SNPs Array Karyotyping in Non-Hodgkin Lymphoma
Abstract
:1. Introduction
2. Single Nucleotide Polymorphism (SNP) Array and Its Applications
3. SNP Array Analysis in Non-Hodgkin Lymphoma
3.1. Diffuse Large B Cell Lymphoma
Location | Alteration | Candidate Genes | References |
---|---|---|---|
1q | Gain | CD58 | [38,42,47] |
2 | Gain | REL, BCL11A | [37,38,40,41,42,49] |
3 | Gain | FOXP1 | [42,45] |
6q15 | Loss | BACH2, CASP8AP2 | [39,42] |
6q21 | Loss | PRDM1 | [38,42] |
6q23 | Loss | TNFAIP3 (A20), MAP3K5 | [38,42,47] |
7 | Gain, Loss | - | [37,38,39] |
8p | Loss | - | [41] |
9p21 | Loss | CDKN2A, CDKN2B | [38,47,49] |
9p24 | Gain | JAK2 | [47] |
9q34 | Gain | NOTCH1 | [47] |
9 | Loss | INK4a/ARF | [45] |
10q | Loss | FAS, PTEN | [38,40,45,47] |
10 | Loss | PTEN | [45] |
11p11 | LOH | PTPRJ | [46] |
11q25 | Gain | LOC283177 | [48] |
12 | Gain | CDKN1B | [49] |
12p13 | Gain | FOXM1 | [40] |
12q13 | Gain | MAP3K12 | [40] |
12q | Gain | HDAC7A | [37,42] |
13 | Gain | mir-17-92 | [45] |
13q14 | Gain, Loss | RB1 | [38,49] |
15 | Loss | 53BP1 | [42,44] |
17p | Loss | TP53 | [37,38,40,42,49] |
18q21 | Gain | BCL2 | [37,38,42,49] |
19p13 | Loss | TNFSF7, TNFSF9, CD70 | [38,40,42] |
19q13 | Gain | PRMT1, BCL2L12 | [38] |
3.2. Follicular Lymphoma
Location | Alteration | Candidate Genes | References |
---|---|---|---|
1p32-36 | Loss | - | [56] |
1p36 | Loss | TNFRSF14, PRDM16 | [58,59] |
1p36.22 | Gain | PEX14 | [56] |
1p36.33 | Gain | TNFRSF14 | [59] |
1p36 | CN-LOH | TNFRSF14, PRDM16 | [56,57,58,60,61] |
1q | Gain | - | [56] |
2p16 | Gain | REL, BCL11A | [59] |
3p14 | Loss, Gain | FHIT | [56] |
3q27 * | Gain | BCL6 | [59] |
4q12 | Loss, Gain | KIT | [56] |
5p | Gain | - | [58,59] |
6p | Gain | CCND3 | [56,58,59] |
6p | CN-LOH | - | [56,57,60,61,62] |
6q | Loss | TNFAIP3 | [56,58,59] |
6q | CN-LOH | - | [60,61] |
7p | Gain | CARD11, RNF216 | [56,59] |
8q24 | Gain | MYC | [59] |
9p21 * | Loss | CDKN2A/2B | [56,59] |
9p | Loss | PTPRD | [56] |
10q24 | Loss | LCOR | [56,59] |
10q | CN-LOH | - | [60,61] |
11 * | Gain | - | [59] |
11p11 | LOH | PTPRJ | [46] |
12q | Gain | ARID2, HDAC7, RPAP3 | [56,58,59] |
12q | CN-LOH | - | [56,57,60,61,62] |
15q21 * | Loss | B2M | [59] |
16p | CN-LOH | - | [56,57,60,61] |
17p13 | Loss | TP53 | [59] |
17q | Gain | - | [59] |
18q21 | Gain | MALT1, BCL2 | [56,59] |
21 | Gain | - | [59] |
X | Gain | - | [56,59] |
3.3. Mantle Cell Lymphoma
Location | Alteration | Candidate Genes | References |
---|---|---|---|
1p | Loss | - | [70] |
3q | Gain | SIAH2, PIK3CA, ACTL6A, YEATS2, RFC4, CENTB2, PAK2 | [68,70] |
8p | Loss | ESCO2, CLU, TNFRSF10D, ASAH1 | [70] |
8q | Gain | MYC | [68,69,70] |
9p | Loss | CDKN2A , INK4a | [68,70] |
9q | Loss | FANCC, XPA, RAD23 | [70] |
10p | Gain | BMI1 | [69] |
11q | Loss | ATM, CASP1, CASP4, BIRC2 | [68,69,70] |
12q | Gain | CDK4 | [69] |
13q | Loss | ERCC5, LIG4 | [68,70] |
13q | Gain | miR17-92 | [73] |
15q | Gain | - | [70] |
17p | Loss | TP53 | [68,69,70] |
18q | Gain | BCL2 | [69] |
3.4. Marginal Zone Lymphomas
Malignancy | Location | Alteration | Candidate Genes | References |
---|---|---|---|---|
MZL (all 3 subtypes) | 3q | Gain | NFKBIZ, BCL6 | [74] |
18q | Gain | BCL2, NFATC1 | [74] | |
MALT* | 2p15 | Gain | REL, BCL11A | [75] |
3p | Gain | FOXP1 | [74] | |
6p | Gain | - | [74] | |
6q23 | Loss | TNFAIP3/A20 | [74] | |
8p11 | Gain-Loss | ADAM3A | [75] | |
10q23 | Gain | PTEN | [75] | |
11q24 | Gain | ETS1 | [75] | |
12p12 | Gain | KRAS | [75] | |
15q24 | Gain-Loss | SCAPER | [75] | |
18p | Gain | - | [74] | |
20p13 | Gain-Loss | SIRPB1 | [75] | |
20q13 | Gain | PTPN1 | [75] | |
1p34 | aUPD | PRDX1, MUTYH | [75] | |
1p36.11-12 | aUPD | E2F2, ASAP3 | [75] | |
1q43-q44 | aUPD | AKT3 | [75] | |
2p23-24 | aUPD | TP53I3 | [75] | |
6q21 | aUPD | TRAF3IP2,FYN | [75] | |
17q12 | aUPD | MED1, ERBB2, GRB7, IKZF3 | [75] | |
17q23-24 | aUPD | PECAM1/CD31 | [75] | |
Splenic MZL | 7q | Loss | POT1, MIR29A, MIR29B | [74] |
8p | Loss | - | [74] | |
17p | Loss | TP53 | [74] | |
Ocular adnexal MALT | 6p | Gain | - | [76] |
6q | Loss | - | [76] | |
9p | Loss | - | [76] | |
21q | Gain | - | [76] | |
6q | aUPD | - | [76] |
3.5. Peripheral T Cell Lymphomas
Location | Alteration | Candidate Genes | References |
---|---|---|---|
2p15 | Gain | REL | [81] |
6q21 | Loss | PRDM1 | [82] |
7q21 | Gain | CDK6 | [81] |
8q24 | Gain | EIF3H | [80,81] |
9p21 | Loss | CDKN2A, CDKN2B, MTAP | [80,81] |
9p23 | Gain | - | [80] |
10p11 | Loss | ZEB1, ARHGAP12, KIF5B, EPC1, CCDC7 | [81] |
13q14 | Loss | RB1 | [81] |
17p11 | Loss | - | [81] |
17p13 | Loss | TP53 | [81,82] |
19q13 | Gain | - | [80] |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Skibola, C.F.; Bracci, P.M.; Halperin, E.; Conde, L.; Craig, D.W.; Agana, L.; Iyadurai, K.; Becker, N.; Brooks-Wilson, A.; Curry, J.D.; et al. Genetic variants at 6p21.33 are associated with susceptibility to follicular lymphoma. Nat. Genet. 2009, 41, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Lenz, G.; Staudt, L.M. Aggressive lymphomas. N. Engl. J. Med. 2010, 362, 1417–1429. [Google Scholar] [PubMed]
- Jhanwar, S.C.; Denley, R.C. Genetic abnormalities in non-Hodgkin’s lymphoma as revealed by conventional and molecular cytogenetics methods of analyses. Methods Mol. Biol. 2011, 730, 131–148. [Google Scholar] [PubMed]
- De Leeuw, N.; Hehir-Kwa, J.Y.; Simons, A.; Geurts van Kessel, A.; Smeets, D.F.; Faas, B.H.; Pfundt, R. SNP array analysis in constitutional and cancer genome diagnostics—Copy number variants, genotyping and quality control. Cytogenet. Genome Res. 2011, 135, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Peng, Y.; Liu, J.; Wen, J.; Xia, Y.; Liang, D.; Wu, L. Brief report adult patient presenting an interstitial (9) (q21.32q31.1) direct duplication resulting from the malsegregation of a paternal balanced insertional translocation. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Karampetsou, E.; Morrogh, D.; Chitty, L. Microarray technology for the diagnosis of fetal chromosomal aberrations: Which platform should we use? J. Clin. Med. 2014, 3, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Bacolod, M.D.; Barany, F. Molecular profiling of colon tumors: The search for clinically relevant biomarkers of progression, prognosis, therapeutics, and predisposition. Ann. Surg. Oncol. 2011, 18, 3694–3700. [Google Scholar] [CrossRef] [PubMed]
- Malek, S. Molecular biomarkers in chronic lymphocytic leukemia. Adv. Exp. Med. Biol. 2013, 792, 193–214. [Google Scholar] [PubMed]
- Costantini, M.; Clay, O.; Federico, C.; Saccone, S.; Auletta, F.; Bernardi, G. Human chromosomal bands: Nested structure, high-definition map and molecular basis. Chromosoma 2007, 116, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Najfeld, V. Diagnostic application of FISH to hematological malignancies. Cancer Investig. 2003, 21, 807–814. [Google Scholar] [CrossRef]
- Kallioniemi, A.; Kallioniemi, O.P.; Sudar, D.; Rutovitz, D.; Gray, J.W.; Waldman, F.; Pinkel, D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992, 258, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Pinkel, D.; Albertson, D.G. Comparative genomic hybridization. Ann. Rev. Genom. Hum. Genet. 2005, 6, 331–354. [Google Scholar] [CrossRef]
- Sellick, G.S.; Longman, C.; Tolmie, J.; Newbury-Ecob, R.; Geenhalgh, L.; Hughes, S.; Whiteford, M.; Garrett, C.; Houlston, R.S. Genomewide linkage searches for Mendelian disease loci can be efficiently conducted using high-density SNP genotyping arrays. Nucleic Acids Res. 2004, 32. [Google Scholar] [CrossRef] [PubMed]
- Iacobucci, I.; Lonetti, A.; Papayannidis, C.; Martinelli, G. Use of single nucleotide polymorphism array technology to improve the identification of chromosomal lesions in leukemia. Curr. Cancer Drug Targets 2013, 13, 791–810. [Google Scholar] [CrossRef] [PubMed]
- Gowda, C.; Dovat, S. Genetic targets in pediatric acute lymphoblastic leukemia. Adv. Exp. Med. Biol. 2013, 779, 327–340. [Google Scholar] [PubMed]
- Sato-Otsubo, A.; Sanada, M.; Ogawa, S. Single-nucleotide polymorphism array karyotyping in clinical practice: Where, when, and how? Semin. Oncol. 2012, 39, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, M.J.; Wilmoth, D.M.; Tooke, L.S.; Shaikh, T.H.; Gai, X.; Hakonarson, H.; Biegel, J.A. Implementation of high resolution single nucleotide polymorphism array analysis as a clinical test for patients with hematologic malignancies. Cancer Genet. 2011, 204, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Simons, A.; Sikkema-Raddatz, B.; de Leeuw, N.; Konrad, N.C.; Hastings, R.J.; Schoumans, J. Genome-wide arrays in routine diagnostics of hematological malignancies. Hum. Mutat. 2012, 33, 941–948. [Google Scholar] [CrossRef] [PubMed]
- LaFramboise, T. Single nucleotide polymorphism arrays: A decade of biological, computational and technological advances. Nucleic Acids Res. 2009, 37, 4181–4193. [Google Scholar] [CrossRef] [PubMed]
- Pounds, S.; Cheng, C.; Mullighan, C.; Raimondi, S.C.; Shurtleff, S.; Downing, J.R. Reference alignment of SNP microarray signals for copy number analysis of tumors. Bioinformatics 2009, 25, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Arteaga-Salas, J.M.; Zuzan, H.; Langdon, W.B.; Upton, G.J.; Harrison, A.P. An overview of image-processing methods for Affymetrix GeneChips. Brief. Bioinform. 2008, 9, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin, P.; Maner, S.; Massa, H.; Walker, M.; Chi, M.; et al. Large-scale copy number polymorphism in the human genome. Science 2004, 305, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Iafrate, A.J.; Feuk, L.; Rivera, M.N.; Listewnik, M.L.; Donahoe, P.K.; Qi, Y.; Scherer, S.W.; Lee, C. Detection of large-scale variation in the human genome. Nat. Genet. 2004, 36, 949–951. [Google Scholar] [CrossRef] [PubMed]
- Rovelet-Lecrux, A.; Hannequin, D.; Raux, G.; Le Meur, N.; Laquerriere, A.; Vital, A.; Dumanchin, C.; Feuillette, S.; Brice, A.; Vercelletto, M.; et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 2006, 38, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Fellermann, K.; Stange, D.E.; Schaeffeler, E.; Schmalzl, H.; Wehkamp, J.; Bevins, C.L.; Reinisch, W.; Teml, A.; Schwab, M.; Lichter, P.; et al. A chromosome 8 gene-cluster polymorphism with low human β-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genet. 2006, 79, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Sebat, J.; Lakshmi, B.; Malhotra, D.; Troge, J.; Lese-Martin, C.; Walsh, T.; Yamrom, B.; Yoon, S.; Krasnitz, A.; Kendall, J.; et al. Strong association of de novo copy number mutations with autism. Science 2007, 316, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Hollox, E.J.; Huffmeier, U.; Zeeuwen, P.L.; Palla, R.; Lascorz, J.; Rodijk-Olthuis, D.; van de Kerkhof, P.C.; Traupe, H.; de Jongh, G.; den Heijer, M.; et al. Psoriasis is associated with increased β-defensin genomic copy number. Nat. Genet. 2008, 40, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Simon-Sanchez, J.; Singleton, A. Genome-wide association studies in neurological disorders. Lancet Neurol. 2008, 7, 1067–1072. [Google Scholar] [CrossRef]
- Walsh, T.; McClellan, J.M.; McCarthy, S.E.; Addington, A.M.; Pierce, S.B.; Cooper, G.M.; Nord, A.S.; Kusenda, M.; Malhotra, D.; Bhandari, A.; et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008, 320, 539–543. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, C.; McDevitt, M.A.; Maciejewski, J.P. Copy neutral loss of heterozygosity: A novel chromosomal lesion in myeloid malignancies. Blood 2010, 115, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.T.; Peng, Z.H.; Li, S.; He, L. Loss of heterozygosity analyzed by single nucleotide polymorphism array in cancer. World J. Gastroenterol. 2005, 11, 6740–6744. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, J.P.; Mufti, G.J. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood 2008, 112, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.K.; DiFrancesco, L.M.; Ogilvie, R.T.; Demetrick, D.J. Loss of heterozygosity associated with uniparental disomy in breast carcinoma. Mod. Pathol. 2002, 15, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Tuna, M.; Ju, Z.; Smid, M.; Amos, C.I.; Mills, G.B. Prognostic relevance of acquired uniparental disomy in serous ovarian cancer. Mol. Cancer 2015, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenwald, A.; Wright, G.; Chan, W.C.; Connors, J.M.; Campo, E.; Fisher, R.I.; Gascoyne, R.D.; Muller-Hermelink, H.K.; Smeland, E.B.; Giltnane, J.M.; et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002, 346, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Wessendorf, S.; Schwaenen, C.; Kohlhammer, H.; Kienle, D.; Wrobel, G.; Barth, T.F.; Nessling, M.; Moller, P.; Dohner, H.; Lichter, P.; et al. Hidden gene amplifications in aggressive B-cell non-Hodgkin lymphomas detected by microarray-based comparative genomic hybridization. Oncogene 2003, 22, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Morin, R.D.; Mungall, K.; Pleasance, E.; Mungall, A.J.; Goya, R.; Huff, R.D.; Scott, D.W.; Ding, J.; Roth, A.; Chiu, R.; et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 2013, 122, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Monti, S.; Chapuy, B.; Takeyama, K.; Rodig, S.J.; Hao, Y.; Yeda, K.T.; Inguilizian, H.; Mermel, C.; Currie, T.; Dogan, A.; et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 2012, 22, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Pasqualucci, L.; Trifonov, V.; Fabbri, G.; Ma, J.; Rossi, D.; Chiarenza, A.; Wells, V.A.; Grunn, A.; Messina, M.; Elliot, O.; et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 2011, 43, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Aya-Bonilla, C.; Gandhi, M.K.; Lea, R.A.; Wellwood, J.; Wood, P.; Marlton, P.; Griffiths, L.R. Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin’s lymphoma. Genes Chromosom. Cancer 2011, 50, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, M.; Mian, M.; Greiner, T.C.; Rancoita, P.M.; De Campos, C.P.; Chan, W.C.; Vose, J.M.; Chigrinova, E.; Inghirami, G.; Chiappella, A.; et al. Genomic lesions associated with a different clinical outcome in diffuse large B-Cell lymphoma treated with R-CHOP-21. Br. J. Haematol. 2010, 151, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Scholtysik, R.; Kreuz, M.; Hummel, M.; Rosolowski, M.; Szczepanowski, M.; Klapper, W.; Loeffler, M.; Trumper, L.; Siebert, R.; Kuppers, R.; et al. Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis. Int. J. Cancer 2015, 136, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Scholtysik, R.; Nagel, I.; Kreuz, M.; Vater, I.; Giefing, M.; Schwaenen, C.; Wessendorf, S.; Trumper, L.; Loeffler, M.; Siebert, R.; et al. Recurrent deletions of the TNFSF7 and TNFSF9 genes in 19p13.3 in diffuse large B-cell and Burkitt lymphomas. Int. J. Cancer 2012, 131, E830–E835. [Google Scholar] [CrossRef] [PubMed]
- Takeyama, K.; Monti, S.; Manis, J.P.; Dal Cin, P.; Getz, G.; Beroukhim, R.; Dutt, S.; Aster, J.C.; Alt, F.W.; Golub, T.R.; et al. Integrative analysis reveals 53BP1 copy loss and decreased expression in a subset of human diffuse large B-cell lymphomas. Oncogene 2008, 27, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Lenz, G.; Wright, G.W.; Emre, N.C.; Kohlhammer, H.; Dave, S.S.; Davis, R.E.; Carty, S.; Lam, L.T.; Shaffer, A.L.; Xiao, W.; et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 13520–13525. [Google Scholar] [CrossRef] [PubMed]
- Aya-Bonilla, C.; Green, M.R.; Camilleri, E.; Benton, M.; Keane, C.; Marlton, P.; Lea, R.; Gandhi, M.K.; Griffiths, L.R. High-resolution loss of heterozygosity screening implicates PTPRJ as a potential tumor suppressor gene that affects susceptibility to Non-Hodgkin’s lymphoma. Genes Chromosom. Cancer 2013, 52, 467–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, L.M.; Thodima, V.; Friedman, J.; Ma, C.; Guttapalli, A.; Mendiratta, G.; Siddiqi, I.N.; Syrbu, S.; Chaganti, R.S.; Houldsworth, J. Cross-platform assessment of genomic imbalance confirms the clinical relevance of genomic complexity and reveals loci with potential pathogenic roles in diffuse large B-Cell lymphoma. Leuk. Lymphoma 2015, 21, 1–27. [Google Scholar]
- Conde, L.; Riby, J.; Zhang, J.; Bracci, P.M.; Skibola, C.F. Copy number variation analysis on a non-hodgkin lymphoma case-control study identifies an 11q25 duplication associated with diffuse large B-cell lymphoma. PLoS ONE 2014, 9, e105382. [Google Scholar] [CrossRef] [PubMed]
- Jardin, F.; Jais, J.P.; Molina, T.J.; Parmentier, F.; Picquenot, J.M.; Ruminy, P.; Tilly, H.; Bastard, C.; Salles, G.A.; Feugier, P.; et al. Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: A GELA study. Blood 2010, 116, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Pileri, S.A.; Ascani, S.; Sabattini, E.; Fraternali-Orcioni, G.; Poggi, S.; Piccioli, M.; Piccaluga, P.P.; Gamberi, B.; Zinzani, P.L.; Leoncini, L.; et al. The pathologist’s view point. Part I—Indolent lymphomas. Haematologica 2000, 85, 1291–1307. [Google Scholar] [PubMed]
- Klein, U.; Dalla-Favera, R. Germinal centres: Role in B-cell physiology and malignancy. Nat. Rev. Immunol. 2008, 8, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Climent, J.A.; Alizadeh, A.A.; Segraves, R.; Blesa, D.; Rubio-Moscardo, F.; Albertson, D.G.; Garcia-Conde, J.; Dyer, M.J.; Levy, R.; Pinkel, D.; et al. Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood 2003, 101, 3109–3117. [Google Scholar] [CrossRef] [PubMed]
- Piccaluga, P.P.; Califano, A.; Klein, U.; Agostinelli, C.; Bellosillo, B.; Gimeno, E.; Serrano, S.; Sole, F.; Zang, Y.; Falini, B.; et al. Gene expression analysis provides a potential rationale for revising the histological grading of follicular lymphomas. Haematologica 2008, 93, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Tilly, H.; Rossi, A.; Stamatoullas, A.; Lenormand, B.; Bigorgne, C.; Kunlin, A.; Monconduit, M.; Bastard, C. Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood 1994, 84, 1043–1049. [Google Scholar] [PubMed]
- Leich, E.; Salaverria, I.; Bea, S.; Zettl, A.; Wright, G.; Moreno, V.; Gascoyne, R.D.; Chan, W.C.; Braziel, R.M.; Rimsza, L.M.; et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood 2009, 114, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.J.; Delaney, A.; Ben-Neriah, S.; Schein, J.; Lee, T.; Shah, S.P.; Cheung, D.; Johnson, N.A.; Mungall, A.J.; Telenius, A.; et al. High resolution analysis of follicular lymphoma genomes reveals somatic recurrent sites of copy-neutral loss of heterozygosity and copy number alterations that target single genes. Genes Chromosom. Cancer 2010, 49, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.J.; Rogic, S.; Ben-Neriah, S.; Boyle, M.; Connors, J.M.; Gascoyne, R.D.; Horsman, D.E. SNP analysis of minimally evolved t(14;18)(q32;q21)-positive follicular lymphomas reveals a common copy-neutral loss of heterozygosity pattern. Cytogenet. Genome Res. 2012, 136, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.J.; Shah, S.P.; Steidl, C.; Johnson, N.; Relander, T.; Telenius, A.; Lai, B.; Murphy, K.P.; Lam, W.; Al-Tourah, A.J.; et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood 2009, 113, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Bouska, A.; McKeithan, T.W.; Deffenbacher, K.E.; Lachel, C.; Wright, G.W.; Iqbal, J.; Smith, L.M.; Zhang, W.; Kucuk, C.; Rinaldi, A.; et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 2014, 123, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.W.; Ouillette, P.D.; Saddler, C.M.; Shedden, K.A.; Malek, S.N. Comprehensive analysis of copy number and allele status identifies multiple chromosome defects underlying follicular lymphoma pathogenesis. Clin. Cancer Res. 2007, 13, 4777–4785. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, D.; O’Riain, C.; Gupta, M.; Waters, R.; Yang, Y.; Wrench, D.; Gribben, J.; Rosenwald, A.; Ott, G.; Rimsza, L.M.; et al. Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood 2009, 113, 2298–2301. [Google Scholar] [CrossRef] [PubMed]
- Fitzgibbon, J.; Iqbal, S.; Davies, A.; O'Shea, D.; Carlotti, E.; Chaplin, T.; Matthews, J.; Raghavan, M.; Norton, A.; Lister, T.A.; et al. Genome-wide detection of recurring sites of uniparental disomy in follicular and transformed follicular lymphoma. Leukemia 2007, 21, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Aubry, J.F.; Cheung, J.; Morin, O.; Beaulieu, L.; Hsu, I.C.; Pouliot, J. Investigation of geometric distortions on magnetic resonance and cone beam computed tomography images used for planning and verification of high-dose rate brachytherapy cervical cancer treatment. Brachytherapy 2010, 9, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Furtado, M.; Rule, S. Indolent mantle cell lymphoma. Haematologica 2011, 96, 1086–1088. [Google Scholar] [CrossRef] [PubMed]
- Ondrejka, S.L.; Lai, R.; Smith, S.D.; Hsi, E.D. Indolent mantle cell leukemia: A clinicopathological variant characterized by isolated lymphocytosis, interstitial bone marrow involvement, κ light chain restriction, and good prognosis. Haematologica 2011, 96, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Lovec, H.; Grzeschiczek, A.; Kowalski, M.B.; Moroy, T. Cyclin D1/bcl-1 cooperates with MYC genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994, 13, 3487–3495. [Google Scholar] [PubMed]
- Hirt, C.; Schuler, F.; Dolken, L.; Schmidt, C.A.; Dolken, G. Low prevalence of circulating t(11;14)(q13;q32)-positive cells in the peripheral blood of healthy individuals as detected by real-time quantitative PCR. Blood 2004, 104, 904–905. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, V.; Salamero, O.; Espinet, B.; Sole, F.; Royo, C.; Navarro, A.; Camacho, F.; Bea, S.; Hartmann, E.; Amador, V.; et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010, 70, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Royo, C.; Salaverria, I.; Hartmann, E.M.; Rosenwald, A.; Campo, E.; Bea, S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin. Cancer Biol. 2011, 21, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Salaverria, I.; Zettl, A.; Bea, S.; Moreno, V.; Valls, J.; Hartmann, E.; Ott, G.; Wright, G.; Lopez-Guillermo, A.; Chan, W.C.; et al. Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J. Clin. Oncol. 2007, 25, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Setoodeh, R.; Schwartz, S.; Papenhausen, P.; Zhang, L.; Sagatys, E.M.; Moscinski, L.C.; Shao, H. Double-hit mantle cell lymphoma with MYC gene rearrangement or amplification: A report of four cases and review of the literature. Int. J. Clin. Exp. Pathol. 2013, 6, 155–167. [Google Scholar] [PubMed]
- Rubio-Moscardo, F.; Climent, J.; Siebert, R.; Piris, M.A.; Martin-Subero, J.I.; Nielander, I.; Garcia-Conde, J.; Dyer, M.J.; Terol, M.J.; Pinkel, D.; et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood 2005, 105, 4445–4454. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, N.; Ogawa, S.; Gueller, S.; Ross, S.H.; Huynh, T.; Chen, J.; Chang, A.; Nabavi-Nouis, S.; Megrabian, N.; Siebert, R.; et al. Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array. Exp. Hematol. 2009, 37, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, A.; Mian, M.; Chigrinova, E.; Arcaini, L.; Bhagat, G.; Novak, U.; Rancoita, P.M.; De Campos, C.P.; Forconi, F.; Gascoyne, R.D.; et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 2011, 117, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Flossbach, L.; Holzmann, K.; Mattfeldt, T.; Buck, M.; Lanz, K.; Held, M.; Moller, P.; Barth, T.F. High-resolution genomic profiling reveals clonal evolution and competition in gastrointestinal marginal zone B-cell lymphoma and its large cell variant. Int. J. Cancer 2013, 132, E116–E127. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Usui, Y.; Ueda, S.; Yamakawa, N.; Sato-Otsubo, A.; Sato, Y.; Ogawa, S.; Goto, H. Genome-wide analysis of ocular adnexal lymphoproliferative disorders using high-resolution single nucleotide polymorphism array. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4156–4165. [Google Scholar] [CrossRef] [PubMed]
- Pileri, S.A.; Piccaluga, P.P. New molecular insights into peripheral T cell lymphomas. J. Clin. Investig. 2012, 122, 3448–3455. [Google Scholar] [CrossRef] [PubMed]
- Piccaluga, P.P.; Tabanelli, V.; Pileri, S.A. Molecular genetics of peripheral T-cell lymphomas. Int. J. Hematol. 2014, 99, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, C.; Piccaluga, P.P.; Went, P.; Rossi, M.; Gazzola, A.; Righi, S.; Sista, T.; Campidelli, C.; Zinzani, P.L.; Falini, B.; et al. Peripheral T cell lymphoma, not otherwise specified: The stuff of genes, dreams and therapies. J. Clin. Pathol. 2008, 61, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.I.; Yamashita, Y.; Nakamura, N.; Choi, Y.L.; Ueno, T.; Watanabe, H.; Kurashina, K.; Soda, M.; Enomoto, M.; Hatanaka, H.; et al. High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia 2008, 22, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Gesk, S.; Scholtysik, R.; Kreuz, M.; Bug, S.; Vater, I.; Doring, C.; Cogliatti, S.; Parrens, M.; Merlio, J.P.; et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br. J. Haematol. 2010, 148, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Boi, M.; Rinaldi, A.; Kwee, I.; Bonetti, P.; Todaro, M.; Tabbo, F.; Piva, R.; Rancoita, P.M.; Matolcsy, A.; Timar, B.; et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood 2013, 122, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Delgado, B.; Cuadros, M.; Honrado, E.; Ruiz de la Parte, A.; Roncador, G.; Alves, J.; Castrillo, J.M.; Rivas, C.; Benitez, J. Differential expression of NF-κB pathway genes among peripheral T-cell lymphomas. Leukemia 2005, 19, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Piccaluga, P.P.; Agostinelli, C.; Califano, A.; Rossi, M.; Basso, K.; Zupo, S.; Went, P.; Klein, U.; Zinzani, P.L.; Baccarani, M.; et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J. Clin. Investig. 2007, 117, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Piccaluga, P.P.; Agostinelli, C.; Califano, A.; Carbone, A.; Fantoni, L.; Ferrari, S.; Gazzola, A.; Gloghini, A.; Righi, S.; Rossi, M.; et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 2007, 67, 10703–10710. [Google Scholar] [CrossRef] [PubMed]
- Odqvist, L.; Sanchez-Beato, M.; Montes-Moreno, S.; Martin-Sanchez, E.; Pajares, R.; Sanchez-Verde, L.; Ortiz-Romero, P.L.; Rodriguez, J.; Rodriguez-Pinilla, S.M.; Iniesta-Martinez, F.; et al. NIK controls classical and alternative NF-κB activation and is necessary for the survival of human T-cell lymphoma cells. Clin. Cancer Res. 2013, 19, 2319–2330. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Young, B.D.; Lu, Y.J. The application of single nucleotide polymorphism microarrays in cancer research. Curr. Genomics 2007, 8, 219–228. [Google Scholar] [PubMed]
- Srebniak, M.I.; Boter, M.; Oudesluijs, G.O.; Cohen-Overbeek, T.; Govaerts, L.C.; Diderich, K.E.; Oegema, R.; Knapen, M.F.; van de Laar, I.M.; Joosten, M.; et al. Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities. Mol. Cytogenet. 2012, 5. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Banks, T.W.; Cloutier, S. SNP Discovery through next-generation sequencing and its applications. Int. J. Plant Genomics 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.; Paul, J.S.; Albrechtsen, A.; Song, Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 2011, 12, 443–451. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etebari, M.; Navari, M.; Piccaluga, P.P. SNPs Array Karyotyping in Non-Hodgkin Lymphoma. Microarrays 2015, 4, 551-569. https://doi.org/10.3390/microarrays4040551
Etebari M, Navari M, Piccaluga PP. SNPs Array Karyotyping in Non-Hodgkin Lymphoma. Microarrays. 2015; 4(4):551-569. https://doi.org/10.3390/microarrays4040551
Chicago/Turabian StyleEtebari, Maryam, Mohsen Navari, and Pier Paolo Piccaluga. 2015. "SNPs Array Karyotyping in Non-Hodgkin Lymphoma" Microarrays 4, no. 4: 551-569. https://doi.org/10.3390/microarrays4040551
APA StyleEtebari, M., Navari, M., & Piccaluga, P. P. (2015). SNPs Array Karyotyping in Non-Hodgkin Lymphoma. Microarrays, 4(4), 551-569. https://doi.org/10.3390/microarrays4040551