Interference Expression of StMSD Inhibited the Deposition of Suberin and Lignin at Wounds of Potato Tubers by Reducing the Production of H2O2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato Plantlets
2.2. Growth Conditions of Potato Plantlets
2.3. Creation of StMSD Interference Expression of Potato Plants and Tubers
2.4. Wounding and Wound Healing of Tubers
2.5. Sampling
Gene Expression of StSODs, StPAL, and StC4H
2.6. O2•− and H2O2 Content
2.7. Suberin Polyphenolic (SPP) and Lignin Deposition at Wounds
2.8. Statistical Analysis
3. Results
3.1. Acquisition and Verification of StMSD Interference-Expression Plantlets and Tubers
3.2. The Interference Expression of StMSD Affected the Expression of StSODs during Healing
3.3. The Interference Expression of StMSD Inhibited the Disproportionation of O2•− to H2O2 in Tubers during Healing
3.4. The Interference Expression of StMSD Downregulated the Gene Expression of StPAL and StC4H in Tubers during Healing
3.5. The Interference Expression of StMSD Resulted in Less Deposition of SPP and Lignin at Tubers Wounds during Healing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent to Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOD | Superoxide dismutase |
SPP | Suberin polyphenolic |
PAL | Phenylalanine ammonia lyase |
C4H | Cinnamate 4-hydroxylase |
NOX | NADPH oxidase |
CSD | Cu/Zn superoxide dismutase |
FSD | Fe superoxide dismutase |
MSD | Mn superoxide dismutase |
MS | Murashige and Skoog |
PCR | Polymerase chain reaction |
NCBI | National Center for Biotechnology Information |
CCS | Copper chaperone superoxide dismutase |
References
- Dastmalchi, K.; Wang, I.; Stark, R.E. Potato wound-healing tissues: A rich source of natural antioxidant molecules with potential for food preservation. Food Chem. 2016, 210, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Marhava, P.; Hoermayer, L.; Yoshida, S.; Marhavý, P.; Benková, E.; Friml, J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell 2019, 177, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Krknen, A.; Kuchitsu, K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 2015, 112, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Jiang, H.; Ren, Y.Y.; Yang, J.W.; Han, Y.; Si, H.J.; Prusky, D.; Bi, Y.; Wang, Y. Overexpression of StCDPK23 promotes wound healing of potato tubers by regulating StRbohs. Plant Physiol. Biochem. 2022, 185, 279–289. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Y.; Bi, Y. The process, mechanism and influence factors on wound healing of potato tubers. Acta Hortic. Sin. 2019, 46, 1842–1852, (In Chinese with English summary). [Google Scholar] [CrossRef]
- Ren, Y.Y.; Jiang, H.; Ma, L.; Li, Y.C.; Prusky, D.; Bi, Y. Identification of potato SOD gene family and its response in damaged tubers. J. Agri. Biotechnol. 2021, 29, 1248–1259, (In Chinese with English summary). [Google Scholar] [CrossRef]
- Perry, J.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The structural biochemistry of the superoxide dismutase. Biochim. Biophys. Acta 2010, 1804, 245–262. [Google Scholar] [CrossRef]
- Mahajan, N.S.; Mishra, M.; Tamhane, V.A.; Gupta, V.S.; Giri, A.P. Stress inducible proteomic changes in Capsicum annuum leaves. Plant Physiol. Biochem. 2014, 74, 212–217. [Google Scholar] [CrossRef]
- Perl-Treves, P.; Galun, E. The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 1991, 17, 745–760. [Google Scholar] [CrossRef]
- Jacobo-Velázouez, D.A.; González-Agüero, M.; Cisneros-Zevallos, L. Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Sci. Rep. 2015, 5, 8608–8617. [Google Scholar] [CrossRef] [Green Version]
- Shafi, A.; Pal, A.K.; Sharma, V.; Kalia, S.; Kumar, S.; Ahuja, P.S.; Singh, A.K. Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Mol. Biol. Rep. 2017, 35, 504–518. [Google Scholar] [CrossRef]
- Karpinska, B.; Karlsson, M.; Schinkel, H.; Streller, S.; Süss, K.H.; Melzer, M.; Wingsle, G.A. Novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation and protein localization. Plant Physiol. 2001, 126, 1668–1677. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Kanematsu, S.; Asada, K. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: Their association with lignification. Plant Cell Physiol. 1997, 38, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Shen, X.; He, Y.M.; Ren, T.N.; Wu, W.T.; Xi, T. An optimized freeze-thaw method for transformation of Agrobacterium tumefaciens EHA 105 and LBA4404. Pharm. Biotechnol. 2011, 18, 382–386. [Google Scholar] [CrossRef]
- Si, H.J.; Xie, C.H.; Liu, J. An efficient protocol for Agrobacterium-mediated transformation of microtuber and the introduction of antisense class I patatin gene into potato. Acta Agron. Sin. 2003, 29, 801–805. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, H.; Bi, Y.; Li, Y.C.; Yang, J.W.; Si, H.J.; Ren, Y.Y.; Prusky, D. The interaction between StCDPK14 and StRbohB contributes to BTH-induced wound healing of potato tubers by regulating ROS generation. Front. Plant Sci. 2021, 12, 2510–2527. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C (T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, B.; Ma, L.; Zheng, X.Y.; Gong, D.; Xue, H.L.; Bi, Y.; Wang, Y.; Zhang, Z.; Prusky, D. Benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid s-methyl ester (BTH) promotes tuber wound healing of potato by elevation of phenylpropanoid metabolism. Postharvest Biol. Technol. 2019, 153, 125–132. [Google Scholar] [CrossRef]
- Oirschot, Q.E.A.V.; Rees, D.; Aked, J.; Kihurani, A. Sweet potato cultivars differ in efficiency of wound healing. Postharvest Biol. Technol. 2006, 42, 65–74. [Google Scholar] [CrossRef]
- Yang, L.W.; Bernards, M.A. Metabolite profiling of potato (Solanum tuberosum L.) tubers during wound-induced suberization. Metabolomics. 2007, 3, 147–159. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plantarum. 2003, 119, 355–364. [Google Scholar] [CrossRef]
- Slooten, L.; Capiau, K.; Camp, W.V.; Montagu, M.V.; Inzé, D. Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol. 1995, 107, 737–750. [Google Scholar] [CrossRef]
- Myouga, F.; Hosoda, C.; Umezawa, T.; Iizumi, H.; Kuromori, T. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell. 2008, 20, 3148–3162. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J. Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 2008, 147, 101–114. [Google Scholar] [CrossRef]
- Chen, H.Z.; Lee, J.S.; Lee, J.M.; Han, M.; Emoner, A.; Lee, J.; Jia, X.T.; Lee, Y. MSD2, an apoplastic Mn-SOD, contributes to root skotomorphogenic growth by modulating ROS distribution in Arabidopsis. Plant Sci. 2021, 317, 111192. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.M.; Torres, A.S.; Doan, P.E.; O’Halloran, T.V. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Proc. Nat. Acad. Sci. USA 2004, 101, 5518–5523. [Google Scholar] [CrossRef]
- Rae, T.D.; Torres, A.S.; O’Halloran, T.V. Mechanism of Cu, Zn-superoxide dismutase activation by the human metallochaperone hCCS. J. Biol. Chem. 2001, 276, 5166–5176. [Google Scholar] [CrossRef] [PubMed]
- Boudet, M.A. Lignin and lignification: Selected issues. Plant Physiol. Biochem. 2000, 38, 81–96. [Google Scholar] [CrossRef]
- Yu, X.Y.; Bi, Y.; Yan, L.; Liu, X.; Wang, Y.; Shen, K.P.; Li, Y.C. Activation of phenylpropanoid pathway and PR of potato tuber against Fusarium sulphureum by fungal elicitor from Trichothecium roseum. World J. Microbiol. Biotechnol. 2016, 32, 1–12. [Google Scholar] [CrossRef]
- Woolfson, K.N.; Haggitt, M.L.; Zhang, Y.N.; Kachura, A.; Bjelica, A.; Rincon, M.A.R. Differential induction of polar and non-polar metabolism during wound-induced suberization in potato (Solanum tuberosum L.) tubers. Plant J. 2018, 93, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Gayoso, C.; Pomar, F.; Novo-Uzal, E.; Merino, F.; De Ilárduya, Ó.M. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignin and drives PAL gene expression. BMC Plant Biol. 2010, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.D.; Yang, Y.Y.; Gong, D.; Yu, L.R.; Han, Y.; Zong, Y.Y.; Li, Y.C.; Prusky, D.; Bi, Y. Chitooligosaccharide maintained cell membrane integrity by regulating reactive oxygen species homeostasis at wounds of potato tubers during healing. Antioxidants 2022, 11, 1791. [Google Scholar] [CrossRef] [PubMed]
- Lulai, E.C.; Campbell, L.G.; Fugate, K.K.; McCue, K.F. Biological differences that distinguish the two major stages of wound healing in potato tubers. Plant Signal. Behav. 2016, 11, e1256531. [Google Scholar] [CrossRef]
- Dora, D.S.C.; Alviano Moreno, D.S.; Alviano, C.S.; Antonio Jorge, R.D.S. Extension of Solanaceae food crops shelf life by the use of elicitors and sustainable practices during postharvest phase. Food Biopro. Technol. 2022, 15, 249–274. [Google Scholar] [CrossRef]
- Razem, F.A.; Bernards, M.A. Hydrogen peroxide is required for poly (phenolic) domain formation during wound-induced suberization. J. Agric. Food Chem. 2002, 50, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Eisenstadt, M.A.; Bogolitsyn, K.G. Peroxidase oxidation of lignin and its model compounds. Russ. J. Bioorganic Chem. 2010, 36, 802–815. [Google Scholar] [CrossRef]
- Ramamurthy, M.S.; Ussuf, K.K.; Nair, P.M.; Thomas, P. Lignin biosynthesis during wound healing of potato tubers in response to gamma irradiation. Postharvest Biol. Technol. 2000, 18, 267–272. [Google Scholar] [CrossRef]
- Lin, J.S.; Lin, C.C.; Lin, H.H.; Chen, Y.C.; Jeng, S.T. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol. 2012, 196, 427–440. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.-Y.; Jiang, H.; Ma, L.; Yang, J.-W.; Si, H.-J.; Bai, J.-P.; Prusky, D.; Bi, Y. Interference Expression of StMSD Inhibited the Deposition of Suberin and Lignin at Wounds of Potato Tubers by Reducing the Production of H2O2. Antioxidants 2022, 11, 1901. https://doi.org/10.3390/antiox11101901
Ren Y-Y, Jiang H, Ma L, Yang J-W, Si H-J, Bai J-P, Prusky D, Bi Y. Interference Expression of StMSD Inhibited the Deposition of Suberin and Lignin at Wounds of Potato Tubers by Reducing the Production of H2O2. Antioxidants. 2022; 11(10):1901. https://doi.org/10.3390/antiox11101901
Chicago/Turabian StyleRen, Ying-Yue, Hong Jiang, Li Ma, Jiang-Wei Yang, Huai-Jun Si, Jiang-Ping Bai, Dov Prusky, and Yang Bi. 2022. "Interference Expression of StMSD Inhibited the Deposition of Suberin and Lignin at Wounds of Potato Tubers by Reducing the Production of H2O2" Antioxidants 11, no. 10: 1901. https://doi.org/10.3390/antiox11101901