Assessing the Effectiveness of Neurofeedback Training in the Context of Clinical and Social Neuroscience
Abstract
:1. Introduction
1.1. The Goal of Neurofeedback
1.2. Methodologies
1.2.1. Frequency Training (δ,θ,α,β,γ)
1.2.2. Deep State or Hypnogogic Training
1.2.3. Infra-Low Frequencies and Slow Cortical Potentials
1.2.4. Synchrony, Coherence and Cross-Frequency Coupling
1.2.5. Normative vs. Symptom-Based Protocol Selection
1.2.6. Combined EEG and Real-Time fMRI
2. Brain Plasticity
2.1. What Is Neuroplasticity?
2.2. Perturbative Physiologic and Self-Directed Plasticity
3. An Organizing Principle for Determining Effectiveness
4. The Need for Objective Outcome Measures
4.1. Psychophysiological Biomarkers
4.2. Neuropsychological Assessments
4.3. Behavioral and Community Functioning
5. Structural and Functional Connectivity Studies
5.1. Autism Spectrum Disorder (ASD)
5.2. Schizophrenia and Psychopathy
5.3. Depression
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Keuken, M.C.; Hardie, A.; Dorn, B.T.; Dev, S.; Paulus, M.P.; Jonas, K.J.; Den Wildenberg, W.P.; Pineda, J.A. The role of the left inferior frontal gyrus in social perception: An rTMS study. Brain Res. 2011, 1383, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Pineda, J.A.; Brang, D.; Hecht, E.; Edwards, L.; Carey, S.; Bacon, M.; Futagaki, C.; Suk, D.; Tom, J.; Rork, A.; et al. Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Res. Autism Spectr. Disord. 2008, 2, 557–581. [Google Scholar] [CrossRef]
- Beauregard, M.; Levesque, J. Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Appl. Psychophysiol. Biofeedback 2006, 31, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Escolano, C.; Navarro-Gil, M.; Garcia-Campayo, J.; Congedo, M.; De Ridder, D.; Minguez, J. A controlled study on the cognitive effect of alpha neurofeedback training in patients with major depressive disorder. Front. Behav. Neurosci. 2014, 8, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, M.K.; Sitskoorn, M.M.; Denissen, A.J.; van Boxtel, G.J. The time-course of alpha neurofeedback training effects in healthy participants. Biol. Psychol. 2014, 95, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.R.; Hsieh, S. Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. 2013, 124, 2406–2420. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.J.; Boehm, S.G.; Healy, D.; Goebel, R.; Linden, D.E. Neurofeedback: A promising tool for the self-regulation of emotion networks. Neuroimage 2010, 49, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Cacioppo, S.; Dulawa, S.; Palmer, A.A. Social neuroscience and its potential contribution to psychiatry. World Psychiatry 2014, 13, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Sulzer, J.; Haller, S.; Scharnowski, F.; Weiskopf, N.; Birbaumer, N.; Blefari, M.L.; Bruehl, A.B.; Cohen, L.G.; Gassert, R.; Sitaram, R.; et al. Real-time fMRI neurofeedback: Progress and challenges. Neuroimage 2013, 76, 386–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, B.H.; Thayer, J.F. Autonomic balance revisited: Panic anxiety and heart rate variability. J. Psychosomatic Res. 1998, 44, 133–151. [Google Scholar] [CrossRef]
- Reynard, A.; Gevirtz, R.; Berlow, R.; Brown, M.; Boutelle, K. Heart rate variability as a marker of self-regulation. Appl. Psychophysiol. Biofeedback 2011, 36, 209. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, J. Conscious control of brain waves. Psychol. Today 1968, 1, 57–60. [Google Scholar]
- Kamiya, J. Operant control of the EEG alpha rhythm and some of its reportedeffects on consciousness. In Altered States of Consciousness; Tart, C.T., Ed.; Wiley: New York, NY, USA, 1969; pp. 519–529. [Google Scholar]
- Sterman, M.B.; Friar, L. Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 89–95. [Google Scholar] [CrossRef]
- Chapin, T.J.; Russell-Chapin, L.A. Neurotherapy and Neurofeedback: Brain-Based Treatment for Psychological and Behavioral Problems; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Larsen, S. The Neurofeedback Solution; Simon and Schuster: New York, NY, USA, 2012. [Google Scholar]
- Graczyk, M.; Pachalska, M.; Ziolkowski, A.; Manko, G.; Lukaszewska, B.; Kochanowicz, K.; Mirski, A.; Kropotov, I.D. Neurofeedback training for peak performance. Ann. Agric. Environ. Med. 2014, 21, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Rijken, N.H.; Soer, R.; de Maar, E.; Prins, H.; Teeuw, W.B.; Peuscher, J.; Oosterveld, F.G. Increasing Performance of Professional Soccer Players and Elite Track and Field Athletes with Peak Performance Training and Biofeedback: A Pilot Study. Appl. Psychophysiol. Biofeedback 2016, 41, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sokhadze, E.M.; El-Baz, A.S.; Li, X.; Sears, L.; Casanova, M.F.; Tasman, A. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder. Front. Hum. Neurosci. 2015, 9, 723. [Google Scholar] [CrossRef] [PubMed]
- Val-Laillet, D.; D’arts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015, 8, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruzelier, J.H. EEG-neurofeedback for optimising performance. III: A review of methodological andtheoretical considerations. Neurosci. Biobehav. Rev. 2014, 44, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Bruhl, A.B.; Scherpiet, S.; Sulzer, J.; Stampfli, P.; Seifritz, E.; Herwig, U. Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: A proof-of-concept study. Brain Topogr. 2014, 27, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Canterberry, M.; Hanlon, C.A.; Hartwell, K.J.; Li, X.; Owens, M.; LeMatty, T.; Prisciandaro, J.; Borckardt, J.; Saladin, M.E.; George, M.S. Sustained reduction of nicotine craving with real-time neurofeedback: Exploring the role of severity of dependence. Nicotine Tob. Res. 2013, 15, 2120–2124. [Google Scholar] [CrossRef] [PubMed]
- Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; Scheinost, D.; Craddock, C.; et al. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. Neuroimage Clin. 2014, 5, 245–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berner, I.; Schabus, M.; Wienerroither, T.; Klimesch, W. The significance of sigma neurofeedback training on sleep spindles and aspects of declarative memory. Appl. Psychophysiol. Biofeedback 2006, 31, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Kleinnijenhuis, M.; Fallahpour, K.; Breteler, R. Golf performance enhancement and real-life neurofeedback training using personalized event- locked EEG profiles. J. Neurother. 2008, 11, 11–18. [Google Scholar] [CrossRef]
- Doppelmayr, M.; Weber, E. Effects of SMR and theta/beta neurofeedback on reaction time, spatial abilities and creativity. J. Neurother. 2011, 15, 115–129. [Google Scholar] [CrossRef]
- Egner, T.; Gruzelier, J.H. Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. Neuroreport 2003, 14, 1225–1228. [Google Scholar] [CrossRef]
- Enriquez-Geppert, S.; Huster, R.J.; Herrmann, C.S. Boosting brain functions: Improving executive functions with behavioral trainings, neurostimulation, and neurofeedback. Int. J. Psychophysiol. 2013, 88, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Escolano, C.; Aguilar, M.; Minguez, J. EEG-based upper alpha neurofeedback training improves working memory performance. In Proceedings of the 33rd Annual International Conference of the IEEE EMBS, Boston, MA, USA, 30 August–3 September 2011. [Google Scholar]
- Gruzelier, J.H. Enhancing imaginative expression in the performing arts with EEG-neurofeedback. In Musical Imaginations: Multidisciplinary Perspectives on Creativity, Performance and Perception; Miell, D., MacDonald, R., Hargreaves, D., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 332–350. [Google Scholar]
- Hanslmayr, S.; Sauseng, P.; Doppelmayr, M.; Schabus, M.; Klimesch, W. Increasing individual upper alpha by neurofeedback improves cognitive performance in human subjects. J. Appl. Psychophysiol. Biofeedback 2006, 30, 1–10. [Google Scholar] [CrossRef]
- Keizer, A.W.; Verment, R.S.; Hommel, B. Enhancing cognitive control through neurofeeback: A role of gamma-band activity in managing episodic retrieval. Neuroimage 2010, 49, 3404–3413. [Google Scholar] [CrossRef] [PubMed]
- Zoefel, B.; Huster, R.J.; Hermann, C.S. Neurofeedback training of the upper alpha frequency band EEG improves cognitive performance. Neuroimage 2011, 54, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Thibault, R.T.; Lifshitz, M.; Raz, A. The self-regulating brain and neurofeedback: Experimental science and clinical promise. Cortex 2016, 74, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.H. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 2014, 44, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.H. EEG-neurofeedback for optimising performance. II: Creativity, the performing arts and ecological validity. Neurosci. Biobehav. Rev. 2014, 44, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Egner, T.; Gruzelier, J.H. EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. 2004, 115, 131–139. [Google Scholar] [CrossRef]
- Egner, T.; Gruzelier, J.H. The temporal dynamics of electroencephalographic responses to alpha/theta neurofeedback training in healthy subjects. J. Neurother. 2004, 8, 43–57. [Google Scholar] [CrossRef]
- Fehmi, L.G. Multichannel EEG phase synchrony training and verbally guided attention training for disorders of attention. In Handbook of Neurofeedback; Evans, J.R., Ed.; Haworth Medical Press: Binghampton, NY, USA, 2007; pp. 301–319. [Google Scholar]
- Gruzelier, J.H.; Egner, T.; Vernon, D. Validating the efficacy of neurofeedback for optimising performance. Available online: http://create.canterbury.ac.uk/6523/ (accessed on 6 August 2017).
- Vaitl, D.; Birbaumer, N.; Gruzelier, J.; Jamieson, G.; Kotchoubey, B.; Kübler, A.; Lehmann, D.; Miltner, W.H.R.; Ott, U.; Pütz, P.; et al. Psychobiology of altered states of consciousness. Psychol. Bull. 2005, 131, 98–127. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.C. What is Neurofeedback: An Update. J. Neurother. 2011, 15, 305–336. [Google Scholar] [CrossRef]
- Bazanova, O.M.; Vernon, D. Interpreting EEG alpha activity. Neurosci. Biobehav. Rev. 2014, 44, 94–110. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Doppelmayr, M.; Schimke, H.; Pachinger, T. Alpha frequency, reaction time, and the speed of processing information. J. Clin. Neurophysiol. 1996, 13, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Schimke, H.A.; Pfurtscheller, G. Alpha frequency, cognitive load and memory performance. Brain Topogr. 1993, 5, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn. Process. 2009, 10, S101–S109. [Google Scholar] [CrossRef] [PubMed]
- Nan, W.; Rodrigues, J.P.; Ma, J.; Qu, X.; Wan, F.; Mak, P.I.; Vai, M.I.; Rosa, A. Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 2012, 86, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.; Egner, T. Critical validation studies of neurofeedback. Child Adolesc. Psychiatr. Clin. N. Am. 2005, 14, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Trudeau, D.L.; Thuras, P.D.; Rubin, Y.; Stockley, H.; Dimond, T. Comparison of alpha-theta, alpha and EMG neurofeedback in the production of alpha-theta crossover and the occurrence of visualizations. J. Neurother. 2000, 4, 29–42. [Google Scholar] [CrossRef]
- Peniston, E.G.; Marrinan, D.A.; Deming, W.A.; Kulkosky, P.J. EEG alpha-theta brainwave synchronization in Vietnam theater veterans with combat-related post-traumatic stress disorder and alcohol abuse. Med. Psychother. Int. J. 1993, 6, 37–50. [Google Scholar]
- Peniston, E.; Kulkosky, P. Alpha-theta brainwave neurofeedback therapy for vietnam veterans with combat related post-traumatic stress disorder. Med. Psychother. Int. J. 1991, 4, 47–60. [Google Scholar]
- Burgess, A.P.; Gruzelier, J.H. Short duration synchronization of human theta rhythm during recognition memory. Neuroreport 1997, 8, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Doppelmayr, M.; Finkenzeller, T.; Sauseng, P. Frontal midline theta in the pre-shot phase of rifle shooting: Differences between experts and novices. Neuropsychologia 2008, 46, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Doppelmayr, M.; Yonelinas, A.; Kroll, N.E.; Lazzara, M.; Roehm, D.; Gruber, W. Theta synchronization during episodic retrieval: Neural correlates of conscious awareness. Cogn. Brain Res. 2001, 12, 33–38. [Google Scholar] [CrossRef]
- Laukka, S.J.; Järvilehto, T.; Alexandrov, Y.I.; Lindqvist, J. Frontal midline theta related to learning in a simulated driving task. Biol. Psychol. 1995, 40, 313–320. [Google Scholar] [CrossRef]
- Sauseng, P.; Hoppe, J.; Klimesch, W.; Gerloff, C.; Hummel, F.C. Dissociation of sustained attention from central executive functions: Local activity and interregional connectivity in the theta range. Eur. J. Neurosci. 2007, 25, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.H.; Hirst, L.; Holmes, P.; Leach, J. Immediate effects of Alpha/theta and Sensory-Motor Rhythm feedback on music performance. Int. J. Psychophysiol. 2014, 93, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Egner, T.; Strawson, E.; Gruzelier, J.H. EEG signature and phenomenology of alpha/theta neurofeedback training versus mock feedback. Appl. Psychophysiol. Biofeedback 2002, 27, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.H.; Thompson, T.; Redding, E.; Brandt, R.; Steffert, T. Application of alpha/theta neurofeedback and heart rate variability training to young contemporary dancers: State anxiety and creativity. Int. J. Psychophysiol. 2014, 93, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Kotchoubey, B.; Strehl, U.; Holzapfel, S.; Blankenhorn, V.; Froscher, W.; Birbaumer, N. Negative potential shifts and the prediction of the outcome of neurofeedback therapy in epilepsy. Clin. Neurophysiol. 1999, 110, 683–686. [Google Scholar] [CrossRef]
- Rockstroh, B.; Birbaumer, N.; Elbert, T.; Lutzenberger, W. Operant control of EEG and event-related and slow brain potentials. Biofeedback Self-Regul. 1984, 9, 139–160. [Google Scholar] [CrossRef] [PubMed]
- Strehl, U.; Leins, U.; Goth, G.; Klinger, C.; Hinterberger, T.; Birbaumer, N. Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 2006, 118, e1530–e1540. [Google Scholar] [CrossRef] [PubMed]
- Birbaumer, N. Slow cortical potentials: Plasticity, operant control, and behavioral effects. Neuroscientist 1999, 5, 74–78. [Google Scholar] [CrossRef]
- Birbaumer, N.; Elbert, T.; Canavan, A.G.; Rockstroh, B. Slow potentials of the cerebral cortex and behavior. Physiolog. Rev. 1990, 70, 1–41. [Google Scholar]
- Othmer, S. Remediation of PTSD using Infra-Low Frequency Neurofeedback Training. Available online: http://news.eeginfo.com/remediation-of-ptsd-using-infra-low-frequency-neurofeedback-training (accessed on 6 August 2017).
- Othmer, S. Protocol Guide for Neurofeedback Clinicians; EEG Info: Woodland Hills, CA, USA, 2008. [Google Scholar]
- Thatcher, R.W. Coherence, Phase Differences, Phase Shift, and Phase Lock in EEG/ERP Analyses. Dev. Neuropsychol. 2012, 37, 476–496. [Google Scholar] [CrossRef] [PubMed]
- Varela, F.; Lachaux, J.P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001, 2, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Handbook of Neurofeedback: Dynamics and Clinical Applications; Evans, J.R. (Ed.) The Haworth Medical Press: New York, NY, USA, 2007. [Google Scholar]
- McKnight, J.T.; Fehmi, L.G. Attention and neurofeedback synchrony training: Clinical results and their significance. J. Neurother. 2001, 5, 45–61. [Google Scholar] [CrossRef]
- Buzsáki, G.; Draughn, A. Neuronal oscillations in cortical net- works. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.; Colgin, L.L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 2007, 11, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Canolty, R.T.; Knight, R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010, 14, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Jirsa, V.; Muller, V. Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 2013, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Applied Neuroscience. 2017. Available online: http://www.appliedneuroscience.com (accessed on 6 August 2017).
- Neurofield, I. 2017. Available online: http://www.brainworksneurotherapy.com (accessed on 6 August 2017).
- Collura, T.F.; Guan, J.; Tarrant, J.; Bailey, J.; Starr, F. EEG biofeedback case studies using live Z-score training and a normative database. J. Neurother. 2010, 14, 22–46. [Google Scholar] [CrossRef]
- Z Score Neurofeedback: Clinical Applications; Thatcher, R.W.; Lubar, J.F. (Eds.) Academic Press: London, UK, 2014. [Google Scholar]
- Soutar, R. An Introductory Perspective on the Emerging Application of qEEG in Neurofeedback. In Clinical Neurotherapy; Elsevier Inc.: London, UK, 2014. [Google Scholar]
- Johnstone, J.; Gunkelman, J.; Lunt, J. Clinical database development: Characterization of EEG phenotypes. Clin. EEG Neurosci. 2005, 36, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Collura, T.F. Live Z-Score Neurofeedback. Biofeedback 2016, 44, 212–217. [Google Scholar] [CrossRef]
- Thatcher, R.W. Latest developments in live z-score training: Symptom check list, phase reset, and LORETA z-score biofeedback. J. Neurother. 2013, 17, 69–87. [Google Scholar] [CrossRef]
- Ruiz, S.; Lee, S.; Soekadar, S.R.; Caria, A.; Veit, R.; Kircher, T.; Birbaumer, N.; Sitaram, R. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum. Brain Mapp. 2013, 34, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Linden, D.E.; Habes, I.; Johnston, S.J.; Linden, S.; Tatineni, R.; Subramanian, L.; Sorger, B.; Healy, D.; Goebel, R. Real-time self-regulation of emotion networks in patients with depression. PLoS ONE 2012, 7, e38115. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Batail, J.M.; Bioulac, S.; Congedo, M.; Daudet, C.; Drapier, D.; Fovet, T.; Jardri, R.; Le-Van-Quyen, M.; Lotte, F.; et al. Neurofeedback: One of today's techniques in psychiatry? Encephale 2017. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Amedi, A.; Fregni, F.; Merabet, L.B. The plastic human brain cortex. Annu. Rev. Neurosci. 2005, 28, 377–401. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.B.; Turrigiano, G.G. Strength through diversity. Neuron 2008, 60, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Ismail, F.Y.; Fatemi, A.; Johnston, M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr. Neurol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ros, T.; Munneke, M.A.; Ruge, D.; Gruzelier, J.H.; Rothwell, J.C. Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 2010, 31, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.E.; Lofthouse, N.; Hersch, S.; Pan, X.; Hurt, E.; Bates, B.; Kassouf, K.; Moone, S.; Grantier, C. EEG neurofeedback for ADHD: Double-blind sham-controlled randomized pilot feasibility trial. J. Atten. Disord. 2013, 17, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Lofthouse, N.; Arnold, L.E.; Hersch, S.; Hurt, E.; DeBeus, R. A review of neurofeedback treatment for pediatric ADHD. J. Atten. Disord. 2012, 16, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Vollebregt, M.A.; van Dongen-Boomsma, M.; Buitelaar, J.K.; Slaats-Willemse, D. Does EEG-neurofeedback improve neurocognitive functioning in children with attention-deficit/hyperactivity disorder? A systematic review and a double-blind placebo-controlled study. J. Child Psychol. Psychiatry 2014, 55, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Vollebregt, M.A.; van Dongen-Boomsma, M.; Slaats-Willemse, D.; Buitelaar, J.K. What future research should bring to help resolving the debate about the efficacy of EEG-neurofeedback in children with ADHD. Front. Hum. Neurosci. 2014, 8, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuberer, A.; Brandeis, D.; Drechsler, R. Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Front. Hum. Neurosci. 2015, 9, 135. [Google Scholar] [CrossRef] [PubMed]
- Rychetnik, L.; Frommer, M.; Hawe, P.; Shiell, A. Criteria for evaluating evidence on public health interventions. J. Epidemiol. Community Health 2002, 56, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Basar, E.; Basar-Eroglu, C.; Guntekin, B.; Yener, G.G. Brain’s alpha, beta, gamma, delta, and theta oscillations in neuropsychiatric diseases: Proposal for biomarker strategies. Suppl. Clin. Neurophysiol. 2013, 62, 19–54. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Doppelmayr, M.; Schwaiger, J.; Winkler, T.; Gruber, W. Theta oscillations and the ERP old/new effect: Independent phenomena? Clin. Neurophysiol. 2000, 111, 781–793. [Google Scholar] [CrossRef]
- Blume, F.; Hudak, J.; Dresler, T.; Ehlis, A.C.; Kühnhausen, J.; Renner, T.J.; Gawrilow, C. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: Study protocol for a randomized controlled trial. Trials 2017, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Zivoder, I.; Martic-Biocina, S.; Kosic, A.V.; Bosak, J. Neurofeedback application in the treatment of autistic spectrum disorders (ASD). Psychiatr. Danub. 2015, 27 (Suppl. 1), S391–S394. [Google Scholar] [PubMed]
- Rostami, R.; Dehghani-Arani, F. Neurofeedback Training as a New Method in Treatment of Crystal Methamphetamine Dependent Patients: A Preliminary Study. Appl. Psychophysiol. Biofeedback 2015, 40, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Bhayee, S.; Tomaszewski, P.; Lee, D.H.; Moffat, G.; Pino, L.; Moreno, S.; Farb, N.A. Attentional and affective consequences of technology supported mindfulness training: A randomised, active control, efficacy trial. BMC Psychol. 2016, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Choobforoushzadeh, A.; Neshat-Doost, H.T.; Molavi, H.; Abedi, M.R. Effect of neurofeedback training on depression and fatigue in patients with multiple sclerosis. Appl. Pscyhophysiol. Biofeedback 2015, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.P.; Rajeswaran, J.; Bhagavatula, I.D.; Kandavel, T. Silent Epidemic: The Effects of Neurofeedback on Quality-of-Life. Indian J. Psychol. Med. 2014, 36, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.V.; Esty, M.L. Neurotherapy As a Catalyst in the Treatment of Fatigue in Breast Cancer Survivorship. Explore 2016, 12, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Schuck, S.O.; Whetstone, A.; Hill, V.; Levine, P.; Page, S.J. Game-based, portable, upper extremity rehabilitation in chronic stroke. Top. Stroke Rehabil. 2011, 18, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Kayiran, S. Neurofeedback intervention in fibromyalgia syndrome; a randomized, controlled, rather blind clinical trial. Randomized Controlled Trial. Appl. Psychophysiol. Biofeedback 2010, 35, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Hadjikhani, N.; Joseph, R.M.; Snyder, J.; Tager-Flusberg, H. Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb. Cortex 2006, 16, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Rutter, M.; Le Couteur, A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Waiter, G.D.; Gilchrist, A.; Perrett, D.I.; Murray, A.D.; Whiten, A. Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia 2006, 44, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Dapretto, M.; Davies, M.S.; Pfeifer, J.H.; Scott, A.A.; Sigman, M.; Bookheimer, S.Y.; Iacoboni, M. Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nat. Neurosci. 2006, 9, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, M.E.; Mizuno, A.; Dahl, B.C.; Kemmotsu, N.; Muller, R.A. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. NeuroImage 2005, 25, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Tsiaras, V.; Simos, P.G.; Rezaie, R.; Sheth, B.R.; Garyfallidis, E.; Castillo, E.M.; Papanicolaou, A.C. Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput. Biol. Med. 2011, 41, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.; Gruber, T.; Boucher, J.; Rippon, G.; Brock, J. Gamma abnormalities during perception of illusory figures in autism. Cortex 2005, 41, 364–376. [Google Scholar] [CrossRef]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.W.; Rojas, D.C.; Reite, M.L.; Teale, P.D.; Rogers, S.J. Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biol. Psychiatry 2007, 62, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Sheikhani, A.; Behnam, H.; Mohammadi, M.R.; Noroozian, M.; Mohammadi, M. Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. J. Med. Syst. 2012, 36, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Coben, R.; Myers, T.E. Connectivity Theory of Autism: Use of Connectivity Measures in Assessing and Treating Autistic Disorders. J. Neurother. 2008, 12, 161–179. [Google Scholar] [CrossRef]
- Cornew, L.; Roberts, T.P.; Blaskey, L.; Edgar, J.C. Resting-state oscillatory activity in autism spectrum disorders. J. Autism Dev. Disord. 2012, 42, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Coben, R.; Hudspeth, W. Mu-like Rhythms in Autistic Spectrum Disorder: EEG Analyses and Neurofeedback Outcome. In Proceedings of the 14th Annual Conference of the International Society Neuronal Regulation, Atlanta, GA, USA, 7–10 September 2006. [Google Scholar]
- Coben, R.; Padolsky, I. Assessment-Guided Neurofeedback for Autistic Spectrum Disorder. J. Neurother. 2007, 11, 5–23. [Google Scholar] [CrossRef]
- Muller, R.A.; Shih, P.; Keehn, B.; Deyoe, J.R.; Leyden, K.M.; Shukla, D.K. Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb. Cortex 2011, 21, 2233–2243. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, E.; Lahav, A. The multisensory brain and its ability to learn music. Ann. N. Y. Acad. Sci. 2012, 1252, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.F.; Bear, M.F. Stimulus-selective response plasticity in the visual cortex: An assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric disorders. Biol. Psychiatry 2012, 71, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Vida, M.D.; Vingilis-Jaremko, L.; Butler, B.E.; Gibson, L.C.; Monteiro, S. The reorganized brain: How treatment strategies for stroke and amblyopia can inform our knowledge of plasticity throughout the lifespan. Dev. Psychobiol. 2012, 54, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Boksman, K.; Theberge, J.; Williamson, P.; Drost, D.J.; Malla, A.; Densmore, M.; Takhar, J.; Pavlosky, W.; Menon, R.S.; Neufeld, R.W. A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. Schizophr. Res. 2005, 75, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Kemp, A.H.; Flynn, G.; Harris, A.W.; Liddell, B.J.; Whitford, T.J.; Peduto, A.; Gordon, E.; Williams, L.M. Functional disconnections in the direct and indirect amygdala pathways for fear processing in schizophrenia. Schizophr. Res. 2007, 90, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Lindenberg, A. Behavioural neuroscience: Genes and the anxious brain. Nature 2010, 466, 827–828. [Google Scholar] [CrossRef] [PubMed]
- Greer, S.M.; Trujillo, A.J.; Glover, G.H.; Knutson, B. Control of nucleus accumbens activity with neurofeedback. NeuroImage 2014, 96, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Wible, C.G.; Preus, A.P.; Hashimoto, R. A Cognitive Neuroscience View of Schizophrenic Symptoms: Abnormal Activation of a System for Social Perception and Communication. Brain Imaging Behav. 2009, 3, 85–110. [Google Scholar] [CrossRef] [PubMed]
- Price, J.L.; Drevets, W.C. Neurocircuitry of mood disorders. Neuropsychopharmacology 2010, 35, 192–216. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.A.; Wise, S.P.; Drevets, W.C. Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala. Biol. Psychiatry 2011, 69, e43–e54. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Young, K.D.; Phillips, R.; Zotev, V.; Misaki, M.; Bodurka, J. Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. Brain Connect. 2014, 4, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Young, K.D.; Siegle, G.J.; Zotev, V.; Phillips, R.; Misaki, M.; Yuan, H.; Drevets, W.C.; Bodurka, J. Randomized Clinical Trial of Real-Time fMRI Amygdala Neurofeedback for Major Depressive Disorder: Effects on Symptoms and Autobiographical Memory Recall. Am. J. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Young, K.D.; Misaki, M.; Harmer, C.J.; Victor, T.; Zotev, V.; Phillips, R.; Siegle, G.J.; Drevets, W.C.; Bodurka, J. Real-Time fMRI Amygdala Neurofeedback Changes Positive Information Processing in Major Depressive Disorder. Biol. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.P.; Glover, G.H.; Bagarinao, E.; Chang, C.; Mackey, S.; Sacchet, M.D.; Gotlib, I.H. Effects of salience-network-node neurofeedback training on affective biases in major depressive disorder. Psychiatry Res. Neuroimaging 2016, 249, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Zotev, V.; Yuan, H.; Misaki, M.; Phillips, R.; Young, K.D.; Feldner, M.T.; Bodurka, J. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. NeuroImage Clin. 2016, 11, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Schoenberg, P.L.; David, A.S. Biofeedback for psychiatric disorders: A systematic review. Appl. Psychophysiol. Biofeedback 2014, 39, 109–135. [Google Scholar] [CrossRef] [PubMed]
- Wigton, N.L.; Krigbaum, G. Attention, Executive Function, Behavior, and Electrocortical Function, Significantly Improved With 19-Channel Z-Score Neurofeedback in a Clinical Setting: A Pilot Study. J. Atten. Disord. 2015. [Google Scholar] [CrossRef] [PubMed]
- Samuel, J.P.; Burgart, A.; Wootton, S.H.; Magnus, D.; Lantos, J.D.; Tyson, J.E. Randomized n-of-1 Trials: Quality Improvement, Research, or Both? Pediatrics 2016, 138. [Google Scholar] [CrossRef] [PubMed]
- Spunt, R.P.; Satpute, A.B.; Lieberman, M.D. Identifying the what, why, and how of an observed action: An fMRI study of mentalizing and mechanizing during action observation. J. Cogn. Neurosci. 2011, 23, 63–74. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orndorff-Plunkett, F.; Singh, F.; Aragón, O.R.; Pineda, J.A. Assessing the Effectiveness of Neurofeedback Training in the Context of Clinical and Social Neuroscience. Brain Sci. 2017, 7, 95. https://doi.org/10.3390/brainsci7080095
Orndorff-Plunkett F, Singh F, Aragón OR, Pineda JA. Assessing the Effectiveness of Neurofeedback Training in the Context of Clinical and Social Neuroscience. Brain Sciences. 2017; 7(8):95. https://doi.org/10.3390/brainsci7080095
Chicago/Turabian StyleOrndorff-Plunkett, Franklin, Fiza Singh, Oriana R. Aragón, and Jaime A. Pineda. 2017. "Assessing the Effectiveness of Neurofeedback Training in the Context of Clinical and Social Neuroscience" Brain Sciences 7, no. 8: 95. https://doi.org/10.3390/brainsci7080095