Roles of Hydrogen Gas in Plants under Abiotic Stress: Current Knowledge and Perspectives
Abstract
:1. Introduction
2. H2 Confers Plant Tolerance to Environmental Stresses
2.1. Temperature Stress
2.2. Light Stress
Stresses | Plants | Regulatory Pathways | References |
---|---|---|---|
Cold | Rice | ROS and antioxidant defense system Photosynthetic capacity | [29] |
High light | Maize | [21] | |
UV-A | Radish | ROS and antioxidant defense system Flavonoid pathway | [30] |
UV-B | Alfalfa | Flavonoid pathway | [42] |
Hg | Alfalfa | ROS and antioxidant defense system Re-establishing ion homeostasis Re-establishing redox homeostasis | [43] |
Cd/Salt | Hypsizygus marmoreus | ROS and antioxidant defense system Glucose metabolism | [44] |
Cd Cd | Chinese cabbage | ROS and antioxidant defense system | [20] |
Alfalfa | ROS and antioxidant defense system Re-establishing redox homeostasis | [45] | |
Al | Maize | ROS and antioxidant defense system Photosynthetic capacity Maintaining nutrient element homeostasis | [27] |
Alfalfa | NO production | [38] | |
Cd | Alfalfa | ROS and antioxidant defense system Re-establishing ion homeostasis Maintaining nutrient element homeostasis | [19] |
Pak Choi | Re-establishing ion homeostasis | [10] | |
Osmotic | Alfalfa | NO Signaling | [46] |
Alfalfa | ROS and antioxidant defense system HO-1 signaling | [11] | |
Drought | Alfalfa | ABA | [47] |
Cucumber | CO signaling | [39] | |
Salt | Arabidopsis | ROS and antioxidant defense system Re-establishing ion homeostasis | [5] |
Rice | ROS and antioxidant defense system Glucose metabolism Re-establishing ion homeostasis | [18] | |
Cd/Salt | Alfalfa | ABA, ethylene, or jasmonate acid | [12] |
PQ | Alfalfa | ROS and antioxidant defense system HO-1 Signaling | [6] |
2.3. Metals Stress
2.4. Osmotic Stress
2.5. PQ-Induced Oxidative Stress
3. The Regulatory Pathways Abiotic Stress Alleviated by H2 in Plants
3.1. ROS and Antioxidant Defense System
3.2. Photosynthetic Capacity
3.3. Re-Establishing Redox Homeostasis
3.4. Glucose Metabolism
3.5. Re-Establishing Ion Homeostasis
3.6. Maintaining Nutrient Element Homeostasis
3.7. Flavonoid Pathway
3.8. HO-1 Signaling
3.9. NO, CO, and Plant Hormones
4. Modulation of Gene Expression by H2 under Abiotic Stress
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.S.; Kawamura, T.; Toyoda, Y.; Nakao, A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic. Res. 2010, 44, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, M.; Stickland, L.H. Hydrogenase: A bacterial enzyme activating molecular hydrogen: The properties of the enzyme. Biochem. J. 1931, 25, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Gaffron, H.; Rubin, J. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 1942, 26, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Sanadze, G.A. Absorption of molecular hydrogen by green leaves in light. Fiziol Rast 1961, 8, 555–559. [Google Scholar]
- Xie, Y.J.; Mao, Y.; Lai, D.W.; Zhang, W.; Shen, W.B. H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS ONE 2012, 7, e49800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.J.; Zhu, K.K.; Cui, W.T.; Xie, Y.J.; Han, B.; Shen, W.B. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ. 2013, 36, 956–969. [Google Scholar] [CrossRef] [PubMed]
- Tamagnini, P.; Axelsson, R.; Lindberg, P.; Oxelfelt, F.; Wünschiers, R.; Lindblad, P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Molecul. Biol. R. 2002, 66, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Khanna, N.; Veziroglu, T.N. Recent developments in biological hydrogen production processes. Chem. Ind. Chem. Eng. Q. 2008, 14, 57–67. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, M.S. Hydrogenases for biological hydrogen production. Bioresour. Technol. 2011, 102, 8423–8431. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, L.P.; Su, N.N.; Shabala, L.; Wang, H.Y.; Huang, X.; Wen, R.Y.; Yu, M.; Cui, J.; Shabala, S. Calcium-dependent hydrogen peroxide mediates hydrogen-rich water-reduced cadmium uptake in plant roots. Plant Physiol. 2020, 183, 1331–1344. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.J.; Cui, W.T.; Dai, C.; Zhu, K.K.; Zhang, J.; Wang, R.; Shen, W.B. Involvement of hydrogen peroxide and heme oxygenase-1 in hydrogen gas-induced osomotic stress tolerance in alfalfa. Plant Growth Regul. 2016, 80, 215–223. [Google Scholar] [CrossRef]
- Zeng, J.Q.; Zhang, M.Y.; Sun, X.J. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS ONE 2013, 8, e71038. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Ma, Q.H.; Han, X.L.; Li, H.Y. Molecular hydrogen improves type 2 diabetes through inhibiting oxidative stress. Exp. Ther. Med. 2020, 20, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.J.; Shen, J.L. Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury? Clinics 2016, 71, 544–549. [Google Scholar] [CrossRef]
- Li, S.; Liao, R.R.; Sheng, X.Y.; Luo, X.J.; Zhang, X.; Wen, X.M.; Zhou, J.; Peng, K. Hydrogen gas in cancer treatment. Front. Oncol. 2019, 9, 696. [Google Scholar] [CrossRef]
- Vacek, T.P.; Rehman, S.; Neamtu, D.; Yu, S.; Givimani, S.; Tyagi, S.C. Matrix metalloproteinases in atherosclerosis: Role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vasc. Health Risk Manag. 2015, 11, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, L.; Shen, J.; Sun, X. Therapeutic effects of hydrogen on different diseases. In Hydrogen Molecular Biology and Medicine; Sun, X., Ohta, S., Nakao, A., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Xu, S.; Zhu, S.S.; Jiang, Y.L.; Wang, N.; Wang, R.; Shen, W.B.; Yang, J. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 2013, 370, 47–57. [Google Scholar] [CrossRef]
- Dai, C.; Cui, W.T.; Pan, J.C.; Xie, Y.J.; Wang, J.; Shen, W.B. Proteomic analysis provides insights into the molecular bases of hydrogen gas-induced cadmium resistance in Medicago sativa. J. Proteom. 2017, 152, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Su, N.N.; Cai, J.T.; Shen, Z.G.; Cui, J. Hydrogen-rich water enhances Cadmium in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. J. Plant Physiol. 2015, 175, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.N.; Zhao, X.Q.; Wang, Z.Q.; Shen, W.B.; Xu, X.M. Protective effects of hydrogen-rich water on the photosynthetic apparatus of maize seedlings (Zea mays L.) as a result of an increase in antioxidant enzyme activities under highlight stress. Plant Growth Regul. 2015, 77, 43–56. [Google Scholar] [CrossRef]
- Lin, Y.T.; Zhang, W.; Qi, F.; Cui, W.T.; Xie, Y.J.; Shen, W.B. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J. Plant Physiol. 2014, 171, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Liao, W.B.; Wang, M.; Niu, L.J.; Xu, Q.Q.; Jin, X. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. J. Plant Physiol. 2016, 195, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.L.; Li, P.X.; Wang, Y.N.; Gu, R.X. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem. 2014, 156, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.Q.; Chen, Q.H.; Wang, Y.M.; Shen, Z.G.; Shen, W.B.; Xu, X.M. Hydrogen-rich water induces aluminum tolerance in maize seedlings by enhancing antioxidant capacities and nutrient homeostasis. Ecotoxicol. Environ. Saf. 2017, 144, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.H.; Zhao, X.Q.; Lei, D.K.; Hu, S.B.; Shen, Z.G.; Shen, W.B.; Xu, X.M. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves. Plant Growth Regul. 2017, 83, 69–82. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, Y.L.; Cui, W.T.; Jin, Q.J.; Zhang, Y.H.; Bu, D.; Fu, J.Y.; Wang, R.; Zhou, F.; Shen, W.B. Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression. Plant Soil 2017, 414, 53–67. [Google Scholar] [CrossRef]
- Su, N.N.; Wu, Q.; Liu, Y.Y.; Cai, J.T.; Shen, W.B.; Xia, K.; Cui, J. Hydrogen-rich water re-establishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. J. Agr. Food Chem. 2014, 62, 6454–6462. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Yamaguchi-Shinozaki, K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013, 32, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q.; Zhang, C.F.; Cao, B.H.; Qin, G.Z.; Wang, W.H.; Tian, S.P. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids. 2012, 43, 2469–2480. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.R.; Chen, S.Y.; Zhang, J.S. Ethylene signaling regulates salt stress response: An overview. Plant Signal. Behav. 2008, 3, 761–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Basalah, M.O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 2011, 248, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T. Hydrogen sulfide and environmental stresses. Environ. Exp. Bot. 2019, 161, 50–56. [Google Scholar] [CrossRef]
- He, H.Y.; He, L.F. The role of carbon monoxide signaling in the responses of plants to abiotic stresses. Nitric Oxide 2014, 42, 40–43. [Google Scholar] [CrossRef]
- Piantadosi, C.A. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic. Biol. Med. 2008, 45, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Cui, W.T.; Zhu, K.K.; Xie, Y.J.; Zhang, C.H.; Shen, W.B. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J. Hazard. Mater. 2014, 267, 40–47. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Hu, L.L.; Liao, W.B.; Dawuda, M.M.; Li, C.L. Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress. Front. Plant Sci. 2017, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006, 141, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.J.; Wei, Z.; Duan, X.L.; Dai, C.; Zhang, Y.H.; Cui, W.T.; Wang, R.; Shen, W.B. Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of(iso)flavonoids and antioxidant defence in Medicago sativa. Funct. Plant Biol. 2015, 42, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.T.; Fang, P.; Zhu, K.K.; Mao, Y.; Gao, C.Y.; Xie, Y.J.; Wang, J.; Shen, W.B. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotox. Environ. Saf. 2014, 105, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Hao, H.B.; Chen, M.J.; Wang, H.; Feng, Z.Y.; Chen, H. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus. AMB Expr. 2017, 7, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, W.T.; Gao, C.Y.; Fang, P.; Lin, G.Q.; Shen, W.B. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J. Hazard. Mater. 2013, 260, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Su, J.C.; Zhang, Y.H.; Nie, Y.; Cheng, D.; Wang, R.; Hu, H.L.; Chen, J.; Zhang, J.F.; Du, Y.W.; Shen, W.B. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings. Environ. Exp. Bot. 2018, 147, 249–260. [Google Scholar] [CrossRef]
- Jin, Q.J.; Zhu, K.K.; Cui, W.T.; Li, L.N.; Shen, W.B. Hydrogen-modulated stomatal sensitivity to abscisic acid and drought tolerance via the regulation of apoplastic pH in Medicago sativa. J. Plant Growth Regul. 2016, 35, 565–573. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, D.; Aryadeep, R. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar]
- Demmig-Adams, B.; Adams, W.W., III; Barker, D.H.; Logan, B.A.; Bowling, D.R.; Verhoeven, A.S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant 1996, 98, 253–264. [Google Scholar] [CrossRef]
Plants | Tissues | Genes | Stresses | References |
---|---|---|---|---|
Hypsizygus marmoreus | / | SOD, CAT, GR, noxR | Cd/Salt | [44] |
Radish | Hypocotyls | PAL, CHS, CHI, F3H, DFR, ANS | UV-A | [30] |
Alfalfa | Leaves | Cu/Zn-SOD, Mn-SOD, POD, APX2, HO-1 | PQ | [6] |
Chinese cabbage | Roots | IRT1, IRT2, Nramp1, HAM2, HAM3, HAM4 | Cd | [20] |
Alfalfa | Cu, Zn-SOD, Mn-SOD, POD, APX1/2, GPX, ECS, GS, hGS, GR1/2 | Cd | [45] | |
POD, APX1/2, MDHAR, ECS, GS, GR1 | Hg | [43] | ||
Rice | Seedling | CSD1, CSD2, PCF, PCF8 | Cold | [29] |
Alfalfar | IDH, Cu, Zn-SOD, NAD-dependent aldehyde dehydrogenase, Amine oxidase, Cysteine desulfurase, Peroxidase, Cysteine synthase, Phosphoenolpyruvate carboxylase, Ferritin | Cd | [19] | |
Arabidopsis | Roots/Leaves | SOS1, cAPX1, ZAT10/12 | Salt | [5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yu, W.; Wu, Y.; Li, Y. Roles of Hydrogen Gas in Plants under Abiotic Stress: Current Knowledge and Perspectives. Antioxidants 2022, 11, 1999. https://doi.org/10.3390/antiox11101999
Li C, Yu W, Wu Y, Li Y. Roles of Hydrogen Gas in Plants under Abiotic Stress: Current Knowledge and Perspectives. Antioxidants. 2022; 11(10):1999. https://doi.org/10.3390/antiox11101999
Chicago/Turabian StyleLi, Changxia, Wenjin Yu, Yuancai Wu, and Yongqiang Li. 2022. "Roles of Hydrogen Gas in Plants under Abiotic Stress: Current Knowledge and Perspectives" Antioxidants 11, no. 10: 1999. https://doi.org/10.3390/antiox11101999
APA StyleLi, C., Yu, W., Wu, Y., & Li, Y. (2022). Roles of Hydrogen Gas in Plants under Abiotic Stress: Current Knowledge and Perspectives. Antioxidants, 11(10), 1999. https://doi.org/10.3390/antiox11101999