Particle-Based Microarrays of Oligonucleotides and Oligopeptides
Abstract
:1. Introduction
2. Particle-Based Oligonucleotide Arrays
2.1. Illumina Arrays
2.2. Particle-Based Emulsion PCR
2.3. Particle-Based Arrays for Sequencing
Method | Throughput Mb/day | Read Length bp | Quality % | Costs $/Mb |
---|---|---|---|---|
454/Roche | 750 | ~400 | 99.9 | ~20 |
Illumina/Solexa | 5,000 | ~100 | 98 | ~0.5 |
3. Particle-Based Peptide Arrays
3.1. Amino Acid Particles and Xerographic Methods
3.2. Combinatorial Laser Fusing of Amino Acid Particles
4. Conclusions
Acknowledgments
Conflicts of Interest
References and Notes
- Frank, R. Spot-synthesis—An easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 1992, 48, 9217–9232. [Google Scholar] [CrossRef]
- Frank, R. The SPOT synthesis technique—Synthetic peptide arrays on membrane supports—Principles and applications. J. Immunol. Methods 2002, 267, 13–26. [Google Scholar] [CrossRef] [PubMed]
- JPT. Available online: http://www.jpt.com/ (accessed on 1 September 2014).
- Fodor, S.P.A.; Read, J.L.; Pirrung, M.C.; Stryer, L.; Lu, A.T.; Solas, D. Light-directed, spatially addressable parallel chemical synthesis. Science 1991, 251, 767–773. [Google Scholar] [CrossRef]
- Affimetryx. Available online: http://www.affymetrix.com/estore/ (accessed on 1 September 2014).
- Furka, A.; Sebestyen, F.; Asgedom, M.; Dibo, G. General-method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 1991, 37, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.S.; Salmon, S.E.; Hersh, E.M.; Hruby, V.J.; Kazmierski, W.M.; Knapp, R.J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991, 354, 82–84. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, R.B. Solid phase peptide synthesis.1. Synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar]
- Merrifield, R.B. Solid-phase synthesis (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1985, 24, 799–810. [Google Scholar] [CrossRef]
- Katz, C.; Levy-Beladev, L.; Rotem-Bamberger, S.; Rito, T.; Rudiger, S.G.D.; Friedler, A. Studying protein-protein interactions using peptide arrays. Chem. Soc. Rev. 2011, 40, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Dressman, D.; Yan, H.; Traverso, G.; Kinzler, K.W.; Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA 2003, 100, 8817–8822. [Google Scholar] [CrossRef]
- Illumina. Available online: http://www.illumina.com/ (accessed on 1 September 2014).
- Steinberg, G.; Stromsborg, K.; Thomas, L.; Barker, D.; Zhao, C.F. Strategies for covalent attachment of DNA to beads. Biopolymers 2004, 73, 597–605. [Google Scholar] [CrossRef]
- Steemers, F.J.; Ferguson, J.A.; Walt, D.R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat. Biotechnol. 2000, 18, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Walt, D.R. Molecular biology—Bead-based fiber-optic arrays. Science 2000, 287, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.C.; Walt, D.R. Application of high-density optical microwell arrays in a live-cell biosensing system. Anal. Biochem. 2000, 278, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.A.; Steemers, F.J.; Walt, D.R. High-density fiber-optic DNA random microsphere array. Anal. Chem. 2000, 72, 5618–5624. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, K.L.; Kruglyak, S.; Graige, M.S.; Garcia, F.; Kermani, B.G.; Zhao, C.F.; Che, D.P.; Dickinson, T.; Wickham, E.; Bierle, J.; et al. Decoding randomly ordered DNA arrays. Genome Res. 2004, 14, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.R.; Ferguson, J.A.; Lee, K.H.; Walt, D.R. Combinatorial decoding: An approach for universal DNA array fabrication. J. Am. Chem. Soc. 2003, 125, 13753–13759. [Google Scholar] [CrossRef]
- Brenner, S.; Johnson, M.; Bridgham, J.; Golda, G.; Lloyd, D.H.; Johnson, D.; Luo, S.J.; McCurdy, S.; Foy, M.; Ewan, M.; et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 2000, 18, 630–634. [Google Scholar] [CrossRef]
- Shendure, J.; Porreca, G.J.; Reppas, N.B.; Lin, X.X.; McCutcheon, J.P.; Rosenbaum, A.M.; Wang, M.D.; Zhang, K.; Mitra, R.D.; Church, G.M. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005, 309, 1728–1732. [Google Scholar] [CrossRef]
- Kim, J.B.; Porreca, G.J.; Song, L.; Greenway, S.C.; Gorham, J.M.; Church, G.M.; Seidman, C.E.; Seidman, J.G. Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 2007, 316, 1481–1484. [Google Scholar] [CrossRef]
- Leamon, J.H.; Lee, W.L.; Tartaro, K.R.; Lanza, J.R.; Sarkis, G.J.; deWinter, A.D.; Berka, J.; Lohman, K.L. A massively parallel PicoTiterPlate (TM) based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 2003, 24, 3769–3777. [Google Scholar] [CrossRef]
- Metzker, M.L. Applications of next-generation sequencing, sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Michael, K.L.; Taylor, L.C.; Schultz, S.L.; Walt, D.R. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem. 1998, 70, 1242–1248. [Google Scholar] [CrossRef]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.J.; Chen, Z.T.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [Google Scholar]
- Nyren, P. The history of pyrosequencing. Methods Mol Biol. 2007, 373, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef]
- Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138. [Google Scholar] [CrossRef]
- Kircher, M.; Kelso, J. High-throughput DNA sequencing—Concepts and limitations. Bioessays 2010, 32, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Fedurco, M.; Romieu, A.; Williams, S.; Lawrence, I.; Turcatti, G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucl. Acids Res. 2006, 34, e22. [Google Scholar] [CrossRef]
- Next generation sequencing market expected to grow to $2.7 billion by 2017. Pharma Letter. 4 July 2013. Available online: http://www.thepharmaletter.com/ (accessed on 4 July 2013).
- Pareek, C.S.; Smoczynski, R.; Tretyn, A. Sequencing technologies and genome sequencing. J. Appl. Genet. 2011, 52, 413–435. [Google Scholar] [CrossRef] [PubMed]
- Chapin, S.C.; Appleyard, D.C.; Pregibon, D.C.; Doyle, P.S. Rapid microRNA profiling on encoded gel microparticles. Angew. Chem. Int. Ed. 2011, 50, 2289–2293. [Google Scholar] [CrossRef]
- Nolan, J.P.; Sklar, L.A. Suspension array technology: Evolution of the flat-array paradigm. Trends Biotechnol. 2002, 20, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Akhras, M.S.; Pettersson, E.; Diamond, L.; Unemo, M.; Okamoto, J.; Davis, R.W.; Pourmand, N. The sequencing bead array (SBA), a next-generation digital suspension array. PLoS One 2013, 8, e76696. [Google Scholar] [CrossRef] [PubMed]
- Pregibon, D.C.; Toner, M.; Doyle, P.S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315, 1393–1396. [Google Scholar] [CrossRef] [PubMed]
- Beyer, M.; Nesterov, A.; Block, I.; Konig, K.; Felgenhauer, T.; Fernandez, S.; Leibe, K.; Torralba, G.; Hausmann, M.; Trunk, U.; et al. Combinatorial synthesis of peptide arrays onto a microchip. Science 2007, 318, 1888–1888. [Google Scholar] [PubMed]
- Borsenberger, P.M.; Weiss, D.S. Organic Photoreceptors for Imaging Systems; Optical Engineering; M. Dekker: New York, NY, USA, 1993; Volume xvi, p. 447. [Google Scholar]
- Pai, D.M.; Springett, B.E. Physics of Electrophotography. Rev. Modern Phys. 1993, 65, 163–211. [Google Scholar] [CrossRef]
- Löffler, F.; Cheng, Y.-C.; Förtsch, T.; Dörsam, E.; Bischoff, R.; Breitling, F.; Nesterov-Müller, A. Biofunctional xerography. In Biotechnology of Biopolymers; Elnashar, M., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Feinberg, R.S.; Merrifie, R.B. Zinc chloride-catalyzed chloromethylation of resins for solid-phase peptide-synthesis. Tetrahedron 1974, 30, 3209–3212. [Google Scholar] [CrossRef]
- Stadler, V.; Felgenhauer, T.; Beyer, M.; Fernandez, S.; Leibe, K.; Guttler, S.; Groning, M.; Konig, K.; Torralba, G.; Hausmann, M.; et al. Combinatorial synthesis of peptide arrays with a laser printer. Angew. Chem. Int. Ed. Engl. 2008, 47, 7132–7135. [Google Scholar] [CrossRef] [PubMed]
- Pepperprint. Available online: http://www.pepperprint.com/ (accessed on 1 September 2014).
- Loeffler, F.F.; Cheng, Y.C.; Muenster, B.; Striffler, J.; Liu, F.C.; Ralf Bischoff, F.; Doersam, E.; Breitling, F.; Nesterov-Mueller, A. Printing Peptide arrays with a complementary metal oxide semiconductor chip. Adv. Biochem. Eng. Biotechnol. 2013, 137, 1–23. [Google Scholar] [PubMed]
- Löffler, F.; Wagner, J.; König, K.; Märkle, F.; Fernandez, S.; Schirwitz, C.; Torralba, G.; Hausmann, M.; Lindenstruth, V.; Bischoff, F.R.; et al. High-precision combinatorial deposition of micro particle patterns on a microelectronic chip. Aerosol. Sci. Technol. 2011, 45, 65–74. [Google Scholar] [CrossRef]
- Loeffler, F.; Schirwitz, C.; Wagner, J.; Koenig, K.; Maerkle, F.; Torralba, G.; Hausmann, M.; Bischoff, F.R.; Nesterov-Mueller, A.; Breitling, F. Biomolecule Arrays using functional combinatorial particle patterning on microchips. Adv. Funct. Mater. 2012, 22, 2503–2508. [Google Scholar] [CrossRef]
- Schmidt, R.; Jacak, J.; Schirwitz, C.; Stadler, V.; Michel, G.; Marme, N.; Schutz, G.J.; Hoheisel, J.D.; Knemeyer, J.P. Single-molecule detection on a protein-array assay platform for the exposure of a tuberculosis antigen. J. Proteome Res. 2011, 10, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Stafford, P.; Halperin, R.; Legutki, J.B.; Magee, D.M.; Galgiani, J.; Johnston, S.A. Physical characterization of the “Immunosignaturing Effect”. Mol. Cell. Proteomics 2012, 11. [Google Scholar] [CrossRef] [PubMed]
- Grillberger, R.; Casina, V.C.; Turecek, P.L.; Zheng, X.L.; Rottensteiner, H.; Scheiflinger, F. Anti-ADAMTS13 IgG autoantibodies present in healthy individuals share linear epitopes with those in patients with thrombotic thrombocytopenic purpura. Haematologica 2014, 99, E58–E60. [Google Scholar] [CrossRef] [PubMed]
- Musset, L.; Miyara, M.; Benveniste, O.; Charuel, J.L.; Shikhman, A.; Boyer, O.; Fowler, R.; Mammen, A.; Phillips, J.; Mahler, M. Analysis of Autoantibodies to 3-Hydroxy-3-methylglutaryl-coenzyme a reductase using different technologies. J. Immunol. Res. 2014. [Google Scholar] [CrossRef]
- Borgwardt, D.S.; Martin, A.D.; Van Hemert, J.R.; Yang, J.Y.; Fischer, C.L.; Recker, E.N.; Nair, P.R.; Vidva, R.; Chandrashekaraiah, S.; Progulske-Fox, A.; et al. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses. Sci. Rep. 2014, 4, 3904. [Google Scholar] [CrossRef] [PubMed]
- Nesterov, A.; Konig, K.; Felgenhauer, T.; Lindenstruth, V.; Trunk, U.; Fernandez, S.; Hausmann, M.; Bischoff, F.R.; Breitling, F.; Stadler, V. Precise selective deposition of microparticles on electrodes of microelectronic chips. Rev. Sci. Instrum. 2008, 79, 035106. [Google Scholar] [CrossRef] [PubMed]
- Maerkle, F.; Loeffler, F.F.; Schillo, S.; Foertsch, T.; Muenster, B.; Striffler, J.; Schirwitz, C.; Bischoff, F.R.; Breitling, F.; Nesterov-Mueller, A. High-density peptide arrays with combinatorial laser fusing. Adv. Mater. 2014, 26, 3730–3734. [Google Scholar] [CrossRef] [PubMed]
- Maerkle, F. Laserbasierte Verfahren zur Herstellung hochdichter Peptidarrays Schriften des Instituts für Mikrostrukturtechnik. Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2014; KIT Scientific Publishing, Karlsruhe, Germany, 2014.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesterov-Mueller, A.; Maerkle, F.; Hahn, L.; Foertsch, T.; Schillo, S.; Bykovskaya, V.; Sedlmayr, M.; Weber, L.K.; Ridder, B.; Soehindrijo, M.; Muenster, B.; Striffler, J.; Bischoff, F.R.; Breitling, F.; Loeffler, F.F. Particle-Based Microarrays of Oligonucleotides and Oligopeptides. Microarrays 2014, 3, 245-262. https://doi.org/10.3390/microarrays3040245
Nesterov-Mueller A, Maerkle F, Hahn L, Foertsch T, Schillo S, Bykovskaya V, Sedlmayr M, Weber LK, Ridder B, Soehindrijo M, Muenster B, Striffler J, Bischoff FR, Breitling F, Loeffler FF. Particle-Based Microarrays of Oligonucleotides and Oligopeptides. Microarrays. 2014; 3(4):245-262. https://doi.org/10.3390/microarrays3040245
Chicago/Turabian StyleNesterov-Mueller, Alexander, Frieder Maerkle, Lothar Hahn, Tobias Foertsch, Sebastian Schillo, Valentina Bykovskaya, Martyna Sedlmayr, Laura K. Weber, Barbara Ridder, Miriam Soehindrijo, Bastian Muenster, Jakob Striffler, F. Ralf Bischoff, Frank Breitling, and Felix F. Loeffler. 2014. "Particle-Based Microarrays of Oligonucleotides and Oligopeptides" Microarrays 3, no. 4: 245-262. https://doi.org/10.3390/microarrays3040245