Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measures
2.3. Biochemical Analyses
2.4. Statistical Analysis
3. Results
3.1. Anthropometric, Clinical and Metabolic Findings
3.2. Adolescents with Obesity Display Insulin Resistance
3.3. Adolescents with Obesity Display Higher Levels of Hepcidin and IL-6 without Apparent Changes in Total Body Iron (TBI)
3.4. Hepcidin Levels in Adolescents Are Associated with Visceral Adiposity, IR and Cardiometabolic Dyslipidemia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krause, A.; Neitz, S.; Mägert, H.-J.; Schulz, A.; Forssmann, W.-G.; Schulz-Knappe, P.; Adermann, K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000, 480, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, D.A.; Roy, C.N.; Fleming, M.D.; Loda, M.F.; Wolfsdorf, J.I.; Andrews, N.C. Inappropriate expression of hepcidin is associated with iron refractory anemia: Implications for the anemia of chronic disease. Blood 2002, 100, 3776–3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, T. Hepcidin. Rinsho Ketsueki 2016, 57, 1913–1917. [Google Scholar] [PubMed]
- Zaritsky, J.; Young, B.; Wang, H.J.; Westerman, M.; Olbina, G.; Nemeth, E.; Ganz, T.; Rivera, S.; Nissenson, A.R.; Salusky, I.B. Hepcidin—A potential novel biomarker for iron status in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, N.U.; El-Mallah, C.; Herter-Aeberli, I.; Bissani, N.; Wehbe, N.; Obeid, O.; Zimmermann, M.B. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. Int. J. Obes. 2020, 44, 1291–1300. [Google Scholar] [CrossRef]
- Aeberli, I.; Hurrell, R.F.; Zimmermann, M.B. Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int. J. Obes. 2009, 33, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, E.M.; Santoro, N.; Amato, A.; Brienza, C.; Calabrò, P.; Wiegerinck, E.T.; Cirillo, G.; Tartaglione, N.; Grandone, A.; Swinkels, R.W.; et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J. Clin. Endocrinol. Metab. 2009, 94, 5102–5107. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Bhatia, P.; Jain, R.; Bharti, B. Plasma hepcidin levels in healthy children: Review of current literature highlights limited studies. J. Pediatr. Hematol. Oncol. 2019, 41, 238–242. [Google Scholar] [CrossRef]
- Rodríguez-Mortera, R.; Luevano-Contreras, C.; Solorio-Meza, S.; Gómez-Ojeda, A.; Caccavello, R.; Bains, Y.; Gugliucci, A.; Garay-Sevilla, M.E. Soluble receptor for advanced glycation end products and its correlation with vascular damage in adolescents with obesity. Horm. Res. Paediatr. 2019, 92, 28–35. [Google Scholar] [CrossRef]
- Amato, A.; Santoro, N.; Calabrò, P.; Grandone, A.; Swinkels, D.W.; Perrone, L.; Del Giudice, E.M. Effect of body mass index reduction on serum hepcidin levels and iron status in obese children. Int. J. Obes. 2010, 34, 1772–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Mortera, R.; Luevano-Contreras, C.; Solorio-Meza, S.; Caccavello, R.; Bains, Y.; Garay-Sevilla, M.E.; Gugliucci, A. Higher D-lactate levels are associated with higher prevalence of small dense low-density lipoprotein in obese adolescents. Clin. Chem. Lab. Med. 2018, 56, 1100–1108. [Google Scholar] [CrossRef]
- Pfeiffer, C.M.; Looker, A.C. Laboratory methodologies for indicators of iron status: Strengths, limitations, and analytical challenges. Am. J. Clin. Nutr. 2017, 106, 1606S–1614S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazif, H.K.; El-Shaheed, A.A.; Shamy, K.A.I.E.-; Mohsen, M.A.; Fadl, N.N.; Moustafa, R.S. Study of serum hepcidin as a potential mediator of the disrupted iron metabolism in obese adolescents. Int. J. Health Sci. 2015, 9, 172–178. [Google Scholar] [CrossRef]
- Shalitin, S.; Deutsch, V.; Tauman, R. Hepcidin, soluble transferrin receptor and IL-6 levels in obese children and adolescents with and without type 2 diabetes mellitus/impaired glucose tolerance and their association with obstructive sleep apnea. J. Endocrinol. Investig. 2018, 41, 969–975. [Google Scholar] [CrossRef]
- Sal, E.; Yenicesu, I.; Celik, N.; Pasaoglu, H.; Celik, B.; Pasaoglu, O.T.; Kaya, Z.; Kocak, U.; Camurdan, O.; Bideci, A.; et al. Relationship between obesity and iron deficiency anemia: Is there a role of hepcidin? Hematology 2018, 23, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Arezes, J.; Nemeth, E. Hepcidin and iron disorders: New biology and clinical approaches. Int. J. Lab. Hematol. 2015, 37, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Altintas, M.M.; Azad, A.; Nayer, B.; Contreras, G.; Zaias, J.; Faul, C.; Reiser, J.; Nayer, A. Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J. Lipid Res. 2011, 52, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, Y.; Murakami, M.; Sugiyama, M.; Hashimoto, O.; Matsui, T.; Funaba, M. Hepcidin and IL-1beta. Vitam. Horm. 2019, 110, 143–156. [Google Scholar] [PubMed]
- Hitha, H.; Gowda, D.; Mirajkar, A. Serum ferritin level as an early indicator of metabolic dysregulation in young obese adults—A cross-sectional study. Can. J. Physiol. Pharmacol. 2018, 96, 1255–1260. [Google Scholar] [CrossRef]
- Shattnawi, K.K.; Alomari, M.A.; Al-Sheyab, N.; Bani Salameh, A. The relationship between plasma ferritin levels and body mass index among adolescents. Sci. Rep. 2018, 8, 15307. [Google Scholar] [CrossRef] [PubMed]
- Morrell, A.; Tripet, B.P.; Eilers, B.J.; Tegman, M.; Thompson, D.; Copié, V.; Burkhead, J.L. Copper modulates sex-specific fructose hepatoxicity in nonalcoholic fatty liver disease (NALFD) Wistar rat models. J. Nutr. Biochem. 2020, 78, 108316. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.D.; Flowers, C.H.; Skikne, B.S. The quantitative assessment of body iron. Blood 2003, 101, 3359–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, Y.S.; Kang, M.J.; Oh, Y.J.; Baek, J.W.; Yang, S.; Hwang, I.T. Association of serum ferritin with insulin resistance, abdominal obesity, and metabolic syndrome in Korean adolescent and adults: The Korean National Health and Nutrition Examination Survey, 2008 to 2011. Medicine 2017, 96, e6179. [Google Scholar] [CrossRef] [PubMed]
Control Group n = 30 | Obesity Group n = 29 | p-Value | |
---|---|---|---|
Female/Male | 14/16 | 13/16 | NS |
Age (years) * | 16.5 (15.0–18.0) | 17.0 (16.0–18.0) | 0.69 |
Height (cm) | 162.8 ± 7.4 | 166.0 ± 8.5 | 0.131 |
Weight (kg) | 58.1 ± 7.9 | 89.5 ± 14.9 | <0.00001 |
BMI (kg/m2) | 21.9 ± 2.0 | 32.3 ± 3.8 | <0.00001 |
Waist circumference (cm) | 72.9 ± 5.4 | 98.6 ± 9.9 | <0.00001 |
Hip circumference (cm) | 93.4 ± 6.2 | 112.0 ± 8.1 | <0.00001 |
VAI | 0.9 ± 0.6 | 1.6 ± 0.8 | <0.001 |
Body fat % | 24.2 ± 6.8 | 36.7 ± 7.9 | <0.00001 |
SBP (mm/Hg) | 110.1 ± 8.1 | 116.9 ± 7.4 | 0.001 |
DBP (mm/Hg) | 68.8 ± 7.0 | 73.0 ± 7.1 | 0.029 |
Control Group n = 30 | Obesity Group n = 29 | p-Value | |
---|---|---|---|
Hepcidin (pg/mL) | 8419.1 ± 4826.8 | 14,070.8 ± 7113.5 | <0.0007 |
IL-6 (pg/mL) * | 0.9 (0.5–1.3) | 2.0 (1.1–4.9) | <0.0001 |
Ferritin (pg/mL) | 55.1 ± 39.6 | 94.4 ± 82.4 | 0.024 |
Transferrin (μg/mL) | 3199.8 ± 1131.7 | 2983.5 ± 640.8 | 0.380 |
sTFR (μg/mL) | 1.6 ± 0.6 | 1.8 ± 0.6 | 0.260 |
sTFR/ferritin ratio * | 0.03 (0.02–0.05) | 0.03 (0.01–0.05) | 0.388 |
log10 sTFR/ferritin ratio | −1.5 ± 0.4 | −1.6 ± 0.4 | 0.197 |
sTFR/log ferritin ratio | 1.1 ± 0.8 | 1.0 ± 0.4 | 0.651 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Mortera, R.; Caccavello, R.; Hermo, R.; Garay-Sevilla, M.E.; Gugliucci, A. Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat. Antioxidants 2021, 10, 751. https://doi.org/10.3390/antiox10050751
Rodríguez-Mortera R, Caccavello R, Hermo R, Garay-Sevilla ME, Gugliucci A. Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat. Antioxidants. 2021; 10(5):751. https://doi.org/10.3390/antiox10050751
Chicago/Turabian StyleRodríguez-Mortera, Reyna, Russell Caccavello, Ricardo Hermo, María Eugenia Garay-Sevilla, and Alejandro Gugliucci. 2021. "Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat" Antioxidants 10, no. 5: 751. https://doi.org/10.3390/antiox10050751
APA StyleRodríguez-Mortera, R., Caccavello, R., Hermo, R., Garay-Sevilla, M. E., & Gugliucci, A. (2021). Higher Hepcidin Levels in Adolescents with Obesity Are Associated with Metabolic Syndrome Dyslipidemia and Visceral Fat. Antioxidants, 10(5), 751. https://doi.org/10.3390/antiox10050751