Lost in Classification: Lower Cognitive Functioning in Apparently Cognitive Normal Newly Diagnosed RRMS Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological Assessment
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kutzelnigg, A.; Lassmann, H. Pathology of Multiple Sclerosis and Related Inflammatory Demyelinating Diseases, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 122, ISBN 9780444520012. [Google Scholar]
- Noseworthy, J.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B. Multiple Sclerosis. N. Engl. J. Med. 2000, 343, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, M.; Magliozzi, R.; Ciccarelli, O.; Geurts, J.J.G.; Reynolds, R.; Martin, R. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 2015, 16, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Amato, M.P.; Morra, V.B.; Falautano, M.; Ghezzi, A.; Goretti, B.; Patti, F.; Riccardi, A.; Mattioli, F.; Amato, M.P. Cognitive assessment in multiple sclerosis—An Italian consensus. Neurol. Sci. 2018, 39, 1317–1324. [Google Scholar] [CrossRef]
- Fischer, M.; Kunkel, A.; Bublak, P.; Faiss, J.H.; Hoffmann, F.; Sailer, M.; Schwab, M.; Zettl, U.K.; Köhler, W. How reliable is the classification of cognitive impairment across different criteria in early and late stages of multiple sclerosis? J. Neurol. Sci. 2014, 343, 91–99. [Google Scholar] [CrossRef]
- Amato, M.P.; Portaccio, E.; Goretti, B.; Zipoli, V.; Hakiki, B.; Giannini, M.; Pastò, L.; Razzolini, L.; Pia, M.; Portaccio, A.E. Cognitive impairment in early stages of multiple sclerosis. Neurol. Sci. 2010, 31, 211–214. [Google Scholar] [CrossRef]
- Calabrese, M.; Agosta, F.; Rinaldi, F.; Mattisi, I.; Grossi, P.; Favaretto, A.; Atzori, M.; Bernardi, V.; Barachino, L.; Rinaldi, L.; et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch. Neurol. 2009, 66, 1144–1150. [Google Scholar] [CrossRef]
- Eijlers, A.J.C.; van Geest, Q.; Dekker, I.; Steenwijk, M.D.; Meijer, K.A.; Hulst, H.E.; Barkhof, F.; Uitdehaag, B.M.J.; Schoonheim, M.M.; Geurts, J.J.G. Predicting cognitive decline in multiple sclerosis: A 5-year follow-up study. Brain 2018, 141, 2605–2618. [Google Scholar] [CrossRef]
- Preziosa, P.; Rocca, M.A.; Pagani, E.; Stromillo, M.L.; Enzinger, C.; Gallo, A.; Hulst, H.E.; Atzori, M.; Pareto, D.; Riccitelli, G.C.; et al. Structural MRI correlates of cognitive impairment in patients with multiple sclerosis. Hum. Brain Mapp. 2016, 37, 1627–1644. [Google Scholar] [CrossRef]
- Rocca, M.A.; Amato, M.P.; De Stefano, N.; Enzinger, C.; Geurts, J.J.; Penner, I.-K.; Rovira, A.; Sumowski, J.F.; Valsasina, P.; Filippi, M. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015, 14, 302–317. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Cookfair, D.; Gavett, R.; Gunther, M.; Munschauer, F.; Garg, N.; Weinstock-Guttman, B. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J. Int. Neuropsychol. Soc. 2006, 12, 549–558. [Google Scholar] [CrossRef]
- Amato, M.P.; Zipoli, V.; Portaccio, E. Multiple sclerosis-related cognitive changes: A review of cross-sectional and longitudinal studies. J. Neurol. Sci. 2006, 245, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.M. Cognitive function in patients with multiple sclerosis: Impairment and treatment. Int. J. MS Care 2004, 6, 9–22. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Zivadinov, R. Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2011, 7, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Zipoli, V.; Goretti, B.; Hakiki, B.; Siracusa, G.; Sorbi, S.; Portaccio, E.; Amato, M.P. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult. Scler. 2010, 16, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Deloire, M.; Ruet, A.; Hamel, D.; Bonnet, M.; Brochet, B. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult. Scler. 2010, 16, 581–587. [Google Scholar] [CrossRef]
- Moccia, M.; Lanzillo, R.; Palladino, R.; Chang, K.C.-M.M.C.-M.; Costabile, T.; Russo, C.; De Rosa, A.; Carotenuto, A.; Sacca, F.; Maniscalco, G.T.; et al. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult. Scler. 2016, 22, 659–667. [Google Scholar] [CrossRef]
- Pitteri, M.; Romualdi, C.; Magliozzi, R.; Monaco, S.; Calabrese, M. Cognitive impairment predicts disability progression and cortical thinning in MS: An 8-year study. Mult. Scler. 2017, 23, 848–854. [Google Scholar] [CrossRef]
- Kalb, R.; Beier, M.; Benedict, R.H.; Charvet, L.; Costello, K.; Feinstein, A.; Gingold, J.; Goverover, Y.; Halper, J.; Harris, C.; et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult. Scler. J. 2018, 24, 1665–1680. [Google Scholar] [CrossRef]
- Sumowski, J.F.; Benedict, R.; Enzinger, C.; Filippi, M.; Geurts, J.J.; Hamalainen, P.; Hulst, H.; Inglese, M.; Leavitt, V.M.; Rocca, M.A.; et al. Cognition in multiple sclerosis. Neurology 2018, 90, 278–288. [Google Scholar] [CrossRef]
- Binder, L.M.; Iverson, G.L.; Brooks, B.L. To err is human: “abnormal” Neuropsychological scores and variability are common in healthy adults. Arch. Clin. Neuropsychol. 2009, 24, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Azouvi, P. The ecological assessment of unilateral neglect. Ann. Phys. Rehabil. Med. 2017, 60, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Pitteri, M.; Chen, P.; Passarini, L.; Albanese, S.; Meneghello, F.; Barrett, A.M. Conventional and functional assessment of spatial neglect: Clinical practice suggestions. Neuropsychology 2018, 32, 835. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Royston, P. The cost of dichotomising continuous variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, G.; Siciliano, M.; Pedone, R.; Vitale, C.; Falco, F.; Bisogno, R.; Siano, P.; Barone, P.; Grossi, D.; Santangelo, F.; et al. Normative data for the Montreal Cognitive Assessment in an Italian population sample. Neurol. Sci. 2015, 36, 585–591. [Google Scholar] [CrossRef]
- Amato, M.P.; Portaccio, E.; Goretti, B.; Zipoli, V.; Ricchiuti, L.; De Caro, M.F.; Patti, F.; Vecchio, R.; Sorbi, S.; Trojano, M.; et al. The Rao’s Brief Repeatable Battery and Stroop test: Normative values with age, education and gender corrections in an Italian population. Mult. Scler. 2006, 12, 787–793. [Google Scholar] [CrossRef]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; Venneri, A. Una versione abbreviata del test di Stroop: Dati normativi nella popolazione italiana. Riv. Neurol. 2002, 12, 111–115. [Google Scholar]
- Costa, A.; Bagoj, E.; Monaco, M.; Zabberoni, S.; De Rosa, S.; Papantonio, A.M.; Mundi, C.; Caltagirone, C.; Carlesimo, G.A. Standardization and normative data obtained in the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurol. Sci. 2014, 35, 365–372. [Google Scholar] [CrossRef]
- Cattelani, R.; Dal Sasso, F.; Corsini, D.; Posteraro, L. The Modified Five-Point Test: Normative data for a sample of Italian healthy adults aged 16–60. Neurol. Sci. 2011, 32, 595–601. [Google Scholar] [CrossRef]
- Bottesi, G.; Ghisi, M.; Altoè, G.; Conforti, E.; Melli, G.; Sica, C. The Italian version of the Depression Anxiety Stress Scales-21: Factor structure and psychometric properties on community and clinical samples. Compr. Psychiatry 2015, 60, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; Larocca, N.G.; Muir Nash, J.; Steinberg, A.D. The fatigue severity scale: Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary, 3rd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Frischer, J.M.; Bramow, S.; Dal-bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. Neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef]
- Magliozzi, R.; Howell, O.W.; Nicholas, R.; Cruciani, C.; Castellaro, M.; Romualdi, C.; Rossi, S.; Pitteri, M.; Benedetti, M.D.; Gajofatto, A.; et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 2018, 83, 739–755. [Google Scholar] [CrossRef]
- Weinstock-Guttman, B.; Eckert, S.; Benedict, R.H.B. A decline in cognitive function should lead to a change in disease-modifying therapy—Yes. Mult. Scler. J. 2018, 24, 1681–1682. [Google Scholar] [CrossRef]
- Forn, C.; Rocca, M.A.; Valsasina, P.; Boscá, I.; Casanova, B.; Sanjuan, A.; Ávila, C.; Filippi, M. Functional magnetic resonance imaging correlates of cognitive performance in patients with a clinically isolated syndrome suggestive of multiple sclerosis at presentation: An activation and connectivity study. Mult. Scler. J. 2012, 18, 153–163. [Google Scholar] [CrossRef]
- Weber, E.; Goverover, Y.; DeLuca, J. Beyond cognitive dysfunction: Relevance of ecological validity of neuropsychological tests in multiple sclerosis. Mult. Scler. J. 2019, 25, 1412–1419. [Google Scholar] [CrossRef]
- Golan, D.; Wilken, J.; Doniger, G.M.; Fratto, T.; Kane, R.; Srinivasan, J.; Zarif, M.; Bumstead, B.; Buhse, M.; Fafard, L.; et al. Validity of a Multi-Domain Computerized Cognitive Assessment battery for Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2019, 30, 154–162. [Google Scholar] [CrossRef]
- De Meijer, L.; Merlo, D.; Skibina, O.; Grobbee, E.J.; Gale, J.; Haartsen, J.; Maruff, P.; Darby, D.; Butzkueven, H.; Van der Walt, A. Monitoring cognitive change in multiple sclerosis using a computerized cognitive battery. Mult. Scler. J. Exp. Transl. Clin. 2018, 4, 205521731881551. [Google Scholar] [CrossRef]
CI (n = 14) | CN (n = 36) | HCs (n = 36) | p | |
---|---|---|---|---|
Gender (M/F) | 3/11 | 10/26 | 13/23 | 0.547 |
Age (years) | 39.3 ± 14.0 | 37.8 ± 10.8 | 33.6 ± 10.4 | 0.170 |
Education (years) | 13.8 ± 4.0 | 14.4 ± 2.0 | 15.1 ± 2.6 | 0.229 |
EDSS 1 | 2.0 (0–4) | 1.0 (0–3) | / | / |
Disease duration (years) | 4.4 ± 8.2 | 3.1 ± 3.6 | / | / |
Time between diagnosis and neuropsychological assessment (months) | 6 (±3) | 6 (±2) | / | / |
Z-MEM | Z-ATT/IPS | Z-EF |
---|---|---|
SRT-LTS | SDMT | ST (average EIT and EIE) |
SRT-CLTR | PASAT-3 | Phonemic VF |
SRT-D | PASAT-2 | Alternate VF |
SPART-I | MFPT-UDs | |
SPART-D | MFPT-CSs |
CI (n = 14) | CN (n = 36) | HCs (n = 36) | |||||||
---|---|---|---|---|---|---|---|---|---|
NP Battery/NP Test | Subtest | Raw Scores | Z-score Index | Raw Scores | Z-score Index | Raw Scores | Z-score Index | p CI vs. CN | p CN vs. HCs |
BRB (Brief Repeatable Battery) | SRT-LTS | 38.5 ± 15.7 | −0.8 ± 1.2 | 47.3 ± 12.8 | −0.2 ± 0.9 | 55.7 ± 10.2 | 0.5 ± 0.8 | 0.076 | 0.012 * |
SRT-CLTR | 26.2 ± 13.1 | −1.0 ± 0.8 | 39.9 ± 15.2 | −0.1 ± 0.9 | 49.7 ± 14.3 | 0.5 ± 0.9 | 0.013 * | 0.016 * | |
SRT-D | 6.8 ± 2.5 | −0.9 ± 1 | 8.7 ± 2.5 | −0.2 ± 1 | 10.3 ± 1.7 | 0.5 ± 0.7 | 0.026 * | 0.007 * | |
SPART | 20.3 ± 4.4 | −0.7 ± 1 | 22.7 ± 4.4 | −0.1 ± 1 | 25 ± 4.1 | 0.4 ± 0.9 | 0.211 | 0.054 | |
SPART-D | 6.9 ± 1.7 | −0.6 ± 0.9 | 7.9 ± 2 | −0.1 ± 1 | 8.8 ± 1.8 | 0.3 ± 0.9 | 0.246 | 0.145 | |
SDMT | 45.1 ± 11.3 | −0.8 ± 0.9 | 53.9 ± 9.7 | −0.1 ± 0.8 | 61.7 ± 12.9 | 0.5 ± 1 | 0.04 * | 0.014 * | |
PASAT-3 | 31.2 ± 11.5 | −1.1 ± 1 | 43.6 ± 10.6 | 0.009 ± 0.9 | 47.8 ± 9.6 | 0.4 ± 0.8 | 0.001* | 0.198 | |
PASAT-2 | 26.1 ± 10.8 | −0.9 ± 1.1 | 35.3 ± 9.9 | 0.009 ± 0.1 | 37.1 ± 8.7 | 0.2 ± 0.9 | 0.043 * | 0.689 | |
WLG | 23.8 ± 7 | −0.5 ± 1.1 | 27.2 ± 6.6 | 0.06 ± 1 | 27.5 ± 6 | 0.1 ± 0.9 | 0.231 | 0.974 | |
Stroop Test (ST) | ST-EIT | 17.3 ± 7.8 | −0.7 ± 1.4 | 13.4 ± 5.4 | −0.04 ± 1 | 11.3 ± 3.5 | 0.3 ± 0.6 | 0.049 * | 0.202 |
ST-EIE | 1.6 ± 2.3 | −1.1 ± 2.1 | 0.2 ± 0.5 | 0.2 ± 0.4 | 0.1 ± 0.4 | 0.3 ± 0.3 | 0.000 * | 0.882 | |
Verbal Fluency Test (VF) | Phonemic | 34.1 ± 11.9 | −0.8 ± 0.9 | 44.7 ± 12.7 | −0.01 ± 0.9 | 53.9 ± 10.6 | 0.7 ± 0.8 | 0.023 * | 0.034 * |
Semantic | 47.5 ± 11.5 | −0.7 ± 1 | 56.2 ± 11.3 | −0.005 ± 0.9 | 63.5 ± 9.1 | 0.6 ± 0.8 | 0.042 * | 0.071 | |
Alternate | 37.8 ± 12.3 | −0.6 ± 1.1 | 43.2 ± 10.8 | −0.09 ± 0.9 | 50.5 ± 9.9 | 0.5 ± 0.9 | 0.350 | 0.073 | |
Shifting Index | 0.9 ± 0.3 | 0.06 ± 1.5 | 0.9 ± 0.1 | −0.06 ± 0.9 | 0.9 ± 0.1 | −0.02 ± 0.9 | 0.944 | 0.993 | |
Modified Five Point Test (MFPT) | MFPT-UDs | 23.2 ± 12.7 | −1.1 ± 1.2 | 34.3 ± 7.7 | −0.07 ± 0.7 | 41.9 ± 7.5 | 0.6 ± 0.7 | 0.001 * | 0.003 * |
MFPT-CSs | 8.7 ± 11.9 | −0.7 ± 1 | 14.9 ± 10.6 | −0.1 ± 0.9 | 22.8 ± 11.1 | 0.5 ± 0.9 | 0.193 | 0.019 * | |
MFPT-Error Index | 15.3 ± 16.8 | −0.7 ± 1.7 | 6.7 ± 6.9 | 0.2 ± 0.7 | 7.1 ± 8.4 | 0.1 ± 0.8 | 0.02 * | 0.985 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitteri, M.; Ziccardi, S.; Dapor, C.; Guandalini, M.; Calabrese, M. Lost in Classification: Lower Cognitive Functioning in Apparently Cognitive Normal Newly Diagnosed RRMS Patients. Brain Sci. 2019, 9, 321. https://doi.org/10.3390/brainsci9110321
Pitteri M, Ziccardi S, Dapor C, Guandalini M, Calabrese M. Lost in Classification: Lower Cognitive Functioning in Apparently Cognitive Normal Newly Diagnosed RRMS Patients. Brain Sciences. 2019; 9(11):321. https://doi.org/10.3390/brainsci9110321
Chicago/Turabian StylePitteri, Marco, Stefano Ziccardi, Caterina Dapor, Maddalena Guandalini, and Massimiliano Calabrese. 2019. "Lost in Classification: Lower Cognitive Functioning in Apparently Cognitive Normal Newly Diagnosed RRMS Patients" Brain Sciences 9, no. 11: 321. https://doi.org/10.3390/brainsci9110321
APA StylePitteri, M., Ziccardi, S., Dapor, C., Guandalini, M., & Calabrese, M. (2019). Lost in Classification: Lower Cognitive Functioning in Apparently Cognitive Normal Newly Diagnosed RRMS Patients. Brain Sciences, 9(11), 321. https://doi.org/10.3390/brainsci9110321