Influence of Chlorhexidine and Cetylpyridine on Periodontal Status and Indicators of Oxidative Stress in Patients with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Examination
2.2. Determination of Oxidative Stress Markers
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novotna, M.; Podzimek, S.; Broukal, Z.; Lencova, E.; Duskova, J. Periodontal Diseases and Dental Caries in Children with Type 1 Diabetes Mellitus. Mediat. Inflamm. 2015, 2015, 379626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Huang, M.; Shen, X. The association of oxidative stress and pro-inflammatory cytokines in diabetic patients with hyperglycemic crisis. J. Diabetes Complicat. 2014, 28, 662–666. [Google Scholar] [CrossRef]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef]
- Sheetz, M.J.; King, G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002, 288, 2579–2588. [Google Scholar] [CrossRef]
- Ahmed, N.; Babaei-Jadidi, R.; Howell, S.K.; Beisswenger, P.J.; Thornalley, P.J. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 2005, 48, 1590–1603. [Google Scholar] [CrossRef] [Green Version]
- Kurien, B.T.; Scofield, R.H. Autoimmunity and oxidatively modified autoantigens. Autoimmun. Rev. 2008, 7, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Green, K.; Brand, M.; Murphy, M. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 2004, 53, S110–S118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granot, E.; Kohen, R. Oxidative stress in childhood–In health and disease states. Clin. Nutr. 2004, 23, 3–11. [Google Scholar] [CrossRef]
- Yin, H.; Xu, L.; Porter, N.A. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef] [PubMed]
- Davì, G.; Falco, A.; Patrono, C. Lipid Peroxidation in Diabetes Mellitus. Antioxid. Redox Signal. 2005, 7, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Gleisner, A.; Martinez, L.; Pino, R.; Rojas, I.G.; Martinez, A.; Asenjo, S.; Rudolph, M.I. Oxidative stress markers in plasma and urine of prepubertal patients with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2006, 19, 995–1000. [Google Scholar] [CrossRef]
- Slatter, D.A.; Bolton, C.H.; Bailey, A.J. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 2000, 43, 550–557. [Google Scholar] [CrossRef]
- Lankin, V.; Tikhaze, A. Role of Oxidative Stress in the Genesis of Atherosclerosis and Diabetes Mellitus: A Personal Look Back on 50 Years of Research. Curr. Aging Sci. 2017, 10, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.A.; Loscalzo, J. Oxidative mechanisms and atherothrombotic cardiovascular disease. Drug Discov. Today Ther. Strat. 2008, 5, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galle, J.; Hansen-Hagge, T.; Wanner, C.; Seibold, S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis 2006, 185, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Haidara, M.A.; Yassin, H.Z.; Rateb, M.; Ammar, H.; Zorkani, M.A. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr. Vasc. Pharmacol. 2006, 4, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J. Protein oxidation and peroxidation. Biochem. J. 2016, 473, 805–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox. Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [Green Version]
- Telci, A.; Cakatay, U.; Salman, S.; Satman, I.; Sivas, A. Oxidative protein damage in early stage Type 1 diabetic patients. Diabetes Res. Clin. Pract. 2000, 50, 213–223. [Google Scholar] [CrossRef]
- Lipinski, B. Pathophysiology of oxidative stress in diabetes mellitus. J. Diabetes Complicat. 2001, 15, 203–210. [Google Scholar] [CrossRef]
- Tarnowski, M.; Duda-Sobczak, A.; Lipski, J.; Zozulinska-Ziolkiewicz, D.; Wyganowska-Swiatkowska, M. Tobacco smoking decreases clinical symptoms of gingivitis in patients with type 1 diabetes-a cross-sectional study. Oral Dis. 2018, 24, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Duda-Sobczak, A.; Zozulinska-Ziolkiewicz, D.; Wyganowska-Swiatkowska, M. Type 1 Diabetes and Periodontal Health. Clin. Ther. 2018, 40, 823–827. [Google Scholar] [CrossRef]
- Duda-Sobczak, A.; Lipski, J.; Tarnowski, M.; Surdacka, A.; Zozulinska-Ziolkiewicz, D.; Wyganowska-Swiatkowska, M. Association of skin autofluorescence with periodontal inflammation in adults with type 1 diabetes. Pol. Arch. Intern. Med. 2017, 127, 708–711. [Google Scholar] [CrossRef]
- Kim, J.; Amar, S. Periodontal disease and systemic conditions: A bidirectional relationship. Odontology 2006, 94, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, P.; Kamal, R.; Gupta, R.; Bhardwaj, R.; Chaudhary, K.; Kaur, S. Reactive oxygen species in periodontitis. J. Indian Soc. Periodontol. 2013, 17, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Bastendorf, K.D.; Strafela-Bastendorf, N.; Lussi, A. Mechanical Removal of the Biofilm: Is the Curette Still the Gold Standard? Oral Biofilm. 2021, 29, 105–118. [Google Scholar] [CrossRef]
- Basrani, B.; Lemonie, C. Chlorhexidine gluconate. Aust. Endod. J. 2005, 31, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Miranda, S.L.F.; Damecano, J.T.; Faveri, M.; Figueiredo, L.C.; Soares, G.M.S.; Feres, M.; Bueno-Silva, B. In Vitro Antimicrobial Effect of Cetylpyridinium Chloride on Complex Multispecies Subgingival Biofilm. Braz. Dent. J. 2020, 31, 103–108. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef]
- Silness, J.; Löe, H. Periodontal Disease in Pregnancy. I. Prevalence and Severity. Acta Odontol. Scand. 1963, 21, 533–551. [Google Scholar] [CrossRef]
- Lange, D.E.; Plagmann, H.C.; Eenboom, A.; Promesberger, A. Clinical methods for the objective evaluation of oral hygiene. Dtsch. Zahnarztl. Z. 1977, 32, 44–47. [Google Scholar] [PubMed]
- Mühlemann, H.R.; Son, S. Gingival sulcus bleeding–A leading symptom in initial gingivitis. Helvetica Odontol. Acta 1971, 15, 107–113. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef] [Green Version]
- Rael, L.T.; Thomas, G.W.; Craun, M.L.; Curtis, C.G.; Bar-Or, R.; Bar-Or, D. Lipid peroxidation and the thiobarbituric acid assay: Standardization of the assay when using saturated and unsaturated fatty acids. J. Biochem. Mol. Biol. 2004, 37, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Baskol, G.; Gumus, K.; Oner, A.; Arda, H.; Karakucuk, S. The role of advanced oxidation protein products and total thiols in diabetic retinopathy. Eur. J. Ophthalmol. 2008, 18, 792–798. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S73–S84. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Pivodic, A.; Svensson, A.M.; Olafsdottir, A.F.; Wedel, H.; Ludvigsson, J. HbA1c level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study. BMJ 2019, 366, l4894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renton-Harper, P.; Addy, M.; Moran, J.; Doherty, F.M.; Newcombe, R.G. A comparison of chlorhexidine, cetylpyridinium chloride, triclosan, and C31G mouthrinse products for plaque inhibition. J. Periodontol. 1996, 67, 486–489. [Google Scholar] [CrossRef]
- Jenkins, S.; Addy, M.; Newcombe, R.G. Dose response of chlorhexidine against plaque and comparison with triclosan. J. Clin. Periodontol. 1994, 21, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Wyganowska-Swiatkowska, M.; Kotwicka, M.; Urbaniak, P.; Nowak, A.; Skrzypczak-Jankun, E.; Jankun, J. Clinical implications of the growth-suppressive effects of chlorhexidine at low and high concentrations on human gingival fibroblasts and changes in morphology. Int. J. Mol. Med. 2016, 37, 1594–1600. [Google Scholar] [CrossRef] [Green Version]
- Sreenivasan, P.; Haraszthy, V.; Zambon, J. Antimicrobial efficacy of 0.05% cetylpyridinium chloride mouthrinses. Lett. Appl. Microbiol. 2012, 56, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Szablewski, L.; Sulima, A. The structural and functional changes of blood cells and molecular components in diabetes mellitus. Biol. Chem. 2017, 398, 411–423. [Google Scholar] [CrossRef]
- Kaiser, N.; Sasson, S.; Feener, E.P.; Boukobza-Vardi, N.; Higashi, S.; Moller, D.E.; Davidheiser, S.; Przybylski, R.J.; King, G.L. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1993, 42, 80–89. [Google Scholar] [CrossRef]
- Maechler, P. Mitochondrial function and insulin secretion. Mol. Cell. Endocrinol. 2013, 379, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, D.; Ceriello, A.; Paolisso, G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996, 19, 257–267. [Google Scholar] [CrossRef]
- Baynes, J.W.; Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999, 48, 1–9. [Google Scholar] [CrossRef]
- Iacobini, C.; Vitale, M.; Pesce, C.; Pugliese, G.; Menini, S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants 2021, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Wierusz-Wysocka, B.; Wysocki, H.; Byks, H.; Zozulinska, D.; Wykretowicz, A.; Kazmierczak, M. Metabolic control quality and free radical activity in diabetic patients. Diabetes Res. Clin. Pr. 1995, 27, 193–197. [Google Scholar] [CrossRef]
- Yang, P.; Feng, J.; Peng, Q.; Liu, X.; Fan, Z. Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. Oxid. Med. Cell. Longev. 2019, 2019, 9570616. [Google Scholar] [CrossRef]
- Davison, G.W.; George, L.; Jackson, S.K.; Young, I.S.; Davies, B.; Bailey, D.M.; Peters, J.R.; Ashton, T. Exercise, free radicals, and lipid peroxidation in type 1 diabetes mellitus. Free. Radic. Biol. Med. 2002, 33, 1543–1551. [Google Scholar] [CrossRef]
- Knip, M.; Veijola, R.; Virtanen, S.M.; Hyoty, H.; Vaarala, O.; Akerblom, H.K. Environmental triggers and determinants of type 1 diabetes. Diabetes 2005, 54 (Suppl. 2), S125–S136. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.; Neiers, F.; Feron, G.; Canon, F. The Relationship Between Salivary Redox, Diet, and Food Flavor Perception. Front. Nutr. 2021, 7, 384. [Google Scholar] [CrossRef]
- Ihalin, R.; Loimaranta, V.; Tenovuo, J. Origin, structure, and biological activities of peroxidases in human saliva. Arch. Biochem. Biophys. 2006, 445, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ashby, M.T. Reactive Sulfur Species: Kinetics and Mechanism of the Reaction of Thiocarbamate-S-oxide with Cysteine. Chem. Res. Toxicol. 2008, 21, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Belstrom, D.; Holmstrup, P.; Bardow, A.; Kokaras, A.; Fiehn, N.E.; Paster, B.J. Temporal Stability of the Salivary Microbiota in Oral Health. PLoS ONE 2016, 11, e0147472. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Bishayi, B. Contribution of Catalase and Superoxide Dismutase to the Intracellular Survival of Clinical Isolates of Staphylococcus aureus in Murine Macrophages. Indian J. Microbiol. 2010, 50, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Terao, J.; Nagao, A.; Yuki, H.; Itoh, Y. Reduction of fatty acid hydroperoxides by human parotid saliva. Lipids 1993, 28, 121. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-R.; Nam, S.-H. Association between Periodontal Disease and Levels of Triglyceride and Total Cholesterol among Korean Adults. Healthcare 2020, 8, 337. [Google Scholar] [CrossRef]
- Duque, C.; Joao, M.F.; Camargo, G.A.; Teixeira, G.S.; Machado, T.S.; Azevedo, R.S.; Mariano, F.S.; Colombo, N.H.; Vizoto, N.L.; Mattos-Graner, R.O. Microbiological, lipid and immunological profiles in children with gingivitis and type 1 diabetes mellitus. J. Appl. Oral Sci. 2017, 25, 217–226. [Google Scholar] [CrossRef]
- Jaramillo, A.; Lafaurie, G.I.; Millan, L.V.; Ardila, C.M.; Duque, A.; Novoa, C.; Lopez, D.; Contreras, A. Association between periodontal disease and plasma levels of cholesterol and triglycerides. Colomb. Med. 2013, 44, 80–86. [Google Scholar] [CrossRef]
- Isola, G.; Polizzi, A.; Santonocito, S.; Alibrandi, A. Periodontitis activates the NLRP3 inflammasome in serum and saliva. J. Periodontol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Curro, M.; Matarese, G.; Isola, G.; Caccamo, D.; Ventura, V.P.; Cornelius, C.; Lentini, M.; Cordasco, G.; Ientile, R. Differential expression of transglutaminase genes in patients with chronic periodontitis. Oral Dis. 2014, 20, 616–623. [Google Scholar] [CrossRef]
- Isola, G.; Polizzi, A.; Alibrandi, A.; Williams, R.C.; Lo Giudice, A. Analysis of galectin-3 levels as a source of coronary heart disease risk during periodontitis. J. Periodontal Res. 2021, 56, 597–605. [Google Scholar] [CrossRef] [PubMed]
Variable | Median (IQR) |
---|---|
Age (years) | 27 (22–35) |
Diabetes duration (years) | 12 (9–18) |
BMI (kg/m2) | 23.55 (21.8–26.1) |
HbA1c (%) | 8.05 (7.1–9.4) |
Total cholesterol (mg/dL) | 187 (158–202) |
LDL-Cholesterol (mg/dL) | 85 (70.5–119) |
HDL-Cholesterol (mg/dL) | 67 (59–79) |
Triglycerides (mg/dL) | 82 (62–110) |
hsCRP (mg/dL) | 1.06 (0.39–2.43) |
n = 42 | HbA1c ≤ 8% | HbA1c > 8% | p |
---|---|---|---|
Age (years) | 27 (22–37) | 26 (22–35) | 0.6 |
Diabetes duration (years) | 13 (6–18) | 12 (10–17) | 0.9 |
BMI (kg/m2) | 23.6 (21.6–27) | 23.1 (22–25) | 0.9 |
Total cholesterol (mg/dL) | 180 (137–203) | 189 (176–195) | 0.4 |
LDL-Cholesterol (mg/dL) | 87 (55.5–130.8) | 96.4 (86.2–103) | 0.4 |
HDL-Cholesterol (mg/dL) | 71 (61–79) | 64 (58–74) | 0.6 |
Triglycerides (mg/dL) | 74 (48.5–89.5) | 99 (71–125) | 0.01 |
hsCRP (mg/dL) | 0.83 (0.39–1.5) | 2.04 (0.66–3.13) | 0.06 |
Before | Median (IQR) | After | Median (IQR) | p |
---|---|---|---|---|
API I | 0.35 (0.24–0.65) | API II | 0.265 (0.18–0.39) | 0.03 |
SBI I | 0.07 (0.04–0.15) | SBI II | 0.035 (0–0.06) | 0.002 |
GI I | 0.88 (0.46–1) | GI II | 0.67 (0.25–1) | 0.0008 |
HbA1c ≤ 8% | ||||
---|---|---|---|---|
Before | Median (IQR) | After | Median (IQR) | p |
API I | 0.38 (0.23–0.65) | API II | 0.25 (0.19–0.4) | 0.01 |
SBI I | 0.07 (0.04–1.15) | SBI II | 0.04 (0.03–0.07) | 0.04 |
GI I | 0.88 (0.48–1) | GI II | 0.67 (0.42–1) | 0.04 |
HbA1c > 8% | ||||
Before | Median (IQR) | After | Median (IQR) | p |
API I | 0.28 (0.24–0.63) | API II | 0.29 (0.16–0.39) | 0.08 |
SBI I | 0.06 (0.03–0.12) | SBI II | 0 (0–0.06) | 0.03 |
GI I | 0.83 (0.38–1) | GI II | 0.525 (0.25–1) | 0.03 |
Concentration before | IQR | Concentration after | IQR | p | |
---|---|---|---|---|---|
Protein (mg/mL) | 2.04 | 1.6–2.3 | 1.65 | 1.5–2.0 | 0.09 |
TEAC (nM/mg) | 259.9 | 200.3–306.5 | 278.1 | 247.7–334.7 | 0.009 |
TBARS (nM/mg) | 0.93 | 0.6–2.6 | 0.64 | 0.3–1.1 | 0.00005 |
AOPP (nM/mg) | 125.8 | 68.9–195.8 | 139.0 | 57.9–310.9 | 0.052 |
Concentration before | IQR | Concentration after | IQR | p | |
---|---|---|---|---|---|
HbA1c ≤ 8% | |||||
Protein (mg/mL) | 2.0 | 1.65–2.15 | 1.63 | 1.53–2.04 | 0.2 |
TEAC (nM/mg) | 266.7 | 224.2–310.3 | 283.9 | 252.5–320.5 | 0.4 |
TBARS (nM/mg) | 0.95 | 0.58–2.7 | 0.42 | 0.24–0.7 | 0.002 |
AOPP (nM/mg) | 129.6 | 112.7–212.5 | 156.5 | 59.9–339.6 | 0.1 |
Concentration before | IQR | Concentration after | IQR | p | |
HbA1c > 8% | |||||
Protein (mg/mL) | 2.07 | 1.63–2.3 | 1.73 | 1.5–1.98 | 0.4 |
TEAC (nM/mg) | 217.6 | 191.5–298.0 | 267.8 | 245–334.7 | 0.009 |
TBARS (nM/mg) | 0.9 | 0.64–2.38 | 0.89 | 0.49–1.6 | 0.02 |
AOPP (nM/mg) | 101.7 | 36.4–178.0 | 108.7 | 49.1–253.2 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipski, J.; Duda-Sobczak, A.; Napierala, M.; Florek, E.; Zozulinska-Ziolkiewicz, D.; Wyganowska-Swiatkowska, M. Influence of Chlorhexidine and Cetylpyridine on Periodontal Status and Indicators of Oxidative Stress in Patients with Type 1 Diabetes. Antioxidants 2021, 10, 1732. https://doi.org/10.3390/antiox10111732
Lipski J, Duda-Sobczak A, Napierala M, Florek E, Zozulinska-Ziolkiewicz D, Wyganowska-Swiatkowska M. Influence of Chlorhexidine and Cetylpyridine on Periodontal Status and Indicators of Oxidative Stress in Patients with Type 1 Diabetes. Antioxidants. 2021; 10(11):1732. https://doi.org/10.3390/antiox10111732
Chicago/Turabian StyleLipski, Jakub, Anna Duda-Sobczak, Marta Napierala, Ewa Florek, Dorota Zozulinska-Ziolkiewicz, and Marzena Wyganowska-Swiatkowska. 2021. "Influence of Chlorhexidine and Cetylpyridine on Periodontal Status and Indicators of Oxidative Stress in Patients with Type 1 Diabetes" Antioxidants 10, no. 11: 1732. https://doi.org/10.3390/antiox10111732
APA StyleLipski, J., Duda-Sobczak, A., Napierala, M., Florek, E., Zozulinska-Ziolkiewicz, D., & Wyganowska-Swiatkowska, M. (2021). Influence of Chlorhexidine and Cetylpyridine on Periodontal Status and Indicators of Oxidative Stress in Patients with Type 1 Diabetes. Antioxidants, 10(11), 1732. https://doi.org/10.3390/antiox10111732