Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Extract
2.3. Measurement Methods
2.3.1. Analysis of Phenolic Compounds Using Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS)
2.3.2. Determination of Total Chlorophyll and Carotenoid Content
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet-Visible (UV–Vis) Spectroscopy
2.3.4. Voltammetric Polarization Measurements
2.3.5. Determination of Free Radical Activity via ABTS and DPPH Tests
2.3.6. Ability to Reduce Transition Metal Ions Determined via FRAP and CUPRAC Tests
3. Results and Discussion
3.1. Analysis of Polyphenolic Profile and Lipophilic Pigments of Extracts from Cones of Conifers
3.2. The Electrochemical Behavior of Extracts from Cones at the Pt Electrode
3.3. Activity for Scavenging Free Radicals and Reduction of Transition Metal Ions Measured Using Spectrophotometric Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahin, H.T.; Yalcin, O.U. Conifer cones: An alternative raw material for industry. Br. J. Pharm. Res. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Eberhardt, T.L.; Young, R.A. Conifer seed cone proanthocyanidin polymers: Characterization by 13C NMR spectroscopy and determination of antifungal activities. J. Agric. Food Chem. 1994, 42, 1704–1708. [Google Scholar] [CrossRef]
- Xu, R.B.; Yang, X.; Wang, J.; Zhao, H.T.; Lu, W.H.; Cui, J.; Li, W.J. Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. Int. J. Mol. Sci. 2012, 13, 14262–14277. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, H.T.; Wang, J.; Meng, Q.; Zhang, H.; Yao, L.; Xu, D.C. Chemical composition and antioxidant activity of essential oil of pine cones of Pinus armandii from the Southwest region of China. J. Med. Plant. Res. 2010, 4, 1668–1672. [Google Scholar] [CrossRef]
- Balaban Ucar, M.; Gonultas, O. Chemical characterization of cone and wood of Pinus pinea. Lignocellulose 2014, 2, 262–268. [Google Scholar]
- Zulaica-Villagomez, H.; Peterson, D.M.; Herrin, L.; Young, R.A. Antioxidant activity of different components of pine species. Holzforschung 2005, 59, 156–162. [Google Scholar] [CrossRef]
- Eberhardt, T.L.; Han, J.S.; Micales, J.A.; Young, R.A. Decay resistance in conifer seed cones: Role of resin acids as inhibitors of decomposition by white-rot fungi. Holzforschung 1994, 48, 278–284. [Google Scholar] [CrossRef]
- Celimene, C.C.; Micales, J.A.; Ferge, L.; Young, R.A. Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 1999, 53, 491–497. [Google Scholar] [CrossRef]
- Tumen, I.; Hafizoglu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and constituents of essential oil from cones of Pinaceae spp. natively grown in Turkey. Molecules 2010, 15, 5797–5806. [Google Scholar] [CrossRef] [Green Version]
- Tümen, I.; Akkol, E.K.; Taştan, H.; Süntar, I.; Kurtca, M. Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait). J. Ethnopharmacol. 2018, 211, 235–246. [Google Scholar] [CrossRef]
- Cliceri, D.; Aprea, E.; Menghi, L.; Endrizzi, I.; Gasperi, F. Variability in the temporal perception of polyphenol-related sensations in extra virgin olive oil and impact on flavor perception. Food Qual. Prefer. 2021, 93, 104249. [Google Scholar] [CrossRef]
- Siebert, K.J.; Maekawa, A.A.; Lynn, P.Y. The effects of green tea drinking on salivary polyphenol concentration and perception of acid astringency. Food Qual. Prefer. 2011, 22, 157–164. [Google Scholar] [CrossRef]
- Misnawi; Jinap, S.; Jamilah, B.; Nazamid, S. Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Qual. Prefer. 2004, 5, 403–409. [Google Scholar] [CrossRef]
- Hofmann, T.; Visi-Rajczi, E.; Albert, L. Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays. Ind. Crops Prod. 2020, 145, 111935. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Kang, S.C.; Baek, K.H. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac. J. Trop. Med. 2014, 7, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Knežević, N.P.; Simin, N.; Svirčev, Ð.; Mimica-Dukić, N.M. Phytochemical composition and antioxidant, anti-inflammatory and antimicrobial activities of Juniperus macrocarpa Sibth. et Sm. J. Funct. Foods. 2014, 7, 257–268. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Latos-Brozio, M.; Zaborski, M. Characteristics of juglone (5-hydroxy-1,4,-naphthoquinone) using voltammetry and spectrophotometric methods. Food Chem. 2019, 301, 125279. [Google Scholar] [CrossRef]
- Zakłos-Szyda, M.; Kowalska-Baron, A.; Pietrzyk, N.; Drzazga, A. Evaluation of Viburnum opulus L. Fruit phenolics cytoprotective potential on insulinoma MIN6 cells relevant for diabetes mellitus and obesity. Antioxidants 2020, 9, 433. [Google Scholar] [CrossRef]
- Majdoub, N.; el-Guendouz, S.; Rezgui, M.; Carlier, J.; Costa, C.; Kaab, L.B.B.; Miguel, M.G. Growth, photosynthetic pigments, phenolic content and biological activities of Foeniculum vulgare Mill., Anethum graveolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Ind. Crops Prod. 2017, 109, 627–636. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001; p. 236. [Google Scholar]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. J. Sci. Food Agric. 2017, 97, 2623–2632. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A. Anti-hyperglycemic and anticholinergic effects of natural antioxidant contents in edible flowers. Antioxidants 2019, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ren, J.Z.; Chen, H.; Huang, Y.; Li, H.; Zhang, Z.; Wang, J. Resveratrol protects against cigarette smoke-induced oxidative damage and pulmonary inflammation. J. Biochem. Mol. Toxicol. 2014, 28, 465–471. [Google Scholar] [CrossRef]
- Dziedzinski, M.; Kobus-Cisowska, J.; Szymanowska, D.; Stuper-Szablewska, K.; Baranowska, M. Identification of polyphenols from coniferous shoots as natural antioxidants and antimicrobial compounds. Molecules 2020, 25, 3527. [Google Scholar] [CrossRef]
- Sadeghi Afjeh, M.; Fallah Huseini, H.; Tajalizadekhoob, Y.; Mirarefin, M.; Sharifi, F.; Taheri, E.; Saeednia, S.; Larijani, B.; Fakhrzadeh, H. Determination of phenolic compounds in Pinus eldarica by HPLC. J. Medicinal Plants. 2014, 13, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Kheshtzar, R.; Berenjian, A.; Taghizadeh, S.-M.; Ghasemi, Y.; Asad, A.G.; Ebrahiminezhad, A. Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles. Green Process. Synth. 2019, 8, 846–855. [Google Scholar] [CrossRef]
- Traore, M.; Kaal, J.; Cortizas, A.M. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Sci. Technol. 2018, 52, 487–504. [Google Scholar] [CrossRef] [Green Version]
- Sen, T.K.; Afroze, S.; Ang, H.M. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut. 2010, 218, 499–515. [Google Scholar] [CrossRef]
- Svecnjak, L.; Marijanovic, Z.; Okinczyc, P.; Kus, P.M.; Jerkovic, I. Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Mot, A.C.; Silaghi-Dumitrescu, R.; Sârbu, C. Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV-Vis spectroscopic data. J. Food Compost. Anal. 2011, 24, 516–522. [Google Scholar] [CrossRef]
- Latos-Brozio, M.; Masek, A. Effect of impregnation of biodegradable polyesters with polyphenols from Cistus linnaeus and Juglans regia Linnaeus walnut green husk. Polymers 2019, 11, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maksimova, V.; Mirceski, V.; Gulaboski, R.; Koleva Gudeva, L.; Arsova Sarafinovska, Z. Electrochemical evaluation of the synergistic effect of the antioxidant activity of capsaicin and other bioactive compounds in Capsicum sp. extracts. Int. J. Electrochem. Sci. 2016, 11, 6673–6687. [Google Scholar] [CrossRef]
- Blasco, A.J.; Rogerio, M.C.; González, M.C.; Escarpa, A. “Electrochemical Index” as a screening method to determine “Total Polyphenolics” In foods: A proposal. Anal. Chim. Acta 2005, 539, 237–244. [Google Scholar] [CrossRef]
- Hoyos-Arbeláez, J.; Vázquez, M.; José Contreras-Calderón, J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chem. 2017, 221, 1371–1381. [Google Scholar] [CrossRef]
- Gil, E.S.; Couto, R.O. Flavonoid electrochemistry: A review on the electroanalytical applications. Rev. Bras. Farmacogn. 2013, 23, 542–558. [Google Scholar] [CrossRef] [Green Version]
- Masek, A.; Chrzescijanska, E.; Zaborski, M. Electrochemical properties of catechin in non-aqueous media. Int. J. Electrochem. Sci. 2015, 10, 2504–2514. [Google Scholar]
- Sakano, K.; Mizutani, M.; Murata, M.; Oikawa, S.; Hiraku, Y.; Kawanishi, S. Procyanidin B2 has anti- and pro-oxidant effects on metal-mediated DNA damage. Free Radic. Biol. Med. 2005, 39, 1041–1049. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 2011, 655, 9. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.R.; Kähkönen, M.P.; Törrönen, A.R.; Heinonen, I.M. Catechins and procyanidins in berries of vaccinium species and their antioxidant activity. J. Agric. Food Chem. 2005, 53, 22–8485. [Google Scholar] [CrossRef]
- Nouri, Z.; Fakhri, S.; El-Senduny, F.F.; Sanadgol, N.; Abd-ElGhani, G.E.; Farzaei, M.H.; Chen, J.-T. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules 2019, 9, 690. [Google Scholar] [CrossRef] [Green Version]
λmax(nm) | [M-H]− (m/z) | MS/MS (m/z) | Compound | Content (µg/mL of Cones Extract) | Ref. | ||
---|---|---|---|---|---|---|---|
Douglas Fir | Scots Pine | Korean Fir | |||||
Phenolic Compounds | |||||||
310 | 337 | 109, 124, 160, 174 | Coumaroylquinic acid a | - | 26.11 ± 0.99 | - | [21] |
278 | 289 | 109, 122, 159, 173 | (+)-Catechin | 13.73 ± 1.67 | 99.72 ± 2.96 | 2.40 ± 0.09 | d |
278 | 289 | 109, 159, 173, 123 | (−)-Epicatechin | 186.95 ± 0.83 | 93.89 ± 6.12 | 121.67 ± 1.18 | d |
243 | 577 | 125, 161, 203, 255, 289 | Procyanidin B1 | 3.99 ± 0.05 | - | 1.81 ± 0.20 | d |
279 | 577 | 203, 123, 151, 289 | Procyanidin B2 | - | - | 23.12 ± 1.60 | d |
279 | 865 | 125, 289, 405, 161, 577 | Procyanidin C1 | 14.70 ± 0.15 | - | - | d |
243 | 577 | 125, 161, 203, 255 | Procyanidin dimer I b | 3.73 ± 0.19 | - | 17.83 ± 3.96 | [22] |
243 | 577 | 125, 161, 255, 289, 203 | Procyanidin dimer II b | 4.26 ± 0.29 | - | 15.26 ± 1.35 | [22] |
279 | 577 | 125, 161, 255, 289 | Procyanidin dimer III b | 28.00 ± 0.13 | - | 41.93 ± 1.50 | [22] |
278 | 577 | 125, 203, 137, 255, 109 | Procyanidin dimer IV b | 14.94 ± 0.22 | - | - | [22] |
279 | 577 | 125, 152, 353 | Procyanidin dimer V b | 13.53 ± 0.36 | - | - | [22] |
353 | 463 | 271, 255, 300, 148 | Quercetin 3-galactoside c | 13.41 ± 0.09 | - | - | [23] |
353 | 463 | 271, 300, 255, 227, 125 | Quercetin 3-glucoside | 7.00 ± 0.47 | - | 5.04 ± 0.19 | d |
352 | 609 | 271, 300, 255, 243 | Quercetin 3-rutinoside | - | - | 4.52 ± 0.38 | d |
360 | 447 | 227, 255, 183 | Quercetin 3-rhamnoside c | - | - | 36.03 ± 3.50 | [24] |
Total | 304.24 ± 4.45 | 219.72 ± 10.07 | 269.60 ± 13.95 | ||||
Chlorophylls and carotenoids | |||||||
Chlorophylls | 8.76 ± 0.07 | 21.01 ± 2.63 | 4.27 ± 0.16 | ||||
Carotenoids | - | 0.44 ± 0.00 | - | ||||
Total | 8.76 ± 0.07 | 21.45 ± 2.63 | 4.27 ± 0.16 |
Method | Extract | Peak I | Peak II | Peak III | ||||
---|---|---|---|---|---|---|---|---|
Ep (V) | ip (mA) | Ep (V) | ip (mA) | Ep (V) | ip (mA) | ACtotal | ||
CV for v = 0.1 V/s | Douglas fir | a.u. | a.u. | 1.35 | 0.086 | 1.951 | 0.274 | 0.360 |
Korean fir | 1.05 | 0.039 | 1.25 | 0.167 | 1.91 | 0.529 | 0.735 | |
Scots pine | 1.05 | 0.042 | 1.33 | 0.085 | 1.92 | 0.355 | 0.482 | |
DPV | Douglas fir | a.u. | a.u. | 1.15 | 0.008575 | 1.87 | 0.01845 | 0.027 |
Korean fir | 0.98 | 0.005155 | 1.14 | 0.01798 | 1.84 | 0.02862 | 0.052 | |
Scots pine | 1.05 | 0.005932 | 1.27 | 0.008462 | 1.82 | 0.01842 | 0.021 |
IC50 ABTS (mg/mL) | IC50 DPPH (mg/mL) | EC50 FRAP (mg/mL) | EC50 CUPRAC (mg/mL) | |
---|---|---|---|---|
Douglas fir | 8.47 ± 0.24 | 11.85 ± 0.59 | 10.45 ± 0.52 | 10.51 ± 0.53 |
Scots pine | 8.56 ± 0.43 | 13.82 ± 0.69 | 11.27 ± 0.56 | 10.90 ± 0.55 |
Korean fir | 9.31 ± 0.47 | 15.43 ± 0.77 | 9.32 ± 0.47 | 9.42 ± 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latos-Brozio, M.; Masek, A.; Chrzescijanska, E.; Podsędek, A.; Kajszczak, D. Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods. Antioxidants 2021, 10, 1723. https://doi.org/10.3390/antiox10111723
Latos-Brozio M, Masek A, Chrzescijanska E, Podsędek A, Kajszczak D. Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods. Antioxidants. 2021; 10(11):1723. https://doi.org/10.3390/antiox10111723
Chicago/Turabian StyleLatos-Brozio, Malgorzata, Anna Masek, Ewa Chrzescijanska, Anna Podsędek, and Dominika Kajszczak. 2021. "Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods" Antioxidants 10, no. 11: 1723. https://doi.org/10.3390/antiox10111723
APA StyleLatos-Brozio, M., Masek, A., Chrzescijanska, E., Podsędek, A., & Kajszczak, D. (2021). Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods. Antioxidants, 10(11), 1723. https://doi.org/10.3390/antiox10111723