Molecular Diagnostic Applications in Colorectal Cancer
Abstract
:1. Introduction
Name/Method Target | Intended Use | Detected Property | Source Material | Molecular Method | Use/Availability |
---|---|---|---|---|---|
KRAS | therapeutic decision EGFR targeted therapy | KRAS mutations | FFPE or snap frozen tissue | Sequencing | clinical routine |
KRAS | therapeutic decision EGFR targeted therapy | KRAS mutations | FFPE or snap frozen tissue | SnaPshot/strip assay, COLD-PCR, ARMS, PNA clamping; Digital PCR | studies |
BRAF | chemotherapeutic susceptibility | BRAF mutations | FFPE or snap frozen tissue | sequencing, Real-time PCR | clinical routine |
BRAF | chemotherapeutic susceptibility | BRAF mutations | FFPE or snap frozen tissue | Digital PCR, COLD-PCR | studies |
MSI status PCR | chemotherapeutic susceptibility | MSI status | FFPE or snap frozen tissue | PCR | clinical routine |
MSI status IHC | chemotherapeutic susceptibility | MSI status | FFPE tissue | IHC | clinical routine |
MSI status 64 gene signature | chemotherapeutic susceptibility | MSI status | FFPE or snap frozen tissue | microarray | studies |
MSI status miRNA | chemotherapeutic susceptibility | MSI status | FFPE or snap frozen tissue | oligonucleotide microarray | studies |
TP53 mutation | screening | p53 mutation analysis | FFPE or snap frozen tissue | sequencing | clinical routine |
TP53 mutation | screening | p53 mutation analysis | FFPE or snap frozen tissue | oligonucleotide microarray | studies |
CIMP | probable screening/staging | methylation | FFPE or snap frozen tissue | methylation microarray | studies |
Colo Print® | outcome and/or relapse prediction | 18-gene expression signature | fresh tumor tissue | Agilent 44K oligonucleotide arrays | studies |
CRC subtype gene expression profile | chemotherapeutic susceptibility, subtyping | gene signature, intended for IHC/qRT-PCR | tumor tissue | sequencing, IHC | studies |
NGS | therapeutic decision EGFR targeted therapy; subtyping | driver mutations | tumor tissue | parallel sequencing | studies |
multiplex-serum protein array | screening | serum markers | blood serum | protein array | studies |
miRNA assay for blood/stool | screening | miRNA expression level | plasma, stool | micro array | studies |
Multitarget stool DNA test | screening, increasing sensitivity for colonoscopy | KRAS mutation, NDRG4, BMP3 methylation, hemoglobin immunoassay | stool | mutation and methylation analysis, immunoassay | under approval for clinical use |
Epi proColon early detection assay | screening, increasing sensitivity for colonoscopy | Septin 9 DNA methylation assay | blood plasma | Real-time PCR | available for clinical use |
2. Activation of the Proto-Oncogenes KRAS and BRAF in Colorectal Cancer
3. Detection of Patients with Microsatellite Instability Phenotype
4. Somatic TP53 (p53) Mutations in Colorectal Cancer
5. Enabling Diagnostic Technologies Based on Epigenetic Changes and Post-Translational Modifications in CRC
6. Prediction of Disease Relapse in Stage II CRC Patients
7. Defining CRC Subtypes Based on Gene Expression Profiles
8. microRNAs in CRC
9. Detection of Circulating Tumor DNA in CRC
10. Future Application of Next Generation Sequencing in CRC
11. Early Detection of CRC
12. Conclusions
Author Contributions
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Bunger, S.; Haug, U.; Kelly, M.; Posorski, N.; Klempt-Giessing, K.; Cartwright, A.; Fitzgerald, S.P.; Tone, V.; McAleer, D.; Gemoll, T.; et al. A novel multiplex-protein array for serum diagnostics of colon cancer: A case-control study. BMC Cancer 2012, 12. [Google Scholar] [CrossRef]
- Maak, M.; Simon, I.; Nitsche, U.; Roepman, P.; Snel, M.; Glas, A.M.; Schuster, T.; Keller, G.; Zeestraten, E.; Goossens, I.; et al. Independent validation of a prognostic genomic signature (ColoPrint) for patients with stage II colon cancer. Ann. Surg. 2013, 257, 1053–1058. [Google Scholar] [CrossRef]
- Neumann, J.; Zeindl-Eberhart, E.; Kirchner, T.; Jung, A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol. Res. Pract. 2009, 205, 858–862. [Google Scholar] [CrossRef]
- Barbacid, M. Ras genes. Annu. Rev. Biochem. 1987, 56, 779–827. [Google Scholar] [CrossRef]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 2008, 359, 1757–1765. [Google Scholar] [CrossRef]
- Farina, S.A.; Moerland, E.; de Bruyne, H.; de Graaf, H.; Vrancken, T.; van Lijnschoten, G.; van den Brule, A.J. SNaPshot and StripAssay as valuable alternatives to direct sequencing for KRAS mutation detection in colon cancer routine diagnostics. J. Mol. Diagn. 2011, 13, 199–205. [Google Scholar]
- Nordgard, O.; Oltedal, S.; Janssen, E.A.; Gilje, B.; Korner, H.; Tjensvoll, K.; Smaaland, R. Comparison of a PNA clamp PCR and an ARMS/Scorpion PCR assay for the detection of K-ras mutations. Diagn. Mol. Pathol. 2012, 21, 9–13. [Google Scholar] [CrossRef]
- Rajagopalan, H.; Bardelli, A.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002, 418, 934. [Google Scholar] [CrossRef]
- Adackapara, C.A.; Sholl, L.M.; Barletta, J.A.; Hornick, J.L. Immunohistochemistry using the BRAF V600E mutation-specific monoclonal antibody VE1 is not a useful surrogate for genotyping in colorectal adenocarcinoma. Histopathology 2013, 63, 187–193. [Google Scholar] [CrossRef]
- Benlloch, S.; Paya, A.; Alenda, C.; Bessa, X.; Andreu, M.; Jover, R.; Castells, A.; Llor, X.; Aranda, F.I.; Massutí, B. Detection of BRAF V600E mutation in colorectal cancer: Comparison of automatic sequencing and real-time chemistry methodology. J. Mol. Diagn. 2006, 8, 540–543. [Google Scholar] [CrossRef]
- Bizouarn, F. Clinical applications using digital PCR. Methods Mol. Biol. 2014, 1160, 189–214. [Google Scholar] [CrossRef]
- Mancini, I.; Santucci, C.; Sestini, R.; Simi, L.; Pratesi, N.; Cianchi, F.; Valanzano, R.; Pinzani, P.; Orlando, C. The use of COLD-PCR and high-resolution melting analysis improves the limit of detection of KRAS and BRAF mutations in colorectal cancer. J. Mol. Diagn. 2010, 12, 705–711. [Google Scholar] [CrossRef]
- Benatti, P.; Gafa, R.; Barana, D.; Marino, M.; Scarselli, A.; Pedroni, M.; Maestri, I.; Guerzoni, L.; Roncucci, L.; Menigatti, M.; et al. Microsatellite instability and colorectal cancer prognosis. Clin. Cancer Res. 2005, 11, 8332–8340. [Google Scholar] [CrossRef]
- Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003, 349, 247–257. [Google Scholar] [CrossRef]
- Tian, S.; Roepman, P.; Popovici, V.; Michaut, M.; Majewski, I.; Salazar, R.; Santos, C.; Rosenberg, R.; Nitsche, U.; Mesker, W.E.; et al. A robust genomic signature for the detection of colorectal cancer patients with microsatellite instability phenotype and high mutation frequency. J. Pathol. 2012. [Google Scholar] [CrossRef]
- Schepeler, T.; Reinert, J.T.; Ostenfeld, M.S.; Christensen, L.L.; Silahtaroglu, A.N.; Dyrskjot, L.; Wiuf, C.; Sørensen, F.J.; Kruhøffer, M.; Laurberg, S.; et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 2008, 68, 6416–6424. [Google Scholar] [CrossRef]
- Velculescu, V.E.; El-Deiry, W.S. Biological and clinical importance of the p53 tumor suppressor gene. Clin. Chem. 1996, 42, 858–868. [Google Scholar]
- Sidransky, D.; Hollstein, M. Clinical implications of the p53 gene. Annu. Rev. Med. 1996, 47, 285–301. [Google Scholar] [CrossRef]
- Vousden, K.H.; Prives, C. Blinded by the Light: The Growing Complexity of p53. Cell 2009, 137, 413–431. [Google Scholar] [CrossRef]
- Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 2011, 6, 479–507. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ishii, Y.; Nagata, T.; Ikarashi, M.; Ishikawa, K.; Asai, S. Clinical application of oligonucleotide probe array for full-length gene sequencing of TP53 in colon cancer. Oncology 2003, 64, 54–60. [Google Scholar]
- Ahrendt, S.A.; Halachmi, S.; Chow, J.T.; Wu, L.; Halachmi, N.; Yang, S.C.; Wehage, S.; Jen, J.; Sidransky, D. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc. Natl. Acad. Sci. USA 1999, 96, 7382–7387. [Google Scholar] [CrossRef]
- Wen, W.H.; Bernstein, L.; Lescallett, J.; Beazer-Barclay, Y.; Sullivan-Halley, J.; White, M.; Press, M.F. Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res. 2000, 60, 2716–2722. [Google Scholar]
- Grady, W.M.; Carethers, J.M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008, 135, 1079–1099. [Google Scholar] [CrossRef]
- Issa, J.P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer 2004, 4, 988–993. [Google Scholar] [CrossRef]
- Ashktorab, H.; Rahi, H.; Wansley, D.; Varma, S.; Shokrani, B.; Lee, E.; Daremipouran, M.; Laiyemo, A.; Goel, A.; Carethers, J.M.; et al. Toward a comprehensive and systematic methylome signature in colorectal cancers. Epigenetics 2013, 8, 807–815. [Google Scholar] [CrossRef]
- Pedersen, J.W.; Blixt, O.; Bennett, E.P.; Tarp, M.A.; Dar, I.; Mandel, U.; Poulsen, S.S.; Pedersen, A.E.; Rasmussen, S.; Jess, P.; et al. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int. J. Cancer 2011, 128, 1860–1871. [Google Scholar] [CrossRef]
- Salazar, R.; Roepman, P.; Capella, G.; Moreno, V.; Simon, I.; Dreezen, C.; Lopez-Doriga, A.; Santos, C.; Marijnen, C.; Westerga, J.; et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 2011, 29, 17–24. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Mayer, R.J. Systemic treatment of colorectal cancer. Gastroenterology 2008, 134, 1296–1310. [Google Scholar] [CrossRef]
- Sadanandam, A.; Lyssiotis, C.A.; Homicsko, K.; Collisson, E.A.; Gibb, W.J.; Wullschleger, S.; Gonzalez Ostos, L.C.; Lannon, W.A.; Grotzinger, C.; Del Rio, M.; et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 2013, 19, 619–625. [Google Scholar] [CrossRef]
- De Sousa, E.M.; Wang, X.; Jansen, M.; Fessler, E.; Trinh, A.; de Rooij, L.P.; de Jong, J.H.; de Boer, O.J.; van Leersum, R.; Bijlsma, M.F.; et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 2013, 19, 614–618. [Google Scholar] [CrossRef]
- Svoboda, M.; Sana, J.; Fabian, P.; Kocakova, I.; Gombosova, J.; Nekvindova, J.; Radova, L.; Vyzula, R.; Slaby, O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat. Oncol. 2012, 7. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, J.; Wu, C.W.; Zhang, L.; Liu, X.; Kang, W.; Leung, W.W.; Zhang, N.; Chan, F.K.; Sung, J.J.; et al. Tumor suppressor functions of miR-133a in colorectal cancer. Mol. Cancer Res. 2013, 11, 1051–1060. [Google Scholar] [CrossRef]
- Omrane, I.; Kourda, N.; Stambouli, N.; Privat, M.; Medimegh, I.; Arfaoui, A.; Uhrhammer, N.; Bougatef, K.; Baroudi, O.; Bouzaienne, H.; et al. MicroRNAs 146a and 147b Biomarkers for Colorectal Tumor's Localization. Biomed. Res. Int. 2014, 2014, 584852. [Google Scholar]
- Lecomte, T.; Berger, A.; Zinzindohoue, F.; Micard, S.; Landi, B.; Blons, H.; Beaune, P.; Cugnenc, P.H.; Laurent-Puig, P. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int. J. Cancer 2002, 100, 542–548. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Laber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef]
- Bravo, H.C.; Pihur, V.; McCall, M.; Irizarry, R.A.; Leek, J.T. Gene expression anti-profiles as a basis for accurate universal cancer signatures. BMC Bioinform. 2012, 13, 272. [Google Scholar] [CrossRef]
- Burch, J.A.; Soares-Weiser, K.; St John, D.J.; Duffy, S.; Smith, S.; Kleijnen, J.; Westwood, M. Diagnostic accuracy of faecal occult blood tests used in screening for colorectal cancer: A systematic review. J. Med. Screen 2007, 14, 132–137. [Google Scholar] [CrossRef]
- Ramos, M.; Llagostera, M.; Esteva, M.; Cabeza, E.; Cantero, X.; Segarra, M.; Martín-Rabadán, M.; Artigues, G.; Torrent, M.; Taltavull, J.M.; et al. Knowledge and attitudes of primary healthcare patients regarding population-based screening for colorectal cancer. BMC Cancer 2011, 11. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Ahmed, N.C.; Vos, P.W.; Bonnerup, C.; Atkins, J.N.; Casey, M.; Nuovo, G.J.; Naziri, W.; Wiley, J.E.; Mota, H.; et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics 2013, 10, 93–113. [Google Scholar]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef]
- Grutzmann, R.; Molnar, B.; Pilarsky, C.; Habermann, J.K.; Schlag, P.M.; Saeger, H.D.; Miehlke, S.; Stolz, T.; Model, F.; Roblick, U.J.; et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 2008, 3, e3759. [Google Scholar] [CrossRef]
- Molloy, R.M.; Mc Connell, R.I.; Lamont, J.V.; Fitzgerald, S.P. Automation of biochip array technology for quality results. Clin. Chem. Lab. Med. 2005, 43, 1303–1313. [Google Scholar]
- Ahmed, F.E.; Amed, N.C.; Vos, P.W.; Bonnerup, C.; Atkins, J.N.; Casey, M.; Nuovo, G.J.; Naziri, W.; Wiley, J.E.; Allison, R.R. Diagnostic microRNA markers to screen for sporadic human colon cancer in blood. Cancer Genomics Proteomics 2012, 9, 179–192. [Google Scholar]
- Drew, J.E.; Mayer, C.D.; Farquharson, A.J.; Young, P.; Barrera, L.N. Custom design of a GeXP multiplexed assay used to assess expression profiles of inflammatory gene targets in normal colon, polyp, and tumor tissue. J. Mol. Diagn. 2011, 13, 233–242. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huth, L.; Jäkel, J.; Dahl, E. Molecular Diagnostic Applications in Colorectal Cancer. Microarrays 2014, 3, 168-179. https://doi.org/10.3390/microarrays3030168
Huth L, Jäkel J, Dahl E. Molecular Diagnostic Applications in Colorectal Cancer. Microarrays. 2014; 3(3):168-179. https://doi.org/10.3390/microarrays3030168
Chicago/Turabian StyleHuth, Laura, Jörg Jäkel, and Edgar Dahl. 2014. "Molecular Diagnostic Applications in Colorectal Cancer" Microarrays 3, no. 3: 168-179. https://doi.org/10.3390/microarrays3030168
APA StyleHuth, L., Jäkel, J., & Dahl, E. (2014). Molecular Diagnostic Applications in Colorectal Cancer. Microarrays, 3(3), 168-179. https://doi.org/10.3390/microarrays3030168