2.04 | 151.0046, 135.0479 |
40 | Artemisinin * | Sesquiterpene | 30.44 | [M − H]− | 281.1385 | 281.1394 | 3.36 | 263.1319, 237.1529, 193.1612 |
41 | Luteolin * | Flavonoid | 31.04 | [M − H]− | 285.0400 | 285.0405 | 1.61 | 175.0386, 133.0313 |
42 | Tetrahydroxydimethoxyflavone (e.g., eupatolitin) | Flavonoid | 31.49 | [M − H]− | 345.0602 | 345.0616 | 4.02 | 330.0402, 315.0188, 287.0296, 259.0301, 259.0301, 215.0351, 175.0091, 149.0308, 121.0326 |
43 | Tetrahydroxymethoxyflavone (e.g., rhamnetin) | Flavonoid | 31.55 | [M − H]− | 315.0509 | 315.0510 | 0.40 | 300.0327, 271.0269, 255.0312, 243.0322, 227.0356, 215.0350, 171.0409, 147.0202 |
44 | Trihydroxyoctadecadienoic acid | Fatty acid | 31.79 | [M − H]− | 327.2181 | 327.2177 | −1.43 | 229.1442, 211.1319 |
45 | Deoxyartemisinin I | Sesquiterpene | 32.09 | [M − H]− | 265.1435 | 265.1445 | 3.88 | 247.1335, 221.1582, 203.1459, 185.1346, 151.1148 |
46 | Santonin | Sesquiterpene | 32.42 | [M − H]− | 245.1174 | 245.1183 | 3.73 | 201.1282, 186.1064, 161.0962, 147.0805, 135.0841 |
47 | Deoxyartemisinin II | Sesquiterpene | 32.70 | [M − H]− | 265.1447 | 265.1445 | −1.00 | 247.1357, 221.1557, 203.1451, 151.1154 |
48 | Trihydroxymethoxyflavanone (e.g., homoeriodictyol) | Flavonoid | 32.98 | [M − H]− | 301.0724 | 301.0718 | −2.11 | 151.0049, 134.0413 |
49 | Trihydroxyoctadecenoic acid I | Fatty acid | 33.62 | [M − H]− | 329.2331 | 329.2333 | 0.75 | 229.1470, 211.1353, 199.1170 |
50 | Dihydroxydimethoxyflavone I (e.g., rhamnazin) | Flavonoid | 33.69 | [M − H]− | 329.0678 | 329.0667 | −3.40 | 314.0456, 299.0241, 271.0279, 271.0272, 243.0312, 227.0430, 215.0360, 199.0421, 185.0236, 161.0264, 151.0068, 133.0347 |
51 | Trihydroxyoctadecenoic acid II | Fatty acid | 34.05 | [M − H]− | 329.2338 | 329.2333 | −1.37 | 229.1433, 199.1155 |
52 | Dihydroxytrimethoxyflavone | Flavonoid | 34.72 | [M − H]− | 359.0772 | 359.0772 | 0.11 | 344.0575, 329.03351, 314.0086, 297.0051, 286.0162, 270.0287, 258.0184, 230.0225, 214.0302, 202.0280 |
53 | Trihydroxymethoxyflavone (e.g., diosmetin) | Flavonoid | 36.93 | [M − H]− | 299.0566 | 299.0561 | −1.63 | 284.0259, 255.0179, 239.0292, 227.0330, 151.0077, 133.0252 |
54 | Pseudosantonin | Sesquiterpene | 36.96 | [M − H]− | 263.1279 | 263.1289 | 3.72 | 245.1127, 219.1366, 201.1230, 159.1152 |
55 | Absinthin | Triterpene | 37.16 | [M + HCO2]− | 541.2801 | 541.2807 | 1.19 | 351.6359, 275.5226 |
56 | Hydroxydimethoxyflavone (e.g., cirsimaritin) | Flavonoid | 37.25 | [M − H]− | 313.0711 | 313.0718 | 2.11 | 298.0722, 283.0375, 269.0628 |
57 | Hydroxytrimethoxyflavone I (e.g., penduletin) | Flavonoid | 37.67 | [M − H]− | 343.0813 | 343.0823 | 2.98 | 328.0382, 313.0382, 298.0133, 285.0421, 270.0199, 255.0318, 242.0284 |
58 | Artemisinin C | Sesquiterpene | 37.72 | [M − H]− | 247.1329 | 247.1340 | 4.30 | 231.1403, 203.1469, 187.1442, 161.1372, 133.1030 |
59 | Dihydroxydimethoxyflavone II (e.g., eupalitin) | Flavonoid | 37.99 | [M − H]− | 329.0678 | 329.0667 | −3.40 | 314.0456, 299.0241, 271.0279, 271.0272, 243.0312, 227.0430, 215.0360, 199.0421, 185.0236, 161.0264, 151.0068, 133.0347 |
60 | Arteannuin B | Sesquiterpene | 38.36 | [M − H]− | 247.1341 | 247.1340 | −0.53 | 203.1449, 133.1019 |
61 | Dihydroxytetramethoxyflavone (e.g., casticin) | Flavonoid | 38.81 | [M − H]− | 373.0939 | 373.0929 | −2.70 | 358.0729, 343.0494, 300.0407, 285.0054, 269.0079, 257.0103, 241.0132, 229.0140, 213.0161, 201.0202, 185.0220 |
62 | Cnicin | Sesquiterpene | 39.38 | [M − H]− | 377.1617 | 377.1606 | −2.97 | 295.1213, 251.1322, 189.1257, 151.07060 |
63 | Artenolide | Triterpene | 40.18 | [M + HCO2]− | 573.2714 | 573.2705 | −1.66 | 527.2685, 325.1304, 263.1287, 185.1288 |
64 | Dihydroarteannuin B | Sesquiterpene | 40.28 | [M − H]− | 249.1496 | 249.1496 | 0.70 | 231.1415, 207.1742, 187.1523 |
65 | Dihydroxymethoxyflavone (e.g., genkwanin) | Flavonoid | 40.84 | [M − H]− | 283.0601 | 283.0612 | 3.86 | 268.0423, 240.0392, 211.0419 |
66 | Dihydrosantamarin | Sesquiterpene | 41.37 | [M − H]− | 249.1508 | 249.1496 | −4.72 | 231.1471, 205.1599, 187.1494 |
67 | Absinthin derivative I | Triterpene | 41.96 | [M + HCO2]− | 555.2582 | 555.2600 | 3.44 | 509.2392, 491.2392, 447.2558, 265.1365, 243.1047, 229.1237, 199.1137 |
68 | Hydroxytrimethoxyflavone II (e.g., eupatilin) | Flavonoid | 37.67 | [M − H]− | 343.0813 | 343.0823 | 2.98 | 328.0382, 313.0382, 298.0133, 285.0421, 270.0199, 255.0318, 242.0284 |
69 | Hydroperoxyoctadecadienoic acid | Fatty acid | 44.54 | [M − H]− | 311.2212 | 311.2228 | 5.07 | 293.2171, 211.1341, 171.0999 |
70 | Isoabsinthin | Triterpene | 44.67 | [M + HCO2]− | 541.2801 | 541.2807 | 1.19 | 495.2583, 351.6359, 275.5226 |
71 | Absinthin derivative II | Triterpene | 46.17 | [M + HCO2]− | 539.2672 | 539.2650 | −4.37 | 247.1212, 204.1637, 185.1479 |
72 | Hydroxyoctadecatrienoic acid | Fatty acid | 47.14 | [M − H]− | 293.2118 | 293.2122 | 1.42 | 275.1973, 224.1359, 195.1381 |
73 | Hydroxyoctadecadienoic acid | Fatty acid | 48.69 | [M − H]− | 295.2269 | 295.2279 | 3.27 | 277.2162, 195.1407, 171.1029 |
Artemisia Species | Part | Extraction Solvent | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | MCA (mg EDTAE/g) | PBD (mmol TE/g) |
---|---|---|---|---|---|---|---|---|
A. absinthium L. | Roots | MeOH | 43.59 ± 1.08 c | 47.67 ± 0.34 f | 82.69 ± 1.76 e | 52.80 ± 2.52 e | 7.25 ± 0.23 e | 1.20 ± 0.11 e |
CHCl3 | 5.11 ± 0.22 f | 7.54 ± 0.21 g | 24.24 ± 0.26 g | 12.40 ± 0.09 h | 8.33 ± 0.14 d | 0.84 ± 0.08 f | ||
Aerial parts | MeOH | 67.57 ± 3.55 cd | 95.95 ± 3.61 c | 188.11 ± 5.68 | 85.36 ± 1.20 c | 14.68 ± 0.91 cd | 2.10 ± 0.20 bc | |
CHCl3 | 10.52 ± 0.80 f | 27.35 ± 0.15 gh | 47.05 ± 0.94 | 26.45 ± 0.21 f | 11.25 ± 0.99 de | 2.46 ± 0.14 a | ||
A. annua L. | Roots | MeOH | 237.03 ± 5.93 a | 240.78 ± 1.27 a | 438.43 ± 10.59 a | 294.52 ± 8.32 a | 14.38 ± 0.60 c | 2.24 ± 0.08 a |
CHCl3 | 29.98 ± 0.55 d | 60.61 ± 0.62 d | 87.39 ± 4.62 e | 54.97 ± 0.08 e | n.a. | 2.37 ± 0.06 a | ||
Aerial parts | MeOH | 102.66 ± 2.15 b | 134.36 ± 2.28 b | 156.62 ± 4.15 | 58.67 ± 1.45 d | 17.46 ± 3.03 bc | 1.55 ± 0.02 f | |
CHCl3 | 13.04 ± 0.70 f | 32.49 ± 0.34 fg | 58.26 ± 1.33 | 24.79 ± 1.22 f | 20.91 ± 1.10 ab | 1.85 ± 0.06 de | ||
A. austriaca Jacq. | Roots | MeOH | 48.99 ± 0.07 c | 77.19 ± 0.06 c | 168.90 ± 2.70 c | 105.77 ± 3.02 c | 15.84 ± 0.19 b | 1.59 ± 0.05 c |
CHCl3 | 19.68 ± 0.22 e | 52.04 ± 2.09 e | 82.69 ± 1.76 e | 40.68 ± 1.77 f | 3.76 ± 0.46 g | 1.70 ± 0.05 c | ||
Aerial parts | MeOH | 64.85 ± 0.09 d | 75.19 ± 0.42 d | 143.59 ± 2.21 | 59.60 ± 0.61 d | 22.16 ± 0.88 a | 1.66 ± 0.17 ef | |
CHCl3 | 11.05 ± 0.07 f | 37.64 ± 0.55 f | 52.72 ± 0.55 | 25.57 ± 2.21 f | 12.76 ± 1.19 de | 1.56 ± 0.07 f | ||
A. pontica L. | Roots | MeOH | 179.63 ± 2.60 b | 176.12 ± 2.64 b | 263.94 ± 1.87 b | 165.55 ± 3.83 b | 22.93 ± 0.32 a | 1.97 ± 0.00 b |
CHCl3 | 31.34 ± 0.41 d | 51.69 ± 1.19 e | 80.33 ± 1.19 e | 45.77 ± 0.74 ef | 6.48 ± 0.28 ef | 1.53 ± 0.09 cd | ||
Aerial parts | MeOH | 71.65 ± 3.52 c | 98.45 ± 3.20 c | 290.14 ± 8.95 | 113.33 ± 1.15 b | 9.89 ± 0.99 e | 1.55 ± 0.07 f | |
CHCl3 | 10.55 ± 1.18 f | 25.86 ± 0.50 h | 49.99 ± 1.00 | 22.18 ± 1.39 f | 17.84 ± 0.44 bc | 1.52 ± 0.10 f | ||
A. vulgaris L. | Roots | MeOH | 48.83 ± 0.04 c | 49.36 ± 0.40 ef | 113.97 ± 2.77 d | 66.51 ± 2.80 d | 5.78 ± 0.13 f | 1.23 ± 0.02 e |
CHCl3 | 26.16 ± 0.50 d | 63.81 ± 1.19 d | 46.26 ± 4.81 f | 24.87 ± 2.41 g | n.a. | 1.35 ± 0.09 de | ||
Aerial parts | MeOH | 139.56 ± 3.19 a | 173.86 ± 3.66 a | 498.32 ± 4.02 | 198.51 ± 5.00 a | 12.35 ± 1.15 de | 2.33 ± 0.11 ab | |
CHCl3 | 33.74 ± 0.49 e | 56.54 ± 0.50 e | 111.48 ± 2.01 | 47.73 ± 1.66 e | 20.94 ± 1.65 ab | 1.89 ± 0.04 cd |
Artemisia Species | Part | Extraction Solvent | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|---|---|
A. absinthium L. | Roots | MeOH | 3.02 ± 0.05 a | 1.19 ± 0.11 d | 41.20 ± 0.73 ab | 0.30 ± 0.01 e | 0.88 ± 0.01 a |
CHCl3 | 2.18 ± 0.14 b | 2.91 ± 0.21 c | 19.44 ± 0.67 c | 0.32 ± 0.01 e | 0.87 ± 0.01 ab | ||
Aerial parts | MeOH | 2.33 ± 0.02 ab | 2.32 ± 0.16 bc | 37.09 ± 1.31 bcde | 0.40 ± 0.01 e | 11.18 ± 0.20 a | |
CHCl3 | 2.50 ± 0.00 a | 2.67 ± 0.43 ab | 35.78 ± 1.53 cde | 0.44 ± 0.00 cd | 10.85 ± 0.13 ab | ||
A. annua L. | Roots | MeOH | 2.00 ± 0.06 bc | n.a. | 49.42 ± 4.51 a | 0.31 ± 0.01 e | 0.81 ± 0.01 abc |
CHCl3 | 2.20 ± 0.02 b | 4.52 ± 0.18 a | 45.74 ± 0.56 ab | 0.50 ± 0.02 b | 0.87 ± 0.02 ab | ||
Aerial parts | MeOH | 1.97 ± 0.14 c | 2.14 ± 0.08 bc | 35.71 ± 2.04 cde | 0.41 ± 0.02 e | 5.93 ± 0.93 d | |
CHCl3 | 2.36 ± 0.08 ab | 3.11 ± 0.10 a | 36.39 ± 2.36 cde | 0.54 ± 0.01 a | 8.84 ± 1.08 bc | ||
A. austriaca Jacq. | Roots | MeOH | 1.86 ± 0.07 cd | n.a. | 47.27 ± 5.68 ab | 0.31 ± 0.00 e | 0.16 ± 0.03 f |
CHCl3 | 2.16 ± 0.05 b | 3.45 ± 0.39 b | 13.16 ± 2.73 c | 0.57 ± 0.03 a | 0.79 ± 0.01 bc | ||
Aerial parts | MeOH | 2.00 ± 0.08 c | 1.94 ± 0.55 bc | 39.37 ± 0.77 abc | 0.42 ± 0.00 de | 6.07 ± 0.40 d | |
CHCl3 | 2.16 ± 0.02 bc | 2.55 ± 0.22 abc | 39.37 ± 0.94 abcd | 0.54 ± 0.01 a | 9.84 ± 0.71 abc | ||
A. pontica L. | Roots | MeOH | 2.05 ± 0.12 cd | n.a. | 44.91 ± 5.05 ab | 0.30 ± 0.00 e | 0.65 ± 0.05 d |
CHCl3 | 1.82 ± 0.05 bc | 0.93 ± 0.06 d | 38.30 ± 1.69 b | 0.38 ± 0.01 d | 0.77 ± 0.01 c | ||
Aerial parts | MeOH | 1.92 ± 0.05 c | 1.82 ± 0.05 c | 44.64 ± 0.40 a | 0.46 ± 0.02 c | 6.21 ± 0.79 d | |
CHCl3 | 2.15 ± 0.13 bc | 2.34 ± 0.02 bc | 42.82 ± 2.30 ab | 0.50 ± 0.01 b | 8.54 ± 0.58 c | ||
A. vulgaris L. | Roots | MeOH | 1.72 ± 0.08 bc | 0.46 ± 0.08 e | 41.08 ± 0.68 ab | 0.31 ± 0.01 e | 0.30 ± 0.07 e |
CHCl3 | 1.98 ± 0.16 bc | 0.12 ± 0.01 ef | 13.79 ± 2.78 c | 0.44 ± 0.02 c | 0.87 ± 0.01 abc | ||
Aerial parts | MeOH | 2.04 ± 1.14 c | 1.86 ± 0.31 c | 31.38 ± 2.74 e | 0.40 ± 0.01 e | 11.32 ± 0.38 a | |
CHCl3 | 2.10 ± 0.12 bc | 2.14 ± 0.12 bc | 33.23 ± 4.15 de | 0.51 ± 0.01 ab | 10.01 ± 1.30 abc |
Artemisia Species | Part | Extraction Solvent | MIC (mg/L) |
---|---|---|---|
A. absinthium L. | Roots | MeOH | >256 |
CHCl3 | 256 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 128 | ||
A. annua L. | Roots | MeOH | 256 |
CHCl3 | 128 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 128 | ||
A. austriaca Jacq. | Roots | MeOH | >256 |
CHCl3 | 256 | ||
Aerial parts | MeOH | 128 | |
CHCl3 | 64 | ||
A. pontica L. | Roots | MeOH | 256 |
CHCl3 | 128 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 256 | ||
A. vulgaris L. | Roots | MeOH | >256 |
CHCl3 | 128 | ||
Aerial parts | MeOH | 256 | |
CHCl3 | 128 | ||
Etambutol | – | – | 2 |
Streptomycin | – | – | 0.5 |
Rifampicin | – | – | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Woźniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. https://doi.org/10.3390/antiox11051017
Trifan A, Zengin G, Sinan KI, Sieniawska E, Sawicki R, Maciejewska-Turska M, Skalikca-Woźniak K, Luca SV. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants. 2022; 11(5):1017. https://doi.org/10.3390/antiox11051017
Chicago/Turabian StyleTrifan, Adriana, Gokhan Zengin, Kouadio Ibrahime Sinan, Elwira Sieniawska, Rafal Sawicki, Magdalena Maciejewska-Turska, Krystyna Skalikca-Woźniak, and Simon Vlad Luca. 2022. "Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species" Antioxidants 11, no. 5: 1017. https://doi.org/10.3390/antiox11051017
APA StyleTrifan, A., Zengin, G., Sinan, K. I., Sieniawska, E., Sawicki, R., Maciejewska-Turska, M., Skalikca-Woźniak, K., & Luca, S. V. (2022). Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants, 11(5), 1017. https://doi.org/10.3390/antiox11051017