Progress in Genetic Studies of Tourette’s Syndrome
Abstract
1. Introduction and Genetic Epidemiology of Tourette’s Syndrome
1.1. Clinical Features of Tourette’s Syndrome
1.2. Comorbidities of TS
1.3. Prevalence of TS
1.4. Heritability of TS
2. Genome-Wide Linkage Studies of TS
3. Candidate Gene Association Studies of TS
4. Genome-Wide Association Studies of TS and Other Psychiatric Disorders
5. Chromosomal Abnormalities and Copy Number Variants (CNVs) of TS
6. Whole Exome/Genome Sequencing Studies of TS and Other Psychiatric Disorders
7. Epigenetics and TS
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; DSM Library; American Psychiatric Association: Lake St. Louis, MO, USA, 2013; ISBN 0-89042-555-8. [Google Scholar]
- Eapen, V.; Cavanna, A.E.; Robertson, M.M. Comorbidities, Social Impact, and Quality of Life in Tourette Syndrome. Front. Psychiatry 2016. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.H.; Leckman, J.F. Clinical course of Tourette syndrome. J. Psychosom. Res. 2009, 67, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Leckman, J.F. The temporal dynamics of tics in Gilles de la Tourette syndrome. Biol. Psychiatry 1998, 44, 1337–1348. [Google Scholar] [CrossRef]
- Conelea, C.A.; Woods, D.W. The influence of contextual factors on tic expression in Tourette’s syndrome: A review. J. Psychosom. Res. 2008, 65, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.H.; Peterson, B.S.; Scahill, L.; Otka, J.; Katsovich, L.; Zhang, H.; Leckman, J.F. Adulthood Outcome of Tic and Obsessive-Compulsive Symptom Severity in Children With Tourette Syndrome. Arch. Pediatr. Adolesc. Med. 2006, 160, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.; Cavanna, A.E. The prognosis of Tourette syndrome: Implications for clinical practice. Funct. Neurol. 2012, 27, 23–27. [Google Scholar] [PubMed]
- Rizzo, R.; Gulisano, M.; Calì, P.V.; Curatolo, P. Long term clinical course of Tourette syndrome. Brain Dev. 2012, 34, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Leckman, J.F.; Zhang, H.; Vitale, A.; Lahnin, F.; Lynch, K.; Bondi, C.; Kim, Y.-S.; Peterson, B.S. Course of Tic Severity in Tourette Syndrome: The First Two Decades. Pediatrics 1998, 102, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.H.; Sukhodolsky, D.G.; Leckman, J.F.; Schultz, R.T. Fine-motor skill deficits in childhood predict adulthood tic severity and global psychosocial functioning in Tourette’s syndrome. J. Child Psychol. Psychiatry 2006, 47, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.H.; Leckman, J.F.; Zhu, H.; Peterson, B.S. Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology 2005, 65, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Hirschtritt, M.E.; Lee, P.C.; Pauls, D.L.; Dion, Y.; Grados, M.A.; Illmann, C.; King, R.A.; Sandor, P.; McMahon, W.M.; Lyon, G.J.; et al. Lifetime Prevalence, Age of Risk, and Genetic Relationships of Comorbid Psychiatric Disorders in Tourette Syndrome. JAMA Psychiatry 2015, 72, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Trescher, W.; Byler, D. Tourette Syndrome and Comorbid Neuropsychiatric Conditions. Curr. Dev. Disord. Rep. 2016, 3, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.D.; Fast, D.K.; Burd, L.; Kerbeshian, J.; Robertson, M.M.; Sandor, P. An international perspective on Tourette syndrome: Selected findings from 3500 individuals in 22 countries. Dev. Med. Child Neurol. 2000, 42, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, A.E.; Servo, S.; Monaco, F.; Robertson, M.M. The Behavioral Spectrum of Gilles de la Tourette Syndrome. JNP 2009, 21, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.M. A personal 35 year perspective on Gilles de la Tourette syndrome: Prevalence, phenomenology, comorbidities, and coexistent psychopathologies. Lancet Psychiatry 2015, 2, 68–87. [Google Scholar] [CrossRef]
- Robertson, M.M.; Eapen, V.; Cavanna, A.E. The international prevalence, epidemiology, and clinical phenomenology of Tourette syndrome: A cross-cultural perspective. J. Psychosom. Res. 2009, 67, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Scharf, J.M.; Miller, L.L.; Gauvin, C.A.; Alabiso, J.; Mathews, C.A.; Ben-Shlomo, Y. Population prevalence of Tourette syndrome: A systematic review and meta-analysis. Mov. Disord. 2015, 30, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Knight, T.; Steeves, T.; Day, L.; Lowerison, M.; Jette, N.; Pringsheim, T. Prevalence of Tic Disorders: A Systematic Review and Meta-Analysis. Pediatr. Neurol. 2012, 47, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Zilhão, N.R.; Olthof, M.C.; Smit, D.J.A.; Cath, D.C.; Ligthart, L.; Mathews, C.A.; Delucchi, K.; Boomsma, D.I.; Dolan, C.V. Heritability of tic disorders: A twin-family study. Psychol. Med. 2016, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Martino, D.; Macerollo, A.; Leckman, J.F. Chapter Nine—Neuroendocrine Aspects of Tourette Syndrome. In Advances in the Neurochemistry and Neuropharmacology of Tourette Syndrome; International Review of Neurobiology; Cavanna, D.M., Cavanna, A.E., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 112, pp. 239–279. [Google Scholar]
- Yang, J.; Hirsch, L.; Martino, D.; Jette, N.; Roberts, J.; Pringsheim, T. The prevalence of diagnosed tourette syndrome in Canada: A national population-based study. Mov. Disord. 2016, 31, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Schlander, M.; Schwarz, O.; Rothenberger, A.; Roessner, V. Tic disorders: Administrative prevalence and co-occurrence with attention-deficit/hyperactivity disorder in a German community sample. Eur. Psychiatry 2011, 26, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Pauls, D.L.; Fernandez, T.V.; Mathews, C.A.; State, M.W.; Scharf, J.M. The Inheritance of Tourette Disorder: A review. J. Obsessive Compuls. Relat. Disord. 2014, 3, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Mataix-Cols, D.; Isomura, K.; Pérez-Vigil, A.; Chang, Z.; Rück, C.; Larsson, K.J.; Leckman, J.F.; Serlachius, E.; Larsson, H.; Lichtenstein, P. Familial Risks of Tourette Syndrome and Chronic Tic Disorders: A Population-Based Cohort Study. JAMA Psychiatry 2015, 72, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Mathews, C.A.; Grados, M.A. Familiality of Tourette Syndrome, Obsessive-Compulsive Disorder, and Attention-DeficitHyperactivity Disorder: Heritability Analysis in a Large Sib-Pair Sample. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.E.; Illmann, C.; Geller, D.A.; Leckman, J.F.; King, R.; Pauls, D.L. A Controlled Family Study of Attention-Deficit/Hyperactivity Disorder and Tourette’s Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Kurlan, R.; Behr, J.; Medved, L.; Shoulson, I.; Pauls, D.; Kidd, J.R.; Kidd, K.K. Familial Tourette’s syndrome: Report of a large pedigree and potential for linkage analysis. Neurology 1986, 36, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, G.; Pasquini, M.; Aurilia, C.; Berardelli, I.; Breedveld, G.; Oostra, B.A.; Bonifati, V.; Berardelli, A. A large Italian family with Gilles de la Tourette syndrome: Clinical study and analysis of the SLITRK1 gene. Mov. Disord. 2007, 22, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Curtis, D.; Robertson, M.M.; Gurling, H.M. Autosomal dominant gene transmission in a large kindred with Gilles de la Tourette syndrome. Br. J. Psychiatry 1992, 160, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.M.; Gourdie, A. Familial Tourette’s syndrome in a large British pedigree. Associated psychopathology, severity, and potential for linkage analysis. Br. J. Psychiatry 1990, 156, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Eapen, V.; Pauls, D.L.; Robertson, M.M. Evidence for autosomal dominant transmission in Tourette’s syndrome. United Kingdom cohort study. Br. J. Psychiatry 1993, 162, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Seuchter, S.A.; Hebebrand, J.; Klug, B.; Knapp, M.; Lehmkuhl, G.; Poustka, F.; Schmidt, M.; Remschmidt, H.; Baur, M.P. Complex segregation analysis of families ascertained through Gilles de la Tourette syndrome. Genet. Epidemiol. 2000, 18, 33–47. [Google Scholar] [CrossRef]
- Huisman-van Dijk, H.M.; van de Schoot, R.; Rijkeboer, M.M.; Mathews, C.A.; Cath, D.C. The relationship between tics, OC, ADHD and autism symptoms: A cross-disorder symptom analysis in Gilles de la Tourette syndrome patients and their family members. Psychiatry Res. 2016, 237, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Price, R.A.; Kidd, K.K.; Cohen, D.J.; Pauls, D.L.; Leckman, J.F. A Twin Study of Tourette Syndrome. Arch. Gen. Psychiatry 1985, 42, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Hyde, T.M.; Aaronson, B.A.; Randolph, C.; Rickler, K.C.; Weinberger, D.R. Relationship of birth weight to the phenotypic expression of Gilles de la Tourette’s syndrome in monozygotic twins. Neurology 1992, 42, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D.; Rijsdijk, F.; O’Connor, T.G.; Perrin, S.; Eley, T.C. Obsessive-compulsive disorder, tics and anxiety in 6-year-old twins. Psychol. Med. 2007, 37, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Anckarsäter, H.; Lundström, S.; Kollberg, L.; Kerekes, N.; Palm, C.; Carlström, E.; Långström, N.; Magnusson, P.K.E.; Halldner, L.; Bölte, S.; et al. The Child and Adolescent Twin Study in Sweden (CATSS). Twin Res. Hum. Genet. 2011, 14, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Monzani, B.; Leckman, J.F.; Rück, C.; Serlachius, E.; Lichtenstein, P.; Mataix-Cols, D. Understanding the covariation of tics, attention-deficit/hyperactivity, and obsessive-compulsive symptoms: A population-based adult twin study. Am. J. Med. Genet. 2016, 171, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Daly, M.J.; O’Donovan, M. Genetic Architectures of Psychiatric Disorders: The Emerging Picture and Its Implications. Nat. Rev. Genet. 2012, 13, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Brett, P.; Curtis, D.; Gourdie, A.; Schnieden, V.; Jackson, G.; Holmes, D.; Robertson, M.; Gurling, H. Possible linkage of Tourette syndrome to markers on short arm of chromosome 3 (C3p21-14). Lancet 1990, 336, 1076. [Google Scholar] [CrossRef]
- The Tourette Syndrome Association International Consortium for Genetics. A Complete Genome Screen in Sib Pairs Affected by Gilles de la Tourette Syndrome. Am. J. Hum. Genet. 1999, 65, 1428–1436. [Google Scholar]
- Zhang, H.; Leckman, J.F.; Pauls, D.L.; Tsai, C.-P.; Kidd, K.K.; Campos, M.R. Genomewide Scan of Hoarding in Sib Pairs in Which Both Sibs Have Gilles de la Tourette Syndrome. Am. J. Hum. Genet. 2002, 70, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Rivière, J.-B.; Xiong, L.; Levchenko, A.; St-Onge, J.; Gaspar, C.; Dion, Y.; Lespérance, P.; Tellier, G.; Richer, F.; Chouinard, S.; et al. Montreal Tourette Study Group Association of intronic variants of the BTBD9 gene with Tourette syndrome. Arch. Neurol. 2009, 66, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Boghosian-Sell, L.; Comings, D.E.; Overhauser, J. Tourette syndrome in a pedigree with a 7;18 translocation: Identification of a YAC spanning the translocation breakpoint at 18q22.3. Am. J. Hum. Genet. 1996, 59, 999–1005. [Google Scholar] [PubMed]
- Petek, E.; Windpassinger, C.; Vincent, J.B.; Cheung, J.; Boright, A.P.; Scherer, S.W.; Kroisel, P.M.; Wagner, K. Disruption of a Novel Gene (IMMP2L) by a Breakpoint in 7q31 Associated with Tourette Syndrome. Am. J. Hum. Genet. 2001, 68, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Anzaldúa, A.; Joober, R.; Rivière, J.-B.; Dion, Y.; Lespérance, P.; Richer, F.; Chouinard, S.; Rouleau, G.A. Tourette syndrome and dopaminergic genes: A family-based association study in the French Canadian founder population. Mol. Psychiatry 2004, 9, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Mérette, C.; Brassard, A.; Potvin, A.; Bouvier, H.; Rousseau, F.; Émond, C.; Bissonnette, L.; Roy, M.-A.; Maziade, M.; Ott, J.; et al. Significant Linkage for Tourette Syndrome in a Large French Canadian Family. Am. J. Hum. Genet. 2000, 67, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Simonic, I.; Gericke, G.S.; Ott, J.; Weber, J.L. Identification of genetic markers associated with Gilles de la Tourette syndrome in an Afrikaner population. Am. J. Hum. Genet. 1998, 63, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Anzaldúa, A.; Rivière, J.-B.; Dubé, M.-P.; Joober, R.; Saint-Onge, J.; Dion, Y.; Lespérance, P.; Richer, F.; Chouinard, S.; Rouleau, G.A. Montreal Tourette Syndrome Study Group Chromosome 11–q24 region in Tourette syndrome: Association and linkage disequilibrium study in the French Canadian population. Am. J. Med. Genet. A 2005, 138A, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Abelson, J.F.; Kwan, K.Y.; O’Roak, B.J.; Baek, D.Y.; Stillman, A.A.; Morgan, T.M.; Mathews, C.A.; Pauls, D.L.; Rasin, M.-R.; Gunel, M.; et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 2005, 310, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Ercan-Sencicek, A.G.; Stillman, A.A.; Ghosh, A.K.; Bilguvar, K.; O’Roak, B.J.; Mason, C.E.; Abbott, T.; Gupta, A.; King, R.A.; Pauls, D.L.; et al. L-Histidine Decarboxylase and Tourette’s Syndrome. N. Engl. J. Med. 2010, 362, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Paschou, P.; Feng, Y.; Pakstis, A.J.; Speed, W.C.; DeMille, M.M.; Kidd, J.R.; Jaghori, B.; Kurlan, R.; Pauls, D.L.; Sandor, P.; et al. Indications of Linkage and Association of Gilles de la Tourette Syndrome in Two Independent Family Samples: 17q25 Is a Putative Susceptibility Region. Am. J. Hum. Genet. 2004, 75, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Tischfield, J.A.; King, R.A.; Heiman, G.A. Functional Evaluations of Genes Disrupted in Patients with Tourette’s Disorder. Front. Psychiatry 2016. [Google Scholar] [CrossRef] [PubMed]
- Ledonne, A.; Mercuri, N.B. Current Concepts on the Physiopathological Relevance of Dopaminergic Receptors. Front. Cell Neurosci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol. Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Meunier, C.N.J.; Chameau, P.; Fossier, P.M. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front. Synaptic Neurosci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Brett, P.M.; Curtis, D.; Robertson, M.M.; Gurling, H.M.D. The genetic susceptibility to Gilles de la Tourette Syndrome in a large multiple affected british kindred: Linkage analysis excludes a role for the genes coding for dopamine D1, D2, D3, D4, D5 receptors, dopamine beta hydroxylase, tyrosinase, and tyrosine hydroxylase. Biol. Psychiatry 1995, 37, 533–540. [Google Scholar] [PubMed]
- Gelernter, J.; Kennedy, J.L.; Grandy, D.K.; Zhou, Q.Y.; Civelli, O.; Pauls, D.L.; Pakstis, A.; Kurlan, R.; Sunahara, R.K.; Niznik, H.B. Exclusion of close linkage of Tourette’s syndrome to D1 dopamine receptor. Am. J. Psychiatry 1993, 150, 449–453. [Google Scholar] [PubMed]
- Thompson, M.; Comings, D.E.; Feder, L.; George, S.R.; O’Dowd, B.F. Mutation screening of the dopamine D1 receptor gene in Tourette’s syndrome and alcohol dependent patients. Am. J. Med. Genet. 1998, 81, 241–244. [Google Scholar] [CrossRef]
- Chou, I.-C.; Tsai, C.-H.; Lee, C.-C.; Kuo, H.-T.; Hsu, Y.-A.; Li, C.-I.; Tsai, F.-J. Association analysis between Tourette’s syndrome and dopamine D1 receptor gene in Taiwanese children. Psychiatr. Genet. 2004, 14, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami, B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; et al. The Dopamine D2 Receptor Locus as a Modifying Gene in Neuropsychiatric Disorders. JAMA 1991, 266, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E.; Wu, S.; Chiu, C.; Ring, R.H.; Gade, R.; Ahn, C.; MacMurray, J.P.; Dietz, G.; Muhleman, D. Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: The additive and subtractive effect of the three dopaminergic genes—DRD2, D beta H, and DAT1. Am. J. Med. Genet. 1996, 67, 264–288. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chou, I.-C.; Tsai, C.-H.; Wang, T.-R.; Li, T.-C.; Tsai, F.-J. Dopamine Receptor D2 Gene Polymorphisms Are Associated in Taiwanese Children With Tourette Syndrome. Pediatr. Neurol. 2005, 33, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, J.; Pakstis, A.J.; Pauls, D.L.; Kurlan, R.; Gancher, S.T.; Civelli, O.; Grandy, D.; Kidd, K.K. Gilles de la Tourette Syndrome Is Not Linked to D2-Dopamine Receptor. Arch. Gen. Psychiatry 1990, 47, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, J.; Pauls, D.L.; Leckman, J.; Kidd, K.K.; Kurlan, R. D2 Dopamine Receptor Alleles Do Not Influence Severity of Tourette’s Syndrome: Results From Four Large Kindreds. Arch. Neurol. 1994, 51, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Nöthen, M.M.; Hebebrand, J.; Knapp, M.; Hebebrand, K.; Camps, A.; von Gontard, A.; Wettke-Schäfer, R.; Lisch, S.; Cichon, S.; Poustka, F.; et al. Association analysis of the dopamine D2 receptor gene in Tourette’s syndrome using the haplotype relative risk method. Am. J. Med. Genet. 1994, 54, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Abdulkadir, M.; Londono, D.; Gordon, D.; Fernandez, T.V.; Brown, L.W.; Cheon, K.-A.; Coffey, B.J.; Elzerman, L.; Fremer, C.; Fründt, O.; et al. Investigation of previously implicated genetic variants in chronic tic disorders: A transmission disequilibrium test approach. Eur. Arch. Psychiatry Clin. Neurosci. 2017. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zheng, Y.; Huang, H.-H.; Cheng, Y.-H.; Wang, C.-Y. Association between Tourette Syndrome and the Dopamine D3 Receptor Gene Rs6280. Chin. Med. J. 2015, 128, 654–658. [Google Scholar] [PubMed]
- Grice, D.E.; Leckman, J.F.; Pauls, D.L.; Kurlan, R.; Kidd, K.K.; Pakstis, A.J.; Chang, F.M.; Buxbaum, J.D.; Cohen, D.J.; Gelernter, J. Linkage disequilibrium between an allele at the dopamine D4 receptor locus and Tourette syndrome, by the transmission-disequilibrium test. Am. J. Hum. Genet. 1996, 59, 644–652. [Google Scholar] [PubMed]
- Cruz, C.; Camarena, B.; King, N.; Páez, F.; Sidenberg, D.; de la Fuente, J.R.; Nicolini, H. Increased prevalence of the seven-repeat variant of the dopamine D4 receptor gene in patients with obsessive-compulsive disorder with tics. Neurosci. Lett. 1997, 231, 1–4. [Google Scholar] [CrossRef]
- Tarnok, Z.; Ronai, Z.; Gervai, J.; Kereszturi, E.; Gadoros, J.; Sasvari-Szekely, M.; Nemoda, Z. Dopaminergic candidate genes in Tourette syndrome: Association between tic severity and 3′ UTR polymorphism of the dopamine transporter gene. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144B, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Barr, C.L.; Wigg, K.G.; Zovko, E.; Sandor, P.; Tsui, L.-C. No evidence for a major gene effect of the dopamine D4 receptor gene in the susceptibility to Gilles de la Tourette syndrome in five Canadian families. Am. J. Med. Genet. 1996, 67, 301–305. [Google Scholar] [CrossRef]
- Hebebrand, J.; Nöthen, M.M.; Ziegler, A.; Klug, B.; Neidt, H.; Eggermann, K.; Lehmkuhl, G.; Poustka, F.; Schmidt, M.H.; Propping, P.; et al. Nonreplication of linkage disequilibrium between the dopamine D4 receptor locus and Tourette syndrome. Am. J. Hum. Genet. 1997, 61, 238–239. [Google Scholar] [CrossRef]
- Yoon, D.Y.; Rippel, C.A.; Kobets, A.J.; Morris, C.M.; Lee, J.E.; Williams, P.N.; Bridges, D.D.; Vandenbergh, D.J.; Shugart, Y.Y.; Singer, H.S. Dopaminergic polymorphisms in Tourette syndrome: Association with the DAT gene (SLC6A3). Am. J. Med. Genet. 2007, 144B, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Barr, C.L.; Wigg, K.G.; Zovko, E.; Sandor, P.; Tsui, L.-C. Linkage study of the dopamine D5 receptor gene and Gilles de la Tourette syndrome. Am. J. Med. Genet. 1997, 74, 58–61. [Google Scholar] [CrossRef]
- Gelernter, J.; Vandenbergh, D.; Kruger, S.D.; Pauls, D.L.; Kurlan, R.; Pakstis, A.J.; Kidd, K.K.; Uhl, G. The Dopamine Transporter Protein Gene (SLC6A3): Primary Linkage Mapping and Linkage Studies in Tourette Syndrome. Genomics 1995, 30, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, F.; Wigg, K.G.; Turanli, E.T.; Asherson, P.; Yazgan, Y.; Sandor, P.; Barr, C.L. Analysis of the dopamine beta hydroxylase gene in Gilles de la tourette syndrome. Am. J. Med. Genet. 2006, 141B, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, M.C.; Di Bella, D.; Catalano, M.; Bellodi, L. An association study between 5-HTTLPR polymorphism, COMT polymorphism, and Tourette’s syndrome. Psychiatry Res. 2000, 97, 93–100. [Google Scholar] [CrossRef]
- Lam, S.; Shen, Y.; Nguyen, T.; Messier, T.L.; Brann, M.; Comings, D.; George, S.R.; O’Dowd, B.F. A Serotonin Receptor Gene (5HT1A) Variant Found in a Tourette’s Syndrome Patient. Biochem. Biophys. Res. Commun. 1996, 219, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J.; Shimron-Abarbanell, D.; Cichon, S.; Albus, M.; Maier, W.; Lichtermann, D.; Minges, J.; Reuner, U.; Franzek, E.; Ertl, M.A.; et al. Systematic screening for mutations in the promoter and the coding region of the 5-HT1A gene. Am. J. Med. Genet. 1995, 60, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, X.; Li, T.; Guo, L.; Sun, X.; Xiao, X.; Ma, X.; Wang, Y.; Collier, D.A. Cases-Control association study and transmission disequilibrium test of T102C polymorphism in 5HT2A and Tourette syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2001, 18, 11–13. [Google Scholar] [PubMed]
- Dehning, S.; Müller, N.; Matz, J.; Bender, A.; Kerle, I.; Benninghoff, J.; Musil, R.; Spellmann, I.; Bondy, B.; Möller, H.-J.; et al. A genetic variant of HTR2C may play a role in the manifestation of Tourette syndrome. Psychiatr. Genet. 2010, 20, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Niesler, B.; Frank, B.; Hebebrand, J.; Rappold, G. Serotonin receptor genes HTR3A and HTR3B are not involved in Gilles de la Tourette syndrome. Psychiatr. Genet. 2005, 15, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Gelernter, J.; Rao, P.A.; Pauls, D.L.; Hamblin, M.W.; Sibley, D.R.; Kidd, K.K. Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with tourette syndrome. Genomics 1995, 26, 207–209. [Google Scholar] [CrossRef]
- Moya, P.R.; Wendland, J.R.; Rubenstein, L.M.; Timpano, K.R.; Heiman, G.A.; Tischfield, J.A.; King, R.A.; Andrews, A.M.; Ramamoorthy, S.; McMahon, F.J.; et al. Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette disorder. Mov. Disord. 2013, 28, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Mössner, R.; Müller-Vahl, K.R.; Döring, N.; Stuhrmann, M. Role of the novel tryptophan hydroxylase-2 gene in Tourette syndrome. Mol. Psychiatry 2007, 12, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, A.; Gause, C.D.; Sattler, R.; Vidensky, S.; Rothstein, J.D.; Singer, H.; Wang, T. Genetic and functional studies of a missense variant in a glutamate transporter, SLC1A3, in Tourette syndrome. Psychiatr. Genet. 2011, 21, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.; Fagerness, J.; Osiecki, L.; Gunnell, B.; Stewart, S.E.; Pauls, D.L.; Scharf, J.M. Family-based Genetic Association Study of DLGAP3 in Tourette Syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, I.; Dehning, S.; Sandor, P.; Tarnok, Z.; Rizzo, R.; Wolanczyk, T.; Madruga-Garrido, M.; Hebebrand, J.; Nöthen, M.M.; Lehmkuhl, G.; et al. Support of the histaminergic hypothesis in Tourette Syndrome: Association of the histamine decarboxylase gene in a large sample of families. J. Med. Genet. 2013, 50, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ozbay, F.; Wigg, K.; Shulman, R.; Tahir, E.; Yazgan, Y.; Sandor, P.; Barr, C.L. Evaluation of the genes for the adrenergic receptors α2A and α1C and Gilles de la Tourette Syndrome. Am. J. Med. Genet. 2003, 119B, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Chou, I.-C.; Tsai, C.-H.; Wan, L.; Hsu, Y.-A.; Tsai, F.-J. Association study between Tourette’s syndrome and polymorphisms of noradrenergic genes (ADRA2A, ADRA2C). Psychiatr. Genet. 2007, 17, 359. [Google Scholar] [CrossRef] [PubMed]
- Janik, P.; Berdyński, M.; Safranow, K.; Żekanowski, C. Association of ADORA1 rs2228079 and ADORA2A rs5751876 Polymorphisms with Gilles de la Tourette Syndrome in the Polish Population. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Gade, R.; Muhleman, D.; Blake, H.; MacMurray, J.; Johnson, P.; Verde, R.; Saucier, G.; Comings, D.E. Correlation of length of VNTR alleles at the X-linked MAOA gene and phenotypic effect in Tourette syndrome and drug abuse. Mol. Psychiatry 1998, 3, 50–60. [Google Scholar] [CrossRef] [PubMed]
- GWAS Catalog. Available online: http://www.ebi.ac.uk/gwas/ (accessed on 25 July 2017).
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar]
- Ripke, S.; O’Dushlaine, C.; Chambert, K.; Moran, J.L.; Kähler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 2013, 45, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, H.; Ma, D.; Bucan, M.; Glessner, J.T.; Abrahams, B.S.; Salyakina, D.; Imielinski, M.; Bradfield, J.P.; Sleiman, P.M.; et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders., Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 2009, 459, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Guo, H.; Hu, Z.; Xun, G.; Zuo, L.; Peng, Y.; Wang, K.; He, Y.; Xiong, Z.; Sun, L.; et al. Common genetic variants on 1p13.2 associate with risk of autism. Mol. Psychiatry 2014, 19, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Mühleisen, T.W.; Leber, M.; Schulze, T.G.; Strohmaier, J.; Degenhardt, F.; Treutlein, J.; Mattheisen, M.; Forstner, A.J.; Schumacher, J.; Breuer, R.; et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun. 2014, 5, 3339. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Takahashi, A.; Kamatani, Y.; Okahisa, Y.; Kunugi, H.; Mori, N.; Sasaki, T.; Ohmori, T.; Okamoto, Y.; Kawasaki, H.; et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Hek, K.; Demirkan, A.; Lahti, J.; Terracciano, A.; Teumer, A.; Cornelis, M.C.; Amin, N.; Bakshis, E.; Baumert, J.; Ding, J.; et al. A Genome-Wide Association Study of Depressive Symptoms. Biol. Psychiatry 2013, 73, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Direk, N.; Williams, S.; Smith, J.A.; Ripke, S.; Air, T.; Amare, A.T.; Amin, N.; Baune, B.T.; Bennett, D.A.; Blackwood, D.H.R.; et al. An Analysis of Two Genome-wide Association Meta-analyses Identifies a New Locus for Broad Depression Phenotype. Biol. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Mattheisen, M.; Samuels, J.F.; Wang, Y.; Greenberg, B.D.; Fyer, A.J.; McCracken, J.T.; Geller, D.A.; Murphy, D.L.; Knowles, J.A.; Grados, M.A.; et al. Genome-wide association study in obsessive-compulsive disorder: Results from the OCGAS. Mol. Psychiatry 2015, 20, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.E.; Yu, D.; Scharf, J.M.; Neale, B.M.; Fagerness, J.A.; Mathews, C.A.; Arnold, P.D.; Evans, P.D.; Gamazon, E.R.; Osiecki, L.; et al. Genome-wide association study of obsessive-compulsive disorder. Mol. Psychiatry 2013, 18, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Neale, B.M.; Liu, L.; Lee, S.H.; Wray, N.R.; Ji, N.; Li, H.; Qian, Q.; Wang, D.; Li, J.; et al. Polygenic Transmission and Complex Neuro developmental Network for Attention Deficit Hyperactivity Disorder: Genome-Wide Association Study of Both Common and Rare Variants. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Zayats, T.; Athanasiu, L.; Sonderby, I.; Djurovic, S.; Westlye, L.T.; Tamnes, C.K.; Fladby, T.; Aase, H.; Zeiner, P.; Reichborn-Kjennerud, T.; et al. Genome-Wide Analysis of Attention Deficit Hyperactivity Disorder in Norway. PLoS ONE 2015, 10, e0122501. [Google Scholar] [CrossRef] [PubMed]
- Ernst, J.; Kheradpour, P.; Mikkelsen, T.S.; Shoresh, N.; Ward, L.D.; Epstein, C.B.; Zhang, X.; Wang, L.; Issner, R.; Coyne, M.; et al. Systematic analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Heidari, N.; Phanstiel, D.H.; He, C.; Grubert, F.; Jahanbani, F.; Kasowski, M.; Zhang, M.Q.; Snyder, M.P. Genome-wide map of regulatory interactions in the human genome. Genome Res. 2014, 24, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Scharf, J.M.; Yu, D.; Mathews, C.A.; Neale, B.M.; Stewart, S.E.; Fagerness, J.A.; Evans, P.; Gamazon, E.; Edlund, C.K.; Service, S.K.; et al. Genome-wide association study of Tourette’s syndrome. Mol. Psychiatry 2013, 18, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Paschou, P.; Yu, D.; Gerber, G.; Evans, P.; Tsetsos, F.; Davis, L.K.; Karagiannidis, I.; Chaponis, J.; Gamazon, E.; Mueller-Vahl, K.; et al. Genetic association signal near NTN4 in Tourette syndrome. Ann. Neurol. 2014, 76, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Mathews, C.A.; Scharf, J.M.; Neale, B.M.; Davis, L.K.; Gamazon, E.R.; Derks, E.M.; Evans, P.; Edlund, C.K.; Crane, J.; et al. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette’s Syndrome and OCD. AJP 2014, 172, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Middeldorp, C.M.; Hammerschlag, A.R.; Ouwens, K.G.; Groen-Blokhuis, M.M.; St. Pourcain, B.; Greven, C.U.; Pappa, I.; Tiesler, C.M.T.; Ang, W.; Nolte, I.M.; et al. A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 896–905.e6. [Google Scholar] [CrossRef] [PubMed]
- Neale, B.M.; Medland, S.E.; Ripke, S.; Asherson, P.; Franke, B.; Lesch, K.-P.; Faraone, S.V.; Nguyen, T.T.; Schäfer, H.; Holmans, P.; et al. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 884–897. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Bergen, S.E.; Akula, N.; Song, J.; Hultman, C.M.; Landén, M.; Adli, M.; Alda, M.; Ardau, R.; Arias, B.; et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum. Mol. Genet. 2016, 25, 3383–3394. [Google Scholar] [CrossRef] [PubMed]
- Power, R.A.; Tansey, K.E.; Buttenschøn, H.N.; Cohen-Woods, S.; Bigdeli, T.; Hall, L.S.; Kutalik, Z.; Lee, S.H.; Ripke, S.; Steinberg, S.; et al. Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Biol. Psychiatry 2017, 81, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Direk, N.; Williams, S.; Smith, J.A.; Ripke, S.; Air, T.; Amare, A.T.; Amin, N.; Baune, B.T.; Bennett, D.A.; Blackwood, D.H.R. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol. Autism 2017. [Google Scholar] [CrossRef]
- Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 2013, 381, 1371–1379. [Google Scholar]
- Kajiwara, Y.; Buxbaum, J.D.; Grice, D.E. SLITRK1 Binds 14-3-3 and Regulates Neurite Outgrowth in a Phosphorylation-Dependent Manner. Biol. Psychiatry 2009, 66, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, I.; Rizzo, R.; Tarnok, Z.; Wolanczyk, T.; Hebebrand, J.; Nöthen, M.M.; Lehmkuhl, G.; Farkas, L.; Nagy, P.; Barta, C.; et al. Replication of association between a SLITRK1 haplotype and Tourette Syndrome in a large sample of families. Mol. Psychiatry 2012, 17, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Proenca, C.C.; Gao, K.P.; Shmelkov, S.V.; Rafii, S.; Lee, F.S. Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci. 2011, 34, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.; Cooper-Charles, L.; McMullan, D.J.; Walker, J.M.; Davison, V.; Morton, J. Translocation breakpoint at 7q31 associated with tics: Further evidence for IMMP2L as a candidate gene for Tourette syndrome. Eur. J. Hum. Genet. 2011, 19, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, B.; Melchior, L.; Jensen, L.R.; Groth, C.; Glenthøj, B.; Rizzo, R.; Debes, N.M.; Skov, L.; Brøndum-Nielsen, K.; Paschou, P.; et al. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome. Eur. J. Hum. Genet. 2014, 22, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, A.J.M.H.; Mathews, C.A.; Joosse, M.; Eussen, B.H.J.; Heutink, P.; Oostra, B.A. Cntnap2 is disrupted in a family with gilles de la tourette syndrome and obsessive compulsive disorder. Genomics 2003, 82, 1–9. [Google Scholar] [CrossRef]
- Belloso, J.M.; Bache, I.; Guitart, M.; Caballin, M.R.; Halgren, C.; Kirchhoff, M.; Ropers, H.-H.; Tommerup, N.; Tümer, Z. Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. Eur. J. Hum. Genet. 2007, 15, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Lawson-Yuen, A.; Saldivar, J.-S.; Sommer, S.; Picker, J. Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur. J. Hum. Genet. 2008, 16, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Hooper, S.D.; Johansson, A.C.; Tellgren-Roth, C.; Stattin, E.-L.; Dahl, N.; Cavelier, L.; Feuk, L. Genome-wide sequencing for the identification of rearrangements associated with Tourette syndrome and obsessive-compulsive disorder. BMC Med. Genet. 2012, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Kroisel, P.M.; Petek, E.; Emberger, W.; Windpassinger, C.; Wladika, W.; Wagner, K. Candidate region for Gilles de la Tourette syndrome at 7q31. Am. J. Med. Genet. 2001, 101, 259–261. [Google Scholar] [CrossRef]
- Crawford, F.C.; Ait-Ghezala, G.; Morris, M.; Sutcliffe, M.J.; Hauser, R.A.; Silver, A.A.; Mullan, M.J. Translocation breakpoint in two unrelated Tourette syndrome cases, within a region previously linked to the disorder. Hum. Genet. 2003, 113, 154–161. [Google Scholar] [PubMed]
- Matsumoto, N.; David, D.E.; Johnson, E.W.; Konecki, D.; Burmester, J.K.; Ledbetter, D.H.; Weber, J.L. Breakpoint sequences of an 1;8 translocation in a family with Gilles de la Tourette syndrome. Eur. J. Hum. Genet. 2000, 8, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.D.; Krizman, D.B.; Jankovic, J.; Hayani, A.; Steuber, P.C.; Greenberg, F.; Fenwick, R.G.; Caskey, C.T. 9p monosomy in a patient with Gilles de la Tourette’s syndrome. Neurology 1991, 41, 1513. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, B.; Melchior, L.; Jensen, L.R.; Groth, C.; Nazaryan, L.; Debes, N.M.; Skov, L.; Xie, G.; Sun, W.; Brøndum-Nielsen, K.; et al. A t(3;9)(q25.1;q34.3) translocation leading to OLFM1 fusion transcripts in Gilles de la Tourette syndrome, OCD and ADHD. Psychiatry Res. 2015, 225, 268–275. [Google Scholar] [CrossRef] [PubMed]
- O’Roak, B.; Morgan, T.; Fishman, D.; Saus, E.; Alonso, P.; Gratacòs, M.; Estivill, X.; Teltsh, O.; Kohn, Y.; Kidd, K.; et al. Additional support for the association of SLITRK1 var321 and Tourette syndrome. Mol. Psychiatry 2010, 15, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Melchior, L.; Bertelsen, B.; Debes, N.M.; Groth, C.; Skov, L.; Mikkelsen, J.D.; Brøndum-Nielsen, K.; Tümer, Z. Microduplication of 15q13.3 and Xq21.31 in a family with tourette syndrome and comorbidities. Am. J. Med. Genet. 2013, 162, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Deng, H. Candidate Locus for Chorea and Tic Disorders at 15q? Pediatr. Neurol. 2007, 37, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Kerbeshian, J.; Severud, R.; Burd, L.; Larson, L. Peek-a-boo fragile site at 16d associated with Tourette syndrome, bipolar disorder, autistic disorder, and mental retardation. Am. J. Med. Genet. 2000, 96, 69–73. [Google Scholar] [CrossRef]
- Dehning, S.; Riedel, M.; Müller, N. Father-to-Son Transmission of 6;17 Translocation in Tourette’s Syndrome. AJP 2008, 165, 1051–1052. [Google Scholar] [CrossRef] [PubMed]
- Shelley, B.P.; Robertson, M.M.; Turk, J. An individual with Gilles de la Tourette syndrome and Smith–Magenis microdeletion syndrome: Is chromosome 17p11.2 a candidate region for Tourette syndrome putative susceptibility genes? J. Intell. Disabil. Res. 2007, 51, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Cuker, A.; State, M.W.; King, R.A.; Davis, N.; Ward, D.C. Candidate locus for Gilles de la Tourette syndrome/obsessive compulsive disorder/chronic tic disorder at 18q22. Am. J. Med. Genet. 2004, 130A, 37–39. [Google Scholar] [CrossRef] [PubMed]
- State, M.W.; Greally, J.M.; Cuker, A.; Bowers, P.N.; Henegariu, O.; Morgan, T.M.; Gunel, M.; DiLuna, M.; King, R.A.; Nelson, C.; et al. Epigenetic abnormalities associated with a chromosome 18(q21–q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc. Natl. Acad. Sci. USA 2003, 100, 4684–4689. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.M.; Shelley, B.P.; Dalwai, S.; Brewer, C.; Critchley, H.D. A patient with both Gilles de la Tourette’s syndrome and chromosome 22q11 deletion syndrome: Clue to the genetics of Gilles de la Tourette’s syndrome? J. Psychosom. Res. 2006, 61, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.J.; Locke, D.P.; McGrath, S.D.; Cheng, Z.; Bailey, J.A.; Vallente, R.U.; Pertz, L.M.; Clark, R.A.; Schwartz, S.; Segraves, R.; et al. Segmental Duplications and Copy-Number Variation in the Human Genome. Am. J. Hum. Genet. 2005, 77, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Kotlar, A.V.; Mercer, K.B.; Zwick, M.E.; Mulle, J.G. New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings. Eur. J. Med. Genet. 2015, 58, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.H., Jr.; Scherer, S.W. Copy-number variations associated with neuropsychiatric conditions. Nature 2008, 455, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Sebat, J.; Lakshmi, B.; Malhotra, D.; Troge, J.; Lese-Martin, C.; Walsh, T.; Yamrom, B.; Yoon, S.; Krasnitz, A.; Kendall, J.; et al. Strong Association of De Novo Copy Number Mutations with Autism. Science 2007, 316, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Poultney, C.S.; Goldberg, A.P.; Drapeau, E.; Kou, Y.; Harony-Nicolas, H.; Kajiwara, Y.; De Rubeis, S.; Durand, S.; Stevens, C.; Rehnström, K.; et al. Identification of Small Exonic CNV from Whole-Exome Sequence Data and Application to Autism Spectrum Disorder. Am. J. Hum. Genet. 2013, 93, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Ionita-Laza, I.; Xu, B.; Makarov, V.; Buxbaum, J.D.; Roos, J.L.; Gogos, J.A.; Karayiorgou, M. Scan statistic-based analysis of exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism. Proc. Natl. Acad. Sci. USA 2014, 111, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Roos, J.L.; Levy, S.; van Rensburg, E.J.; Gogos, J.A.; Karayiorgou, M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet. 2008, 40, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Bourgeron, T. Current knowledge on the genetics of autism and propositions for future research. Comptes Rendus Biol. 2016, 339, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, T.V.; Sanders, S.J.; Yurkiewicz, I.R.; Ercan-Sencicek, A.G.; Kim, Y.-S.; Fishman, D.O.; Raubeson, M.J.; Song, Y.; Yasuno, K.; Ho, W.S.C.; et al. Rare Copy Number Variants in Tourette Syndrome Disrupt Genes in Histaminergic Pathways and Overlap with Autism. Biol. Psychiatry 2012, 71, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Sanders, S.J.; Ercan-Sencicek, A.G.; Hus, V.; Luo, R.; Murtha, M.T.; Moreno-De-Luca, D.; Chu, S.H.; Moreau, M.P.; Gupta, A.R.; Thomson, S.A.; et al. Multiple recurrent de novo copy number variations (CNVs), including duplications of the 7q11.23 Williams-Beuren syndrome region, are strongly associated with autism. Neuron 2011, 70, 863–885. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.K.; Huq, A.M.; Wilson, B.J.; Chugani, H.T. Tourette syndrome is associated with recurrent exonic copy number variants (e-Pub ahead of print)(CME). Neurology 2010, 74, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Nag, A.; Bochukova, E.G.; Kremeyer, B.; Campbell, D.D.; Muller, H.; Valencia-Duarte, A.V.; Cardona, J.; Rivas, I.C.; Mesa, S.C.; Cuartas, M.; et al. CNV Analysis in Tourette Syndrome Implicates Large Genomic Rearrangements in COL8A1 and NRXN1. PLoS ONE 2013, 8, e59061. [Google Scholar] [CrossRef] [PubMed]
- McGrath, L.M.; Yu, D.; Marshall, C.; Davis, L.K.; Thiruvahindrapuram, B.; Li, B.; Cappi, C.; Gerber, G.; Wolf, A.; Schroeder, F.A.; et al. Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, B.; Stefánsson, H.; Riff Jensen, L.; Melchior, L.; Mol Debes, N.; Groth, C.; Skov, L.; Werge, T.; Karagiannidis, I.; Tarnok, Z.; et al. Association of AADAC Deletion and Gilles de la Tourette Syndrome in a Large European Cohort. Biol. Psychiatry 2016, 79, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.Y.; Yu, D.; Davis, L.K.; Sul, J.H.; Tsetsos, F.; Ramensky, V.; Zelaya, I.; Ramos, E.M.; Osiecki, L.; Chen, J.A.; et al. Rare Copy Number Variants in NRXN1 and CNTN6 Increase Risk for Tourette Syndrome. Neuron 2017, 94, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Bamshad, M.J.; Ng, S.B.; Bigham, A.W.; Tabor, H.K.; Emond, M.J.; Nickerson, D.A.; Shendure, J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011, 12, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Kiezun, A.; Garimella, K.; Do, R.; Stitziel, N.O.; Neale, B.M.; McLaren, P.J.; Gupta, N.; Sklar, P.; Sullivan, P.F.; Moran, J.L.; et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 2012, 44, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Exome sequencing greatly expedites the progressive research of Mendelian diseases. Front. Med. 2014, 8, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Ezewudo, M.; Zwick, M.E. Evaluating Rare Variants in Complex Disorders Using Next-Generation Sequencing. Curr. Psychiatry Rep. 2013, 15, 349. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Scholl, U.I.; Ji, W.; Liu, T.; Tikhonova, I.R.; Zumbo, P.; Nayir, A.; Bakkaloğlu, A.; Özen, S.; Sanjad, S.; et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 2009, 106, 19096–19101. [Google Scholar] [CrossRef] [PubMed]
- Cappi, C.; Brentani, H.; Lima, L.; Sanders, S.J.; Zai, G.; Diniz, B.J.; Reis, V.N.S.; Hounie, A.G.; Conceição do Rosário, M.; Mariani, D.; et al. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways. Transl. Psychiatry 2016, 6, e764. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, M.; Dorschner, M.; Tsuang, D. Next-generation sequencing in schizophrenia and other neuropsychiatric disorders. Am. J. Med. Genet. 2013, 162, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Sener, E.F.; Canatan, H.; Ozkul, Y. Recent Advances in Autism Spectrum Disorders: Applications of Whole Exome Sequencing Technology. Psychiatry Investig. 2016, 13, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Kato, T. Whole genome/exome sequencing in mood and psychotic disorders. Psychiatry Clin. Neurosci. 2015, 69, 65–76. [Google Scholar] [CrossRef] [PubMed]
- De Rubeis, S.; He, X.; Goldberg, A.P.; Poultney, C.S.; Samocha, K.; Cicek, A.E.; Kou, Y.; Liu, L.; Fromer, M.; Walker, S.; et al. Synaptic, transcriptional, and chromatin genes disrupted in autism. Nature 2014, 515, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Sanders, S.J.; He, X.; Willsey, A.J.; Ercan-Sencicek, A.G.; Samocha, K.E.; Cicek, A.E.; Murtha, M.T.; Bal, V.H.; Bishop, S.L.; Dong, S.; et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015, 87, 1215–1233. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.T.; Uddin, M.; De Rubeis, S.; Chan, Y.; Kamumbu, A.S.; Zhang, X.; D’Gama, A.M.; Kim, S.N.; Hill, R.S.; Goldberg, A.P.; et al. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.M.; Moran, J.L.; Fromer, M.; Ruderfer, D.; Solovieff, N.; Roussos, P.; O’Dushlaine, C.; Chambert, K.; Bergen, S.E.; Kähler, A.; et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014, 506, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Kurki, M.I.; Curtis, D.; Purcell, S.M.; Crooks, L.; McRae, J.; Suvisaari, J.; Chheda, H.; Blackwood, D.; Breen, G.; et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci. 2016, 19, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Genovese, G.; Fromer, M.; Stahl, E.A.; Ruderfer, D.M.; Chambert, K.; Landén, M.; Moran, J.L.; Purcell, S.M.; Sklar, P.; Sullivan, P.F.; et al. Increased burden of ultra-rare protein-altering variants among 4877 individuals with schizophrenia. Nat. Neurosci. 2016, 19, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Walters, J.T.R.; Johnstone, M.; Curtis, D.; Suvisaari, J.; Torniainen, M.; Rees, E.; Iyegbe, C.; Blackwood, D.; McIntosh, A.M.; et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet. 2017, 49, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Goes, F.S.; Pirooznia, M.; Parla, J.S.; Kramer, M.; Ghiban, E.; Mavruk, S.; Chen, Y.-C.; Monson, E.T.; Willour, V.L.; Karchin, R.; et al. Exome Sequencing of Familial Bipolar Disorder. JAMA Psychiatry 2016, 73, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.R.; Yourshaw, M.; Christensen, B.; Nelson, S.F.; Kerner, B. Rare deleterious mutations are associated with disease in bipolar disorder families. Mol. Psychiatry 2016. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; de Vrij, F.M.S.; Baghdadi, M.; Brouwer, R.W.W.; van Rooij, J.G.J.; Jovanova, O.; Uitterlinden, A.G.; Hofman, A.; Janssen, H.L.A.; Darwish Murad, S.; et al. A rare missense variant in RCL1 segregates with depression in extended families. Mol. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; Jovanova, O.; Adams, H.H.H.; Dehghan, A.; Kavousi, M.; Vernooij, M.W.; Peeters, R.P.; de Vrij, F.M.S.; van der Lee, S.J.; van Rooij, J.G.J.; et al. Exome-sequencing in a large population-based study reveals a rare Asn396Ser variant in the LIPG gene associated with depressive symptoms. Mol. Psychiatry 2017, 22, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; Belonogova, N.M.; Jovanova, O.; Brouwer, R.W.W.; van Rooij, J.G.J.; van den Hout, M.C.G.N.; Svishcheva, G.R.; Kraaij, R.; Zorkoltseva, I.V.; Kirichenko, A.V.; et al. Nonsynonymous Variation in NKPD1 Increases Depressive Symptoms in European Populations. Biol. Psychiatry 2017, 81, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Yuen, R.K.C.; Merico, D.; Bookman, M.; Howe, J.L.; Thiruvahindrapuram, B.; Patel, R.V.; Whitney, J.; Deflaux, N.; Bingham, J.; Wang, Z.; et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 2017. [Google Scholar] [CrossRef]
- Ament, S.A.; Szelinger, S.; Glusman, G.; Ashworth, J.; Hou, L.; Akula, N.; Shekhtman, T.; Badner, J.A.; Brunkow, M.E.; Mauldin, D.E.; et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc. Natl. Acad. Sci. USA 2015, 112, 3576–3581. [Google Scholar] [CrossRef] [PubMed]
- Homann, O.R.; Misura, K.; Lamas, E.; Sandrock, R.W.; Nelson, P.; McDonough, S.I.; DeLisi, L.E. Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol. Psychiatry 2016, 21, 1690–1695. [Google Scholar] [CrossRef] [PubMed]
- Consortium, C. Sparse whole genome sequencing identifies two loci for major depressive disorder. Nature 2015, 523, 588–591. [Google Scholar]
- Drögemöller, B. Whole-genome sequencing provides insight into the genetics of major depressive disorder. Clin. Genet. 2015, 88, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.E.; Cai, N.; Bigdeli, T.B.; Li, Y.; Reimers, M.; Nikulova, A.; Webb, B.T.; Bacanu, S.-A.; Riley, B.P.; Flint, J.; et al. The Genetic Architecture of Major Depressive Disorder in Han Chinese Women. JAMA Psychiatry 2017, 74, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Bigdeli, T.B.; Kretzschmar, W.W.; Li, Y.; Liang, J.; Hu, J.; Peterson, R.E.; Bacanu, S.; Webb, B.T.; Riley, B.; et al. 11,670 whole-genome sequences representative of the Han Chinese population from the CONVERGE project. Sci. Data 2017. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Walker, M.F.; Carriero, N.J.; DiCola, M.; Willsey, A.J.; Ye, A.Y.; Waqar, Z.; Gonzalez, L.E.; Overton, J.D.; Frahm, S.; et al. De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. Cell Rep. 2014, 9, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Ionita-Laza, I.; Roos, J.L.; Boone, B.; Woodrick, S.; Sun, Y.; Levy, S.; Gogos, J.A.; Karayiorgou, M. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat. Genet. 2012, 44, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Takata, A.; Ionita-Laza, I.; Gogos, J.A.; Xu, B.; Karayiorgou, M. De Novo Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of Autism and Schizophrenia. Neuron 2016, 89, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, M.; Matoba, N.; Sawada, T.; Kazuno, A.-A.; Ishiwata, M.; Fujii, K.; Matsuo, K.; Takata, A.; Kato, T. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations. Mol. Psychiatry 2016, 21, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Adamsen, D.; Ramaekers, V.; Ho, H.T.; Britschgi, C.; Rüfenacht, V.; Meili, D.; Bobrowski, E.; Philippe, P.; Nava, C.; Van Maldergem, L.; et al. Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol. Autism 2014, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Fromer, M.; Pocklington, A.J.; Kavanagh, D.H.; Williams, H.J.; Dwyer, S.; Gormley, P.; Georgieva, L.; Rees, E.; Palta, P.; Ruderfer, D.M.; et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014, 506, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, C.P.; Gonzalez-Garay, M.L.; Xia, F.; Potocki, L.; Gripp, K.W.; Zhang, B.; Peters, B.A.; McElwain, M.A.; Drmanac, R.; Beaudet, A.L.; et al. Truncating mutations of MAGEL2cause Prader-Willi phenotypes and autism. Nat. Genet. 2013, 45, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.; Narzisi, G.; Leotta, A.; et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.E.; Gillis, J.; Kramer, M.; Lihm, J.; Yoon, S.; Berstein, Y.; Mistry, M.; Pavlidis, P.; Solomon, R.; Ghiban, E.; et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol. Psychiatry 2014, 19, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cai, T.; Jiang, Y.; Chen, H.; He, X.; Chen, C.; Li, X.; Shao, Q.; Ran, X.; Li, Z.; et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol. Psychiatry 2016, 21, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Merico, D.; Zarrei, M.; Costain, G.; Ogura, L.; Alipanahi, B.; Gazzellone, M.J.; Butcher, N.J.; Thiruvahindrapuram, B.; Nalpathamkalam, T.; Chow, E.W.C.; et al. Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome. G3 2015, 5, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, A.; O’Brien, N.L.; Locke, D.P.; McQuillin, A.; Jarram, A.; Anjorin, A.; Kandaswamy, R.; Curtis, D.; Blizard, R.A.; Gurling, H.M.D. Analysis of ANK3 and CACNA1C variants identified in bipolar disorder whole genome sequence data. Bipolar Disord. 2014, 16, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.; Gedvilaite, E.; Badner, J.A.; Erdman, C.; Baird, L.; Matsunami, N.; Leppert, M.; Xing, J.; Byerley, W. A Rare Variant in CACNA1D Segregates with 7 Bipolar I Disorder Cases in a Large Pedigree. Mol. Neuropsychiatry 2016, 2, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.K.; Huq, A.M.; Sun, Z.; Yu, W.; Bennett, L.; Wilson, B.J.; Behen, M.E.; Chugani, H.T. Exome sequencing of a pedigree with tourette syndrome or chronic tic disorder. Ann. Neurol. 2011, 69, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Willsey, A.J.; Fernandez, T.V.; Yu, D.; King, R.A.; Dietrich, A.; Xing, J.; Sanders, S.J.; Mandell, J.D.; Huang, A.Y.; Richer, P.; et al. De Novo Coding Variants Are Strongly Associated with Tourette Disorder. Neuron 2017, 94, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Eriguchi, Y.; Kuwabara, H.; Inai, A.; Kawakubo, Y.; Nishimura, F.; Kakiuchi, C.; Tochigi, M.; Ohashi, J.; Aoki, N.; Kato, K.; et al. Identification of candidate genes involved in the etiology of sporadic Tourette syndrome by exome sequencing. Am. J. Med. Genet. 2017, 174, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Nasello, C.; Deng, L.; Wang, N.; Zhang, Y.; Xu, Z.; Song, Z.; Kwan, K.; King, R.A.; Pang, Z.P.; et al. The PNKD gene is associated with Tourette Disorder or Tic disorder in a multiplex family. Mol. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Inbar-Feigenberg, M.; Choufani, S.; Butcher, D.T.; Roifman, M.; Weksberg, R. Basic concepts of epigenetics. Fertil. Steril. 2013, 99, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Pagliaroli, L.; Vető, B.; Arányi, T.; Barta, C. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research. Front. Neurosci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Shorter, K.R.; Miller, B.H. Epigenetic Mechanisms in Schizophrenia. Prog. Biophys. Mol. Biol. 2015, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleky, H.M.; Zhou, J.-R.; Thiagalingam, S. An update on the epigenetics of psychotic diseases and autism. Epigenomics 2015, 7, 427–449. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Jin, P. Unlocking epigenetic codes in neurogenesis. Genes Dev. 2014, 28, 1253–1271. [Google Scholar] [CrossRef] [PubMed]
- Bohacek, J.; Gapp, K.; Saab, B.J.; Mansuy, I.M. Transgenerational Epigenetic Effects on Brain Functions. Biol. Psychiatry 2013, 73, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Ragusa, M.; Barbagallo, C.; Sammito, M.; Gulisano, M.; Calì, P.V.; Pappalardo, C.; Barchitta, M.; Granata, M.; Condorelli, A.G.; et al. Circulating miRNAs profiles in tourette syndrome: Molecular data and clinical implications. Mol. Brain 2015. [Google Scholar] [CrossRef] [PubMed]
- Müller-Vahl, K.R.; Loeber, G.; Kotsiari, A.; Müller-Engling, L.; Frieling, H. Gilles de la Tourette syndrome is associated with hypermethylation of the dopamine D2 receptor gene. J. Psychiatr. Res. 2017, 86, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zilhão, N.R.; Padmanabhuni, S.S.; Pagliaroli, L.; Barta, C.; Smit, D.J.A.; Cath, D.; Nivard, M.G.; Baselmans, B.M.L.; van Dongen, J.; Paschou, P.; et al. Epigenome-Wide Association Study of Tic Disorders. Twin Res. Hum. Genet. 2015, 18, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.S.; Camprubí, C.; Tümer, Z.; Martínez, F.; Milà, M.; Monk, D. Screening individuals with intellectual disability, autism and Tourette’s syndrome for KCNK9 mutations and aberrant DNA methylation within the 8q24 imprinted cluster. Am. J. Med. Genet. 2014, 165, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, P.J.; Dietrich, A.; Edwards, M.J.; Elamin, I.; Martino, D. Environmental factors in Tourette syndrome. Neurosci. Biobehav. Rev. 2013, 37, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.-K.; Hu, J.; Pringsheim, T. Prenatal risk factors for Tourette Syndrome: A systematic review. BMC Pregnancy Childbirth 2014, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Tourette Syndrome Association International Consortium for Genetics (TSAICG). Available online: https://www.findtsgene.org (accessed on 18 October 2017).
- Tourette International Collaborative Genetics (TIC genetics). Available online: https://tic-genetics.org (accessed on 18 October 2017).
- European Multicentre Tics in Children (EMTICS). Available online: http://emtics.eu/ (accessed on 18 October 2017).
- Georgitsi, M.; Willsey, A.J.; Mathews, C.A.; State, M.; Scharf, J.M.; Paschou, P. The Genetic Etiology of Tourette Syndrome: Large-Scale Collaborative Efforts on the Precipice of Discovery. Front. Neurosci. 2016. [Google Scholar] [CrossRef] [PubMed]
- TS-EUROTRAIN. Available online: http://ts-eurotrain.eu/ (accessed on 18 October 2017).
- Akbarian, S.; Liu, C.; Knowles, J.A.; Vaccarino, F.M.; Farnham, P.J.; Crawford, G.E.; Jaffe, A.E.; Pinto, D.; Dracheva, S.; Geschwind, D.H.; et al. The PsychENCODE project. Nat. Neurosci. 2015, 18, 1707–1712. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, S.A. It’s All in the Brain: A Review of Available Functional Genomic Annotations. Biol. Psychiatry 2017, 81, 478–483. [Google Scholar] [CrossRef] [PubMed]
Gene | Chromosome | Finding | Sample Size (Ethnicity) | Reference |
---|---|---|---|---|
Dopaminergic | ||||
DRD1 (Dopamine receptor D1) | 5q34–35 | No association was found between DRD1 and TS in both family study and case-controls studies. (LOD < −2) | One pedigree, 85 interviewed in 116 members (NA *) | [58] |
One large pedigree (Mennonite) | [59] | |||
50 TS, 35 TS + ADHD, 30 TS + OCD, 50 controls (NA) | [60] | |||
148 TS and 83 controls (Taiwanese) | [61] | |||
DRD2 (Dopamine receptor D2) | 11q22–23 | DRD2 (TaqIA) was associated with tic severity and overlapped with other psychiatric disorders; multiple SNPs of DRD2 ((H313H) C) were associated with TS. (p = 0.001–0.03) | 147 TS and 314 controls (Non-Hispanic Caucasian) | [62] |
225 TS and 67 controls (European) | [63] | |||
151 TS and 183 controls (Taiwanese) | [64] | |||
151 TS and 183 controls (Taiwanese) | [64] | |||
However, other studies showed that DRD2 (TaqIA) had no association or linkage with tic severity and TS. | 124 Canadian and 48 Oregon (Canadian; Oregon) | [65] | ||
4 families (17 individuals using a derivative of YGTSS; 47 using the TS symptomatology evaluation) (North American) | [66] | |||
One pedigree, 85 interviewed in 116 members (NA) | [58] | |||
110 trios (French Canadian) | [47] | |||
61 TS and 109 parents (Germany) | [67] | |||
DRD3 (Dopamine receptor D3) | 3q13.3 | Both family and case-control studies did not find association between DRD3 (Mscl, rs6280) and TS. | 465 parent–child trios (NA) | [68] |
One pedigree, 85 interviewed in 116 members (NA) | [58] | |||
110 trios (French Canadian) | [47] | |||
160 TS and 90 controls (Chinese) | [69] | |||
DRD4 (Dopamine receptor D4) | 11p15.5 | The higher number of DRD4 48 bp VNTR was found to be associated with both TS and OCD. (p = 0.004–0.03) | 64 family trios (Canadian, Michigan, Oregon) | [70] |
61 OCD with and without tic (Mexican) | [71] | |||
110 trios (French Canadian) | [47] | |||
No association was found between 48 bp VNTR and TS. | 103 trios and 284 controls (European (Hungarian)) | [72] | ||
5 families (NA) | [73] | |||
102 trios (NA) | [74] | |||
266 TS and 236 controls (European (white, non-Hispanic)) | [75] | |||
DRD5 (Dopamine receptor D5) | 4p16 | Family studies did not find linkage between DRD5 and TS. (LOD < −4) | One pedigree, 85 interviewed in 116 members (NA) | [58] |
106 individuals from 5 families (Canadian) | [76] | |||
TH (Tyrosine hydroxylase) | 11p15.5 | Family studies did not find linkage between TH (STR) and TS. (LOD < −7) | One pedigree, 85 interviewed in 116 members (NA) | [58] |
5 families (NA) | [73] | |||
DAT1 (Dopamine transporter) | 5p15.32 | DAT1 40 bp VNTR was associated with both tic severity and tics; whereas DdeI polymorphism was only associated with TS. | 103 trios and 284 controls (European (Hungarian)) | [72] |
225 TS and 67 controls (European) | [63] | |||
266 TS and 236 controls (European (white, non-Hispanic)) | [75] | |||
However, some studies showed there was no linkage between 40 bp VNTR and TS, although there was a trend of excess transmission of allele 10 of VNTR. | 266 TS and 236 controls (European (white, non-Hispanic)) | [75] | ||
110 trios (French Canadian) | [47] | |||
Four extend families (Canadian, Oregon) | [77] | |||
465 parent–child trios (NA) | [68] | |||
DBH (Dopamine β-hydroxylase) | 9q34.3 | Taq B1 allele was associated with TS. (p = 0.012) | 352 TS and 148 controls (Non-Hispanic Caucasian) | [63] |
Multiple markers of DBH (TaqI, 19 bp ins/del, (CA)n) have no association or linkage with TS. | One pedigree, 85 interviewed in 116 members (NA) | [58] | ||
71 nuclear families and 5 large-multigenerational families (Canadian, Turkish) | [78] | |||
266 TS and 236 controls (European (white, non-Hispanic)) | [75] | |||
COMT (Catechol-O-methyltransferase) | 22q11.2 | No association between COMT Val158Met and TS. | 103 trios and 284 controls (Caucasian) | [72] |
52 TS and 63 controls (Italian) | [79] | |||
465 parent–child trios (NA) | [68] | |||
Serotonergic | ||||
HTR1A (Serotonin receptor 1A) | 5q11.2–13 | Two missenses were found in two TS patients. | 56 TS and 20 controls (Toronto) | [80] |
No association was found between Ile-28-Val substitution and TS. | A large pedigree (British) | [58] | ||
92 TS and 210 controls (Germany) | [81] | |||
HTR2A (Serotonin receptor 2A) | 13q14–21 | HTR2A 102 T/C was associated with Chinese TS. (p = 0.02) | 157 trios and 120 controls (Chinese) | [82] |
HTR2C (Serotonin receptor 2C) | Xq22–23 | Both rs3813929 and rs518147 polymorphisms were associated with TS. (p = 0.01 and 0.02, respectively) | 87 TS and 311 controls (European) | [83] |
No association was found between HTR2C and TS | 465 parent–child trios (NA) | [68] | ||
5-HT3A, 3B (Serotonin receptor 3A, 3B) | 11q23.2 | No association was found between 5-HT3 (Exon1, 3, 6, 7, 9 at 5-HT3A; Exon5, 6; Intron 4, 6 at 5-HT3B) and TS. (p = 0.058–0.098) | 49 TS and controls (Germany) | [84] |
5-HT7 (Serotonin receptor 7) | 10q23 | No genomewide significant linkage was found. (LOD = 2.23) | Single extended pedigree (NA) | [85] |
SERT (SLC6A4) (5-HT transporter (Solute carrier family 6 members 4)) | 17q11.2 | Common and rare alleles of SLC6A4 were positively associated with TS. (p < 0.01) | 151 TS and 858 controls (European) | [86] |
No association was found. | 52 TS and 63 controls (Italian) | [79] | ||
TPH2 (Tryptphan hydroxylase 2) | 12q21 | Positive results were found between TPH (SNP at intron 2) and TS. (p = 0.002) | 98 TS and 178 controls (Germany) | [87] |
No association was found. | 465 parent–child trios (NA) | [68] | ||
Glutamatergic | ||||
EAAT1 (SLC1A3) (Solute carrier family 1(glial high affinity glutamate transporter, member 3)) | 5p13.2 | A missense (E219D) in EAAT1 was found associated with TS patients. (p = 0.009) | 256 TS and 224 controls (NA) | [88] |
SAPAP3/DLGAP3 (SAP90/PSD95-associated protein 3) | 1p34.3 | Some SNPs was found to associated with TS. (p = 0.013–0.026) | 289 TS trios (USA, Canada, Great Britain and the Netherlands) | [89] |
Histaminergic | ||||
HDC (Histidine decarboxylase) | 15q21–22 | Family studies showed that rare coding mutation was associated with TS. | 520 TS families (European) | [90] |
One large family (NA) | [52] | |||
No association was found. | 465 parent–child trios (NA) | [68] | ||
HRH3 (Histamine receptor H3) | 20 | No association was found. | 465 parent–child trios (NA) | [68] |
Adrenergic and other neurotransmitters | ||||
ADRA1C (Adrenergic receptor a1C) | 8p11.2 | Adrenergic receptor 1C (PstI) showed no association with TS. | 113 nuclear families (Canadian and Turkish) | [91] |
ADRA2A (Adrenergic receptor a2A) | 10q24–26 | Adrenergic receptor 2A (MspI, StyI, (CA)n) showed no association with TS. | 113 nuclear families (Canadian and Turkish) | [91] |
160 TS and 83 controls (Taiwanese) | [92] | |||
ADORA1 (Adenosine A1 receptor) | 1q32.1 | rs2228079 in exron2 was found associated with TS. (p = 0.011) | 162 TS and 210 controls (European (Polish)) | [93] |
ADORA2A (Adenosine A2A receptor) | 22q11.2 | rs5751876 in exron3 was found associated with TS. (p = 0.017) | 162 TS and 210 controls (European (Polish)) | [93] |
MAO-A (Monoamine oxidase A) | Xp11.3 | VNTR in MAO-A was found associated with TS. (p < 0.05) | 110 trios (French Canadian) | [47] |
229 TS and 90 controls (European (non-Hispanic Caucasians)) | [94] | |||
No association was found | 465 parent–child trios (NA) | [68] |
Diseases | Case/Control D: Discover; R: Replication; C: Combined | Ethnicity | Analysis | Results | No. of Loci | No. of Genes | Top Candidate Genes | Top SNP Chromosomal Location | p-Value of Top SNP; Odds Ratio with Confidence Interval | Reference |
---|---|---|---|---|---|---|---|---|---|---|
SCZ | D:34,241/45,604/1235 trios R: 1513/66,236 C: 36,989/113,075 | European/East Asian | Meta-analysis | 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance (p ≤ 5 × 10−8), 83 of which have not been previously reported. | 108 | 348 | MHC region, DRD2, GRM3, GRIN2A, SRR, GRIA1, CACNA1C, CACNB2, CACNA1I | rs115329265; 6p22.1 | 3.48 × 10−31; OR: 1.205 (95% CI: 1.168–1.244) | [96] |
BPD | D: 7647/27,303 R: 2137/3168 C: 9784/30,471 | European | Meta-analysis | Six autosomal loci exceeded genome-wide significance. | 6 | 7 | ERBB2, ELAVL2, MAD1L1, TRANK1, MIR2113, POU3F2, DDN | rs9834970; 3p22.2 | 4.83 × 10−10; OR: 0.88 (95% CI: 0.85–0.92) | [115] |
MDD | D: 8920/9519 R: 13,238/124,230 C: 22,158/133,749 | European | Meta-analysis | Identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD. | 1 | 7 | C3orf70, VPS8, EHHADH, MAP3K13, C3orf70, VPS8, MAP3K13 | rs7647854; 3q27.2 | 5.2 × 10−11; OR: 1.16 (95% CI: 1.11–1.21) | [116] |
ASD | D: 7387/8567 R: 9152/148,667 C: 16,539/157,234 | European | Meta-analysis | None of the markers investigated exceeded genomewide threshold in the discovery cohort; meta-analyzed against the Danish iPSYCH data a single GWSA; cross-disorder ASD and schizophrenia meta-analyses identified 12 GWS loci not previously identified as GWS in the PGC schizophrenia GWAS. | 1 | 13 | C10orf76, CUEDC2, ELOVL3, FBXL15, GBF1, HPS6, LDB1, MIR146B, NFKB2, NOLC1, PITX3, PPRC1, PSD | rs1409313 (meta-analyzed against the Danish iPSYCH data a single GWAS association); 10q24.32 | 1.058 × 10−8; OR: 1.12 (95% CI: 1.08–1.16) | [117] |
Cross-disorder | D: 6990 BPD, 9227 MDD, 9379 SCZ, 161 ASD, 4788 ASD trios, 840 ADHD, 1947 ADHD trios/27,888 R: NA C: 33,332/27,888 | European | Cross-disorder analysis | SNPs at four loci surpassed the cutoff for genome-wide significance (p ≤ 5 × 10−8) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. | 4 | 4+ | ITIH3, AS3MT, CACNA1C, CACNB2 | rs2535629; 3p21.1 | 2.54 × 10−12; OR: 1 × 10 (95% CI: 1.07–1.12) | [118] |
TS | D: 1285/4964 R: 211/285 C: 1496/5249 | European/Ashkenazi Jews/French Canadians/Latin American | Meta-analysis | One marker achieved a genome-wide threshold of significance (p ≤ 5 × 10−8). | 1 | 1 | COL27A1 | rs7868992; 9q32 | 2.94 × 10−8; | [110] |
D: 609/610 R: 1285/4964 C: 1894/5574 | European, Hungary, Germany, Austria, Italy, Greece, French Canadian | Meta-analysis | No markers achieved a genome-wide threshold of significance (p ≤ 5 × 10−8). | 0 | 0 | NTN4 | rs2060546; 12q22 | 5.80 × 10−7; | [111] | |
D: 1310 OCD, 834 TS, 579 TS + OCD/5667/290 OCD trios R: NA C: 2763/5667/290 trios | European, South African Afrikaner, Ashkenazi Jewish | Cross-disorder analysis | No individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance; the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs); No significant polygenic signal was detected across the two disorders. | 0 | 0 | POU1F1, CHMP2B, MIR4795 | rs4988462; 3p11 | 3.70 × 10−7; | [112] | |
OCD | D: 1406 OCD, 1 489 controls from 1065 families; 192/1984 R: NA C: 1598/3474 | NR (U.S.) | Discovered-analysis | Identified interesting candidate genes for OCD, but failed to detect any genome-wide significant finding. | 0 | 0 | PTPRD, NEUROD6, SV2A, GRIA4, SLC1A2 | rs4401971; 9p23 | 4.13 × 10−7 | [104] |
D: 1465/5557/400 trios R: NA C: 1465/5557/400 trios | European, NR, Hispanic or Latin American (U.S., United Arab Emirates, Brazil, Italy, Netherlands, Canada, South Africa, Germany, Costa Rica, France, Mexico) | Meta-analysis | No SNP was identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample; enrichment of methylation QTLs (p < 0.001) and frontal lobe expression quantitative trait loci (eQTLs) (p = 0.001) was observed within the top-ranked SNPs (p < 0.01) from the trio case-control analysis. | 0 | 0 | FAIM2 | rs297941; 12q13.12 | 4.13 × 10−7; | [105] | |
ADHD | D: 17,666 children R: NA C: 17,666 children | NR (U.S., Australia, NR) | Meta-analysis | Meta-analysis did not detect genome-wide significant SNPs, but three genes showed a gene-wide significant association (p values between 1.46 × 10−6 and 2.66 × 10−6); SNP-based heritability ranged from 5% to 34%. | 0 | 0 | LMOD2, WASL, ASB15 | rs56159542 19p13.11 | 1.48 × 10−7 | [113] |
D: 896/2455/2064 trios R: NA C: 896/2455/2064 trios | European | Meta-analysis | No genome-wide significant association (p ≤ 5 × 10−8) was found. | 0 | 0 | SHFM1 | rs1464807 7q21.3 | 1.1 × 10−6 | [114] |
Cytoband | Variation Type | Karyotype | Carrier Frequency and Phenotype | Candidate Region | Candidate Gene | Reference |
---|---|---|---|---|---|---|
6q16 | Translocation and deletion | 46, XY, balanced t(6;22)(q16.2;p13) | One family, 2 carriers of translocation + deletion: proband with TS + OCD; mother with OCD | A 400 kb deletion, 1.3 Mb telomeric to the translocation breakpoint, was also identified on 6q16. | GPR63, NDUFA4, and KLHL32 in the 400 kb deletion on 6q16 | [127] |
7q22–q31 | Translocation | 46, XY, t(7;18)(q22;q22.3) | One pedigree with 12 individuals; 9 carriers: 4 with vocal tics; 1 with motor tics; 1 with TS, 3 without TS | Breakpoint at 7q22 was localized between markers D7S515 and D7S522. | IMMP2L | [45] |
Duplication/Insertion | 46, XY, dup(7)(q22.1–q31.1) | 1 patient with TS + depression + delayed speech + mental retardation | Breakpoint on chr7 was mapped to 7q22–q31, between D7S515 and D7S552, 6.5 kb. | IMMP2L | [46,128] | |
Translocation and deletion | 46, XY, t(2;7)(p24.2;q31)del(7)(q31.1q31.2) | 1 TS patient with motor tics + language impairment | Translocation breakpoint on chr7 was mapped to 7q31. A 7.25 Mb deletion within introns 2–3 on 7q31.1–31.2 was identified. | IMMP2L | [122] | |
Deletion | Intragenic deletion | 188 TS patients and 316 controls: 7 out of 188 TS; 3 out of 316 controls carried the deletion (p = 0.0047) | 49~331 kb deletions were identified at the 5’end of IMMP2L gene. | IMMP2L | [123] | |
7q35–q36 | Complex chromosomal insertion/translocation | Father: 46, XY, inv(2)(p23q22), ins(7;2)(q35q36;p21p23); Daughter and son: 46, XX/XY, der(7)ins(7;2)(q35q36;p21p23) | One family with 3 carriers: daughter and son with TS + OCD; father with OCD + depression | a chromosome 2p21–p23 insertion on chromosome 7q35–q36, interrupting the contactin-associated protein 2 gene (CNTNAP2). | CNTNAP2 | [124] |
Translocation | Proband and aunt: 46, XY/XX, der(7)t(7;15)(q35;q26.2) | One large family with 5 carriers: 2 (proband and aunt) with multiple congenital malformations, severe mental retardation and did not have any language development, and scoliosis. Father, grandmother, father of grandmother: 46, XY/XX, balanced t(7;15)(q35;q26.2) without TS and other malformations | Breakpoint localized to a region of approximately 21 kb within intron 11 of the CNTNAP2 gene; and carriers without TS. | CNTNAP2 | [125] | |
8q13–q22 | Translocation | 46, XY, t(6;8)(p23;q13) | One family with 3 carriers: proband with TS + OCD + LD; half-sister with TS + OCD; mother with LD + TS?; One family with 1 carrier: with TS + ADHD | Breakpoint within 8q13. | Unknown | [129] |
Translocation | 46, XY, t(1;8)(q21.1;q22.1) | 4 carriers in one family, 1 without TS; 1 with TS + ADHD + OCD, 2 with motor tics + ADHD | Breakpoint within 8q22. | CBFA2T1 located 11 kb distal to the 8q breakpoint | [130] | |
9p | Deletion | 46, XY, del(9)(qter—p2304:) | One patient with TS + OCD + ADD | Breakpoint lies on chr9. | Unknown | [131] |
Translocation | 46, XY, t(3;9)(q25.1;q34.3) | 1/176 TS cases | Breakpoint on chr9q34.4 within intron7 of OLFM1 gene. | OLFM1 | [132] | |
Translocation | 46, XX/XY, t (3;9) (q25.1;q34.3) | One family with 2 carriers with TS | Unknown | Unknown | [132] | |
13q | Var321, inversion | 46, XY, inv(13)(q31.1;q33.1) | 1/174 TS patients: with TS+ADHD; 2 patients carried var321 | Breakpoint spans the 13q31.1 and 13q33.1. | SLITRK1, ERCC5 and SLC10A2 | [51] |
Var321, inversion | 46, XY, inv(13)(q31.1;q33.1) | 2/174 TS patients carried var321, none of 2148 controls carried var321 (p = 0.0056) | Breakpoint spans the 13q31.1 and 13q33.1. | SLITRK1, ERCC5 and SLC10A2 | [133] | |
15q13.3; Xq21.31 | Microduplication and deletion | Deletion in 15q13.2, duplication in both 15q13.3 and Xq21.31 | One family with 2 carriers: proband with TS + OCD + rage attack; mother with ADHD | Breakpoint within 15q13.2, 15q13.3 and Xq21.31 (2-bp deletion at 15q13.2; 433 kb duplication at 15q13.3; 732 kb duplication at Xq21.31). | CHRNA7, PABPC5 and PCDH11X | [134] |
15q13–q22.3 | Inversion | 46, XY, inv(15)(q13;q22.3) | One family with 1 carrier: proband with motor tics + ADHD + OCD + development delay | Inversion spans 15q13–q22. | Unknown | [135] |
16q22–q23 | Fragile sites | 46, XX/XY, fr(16)(q22–23) | 3/281 carriers: one with TS + Huntington’s Disease; one with TS + BPD + ASD + MR; one with TS + BPD + MR | Fragile site lies within 16q22–q23. | Unknown | [136] |
17p11 | Translocation | 46, XY, t(6;17)(q21;p11) | One family with 2 carriers: proband with TS; son with TS + LD | Breakpoint lies within 17p11. | Unknown | [137] |
Deletion | 46, XY, del(17)(p11.2) | One patient with TS + SMS + SIB + ADHD + OCB | Unknown | [138] | ||
18q21.1–q22.3 | Translocation | 46, XX, t(2;18)(p12;q22) | One patient with OCD | Breakpoint lies within 18q. | CDH7 and CDH19 | [139] |
18q21.1–q22.2 | Inversion | 46, XY, inv(18)(q21;q22) | One patient with tics + OCD | Breakpoint lies at 18q, the inverted chromosome showing delayed replication timing. | 2 transcripts, GTSCR-1 and CIS4 | [140] |
22q11 | Deletion | 46, XX, del(22)(q11) | One family with 2 carriers: proband with TS + ADHD + OCD + MR; mother with phonic tic | A deletion at 22q11. | Unknown | [141] |
Xp22.3 | Deletion | 46, XY | One family with 3 carriers: proband with TS + ASD; brother with TS + ADHD, mother without TS, but with depression + anxiety + learning disability | A small deletion encompassing exons 4, 5, and 6 of NLGN4 at Xp22.3. | NLGN4 | [126] |
Reference | Sample Size Case/Controls | Ethnicity | Genotyping Technology | Targeted CNV | Genomewide Finding | Candidate Region | Type of CNV | Frequency | CNV Size | Candidate Gene | CNV Type |
---|---|---|---|---|---|---|---|---|---|---|---|
Sundaram et al., 2010 [152] | 111/73 | European American | Genomewide SNP chip genotyping | Recurrent or de novo rare exonic CNVs | 5 rare CNVs were found in 10 out of 111 patients with TS. | 3q25.1 | Deletion | 3/111 in cases, 0/73 in controls | 30–40 kb | AADAC | Recurrent |
2p16 | Deletion | 2/111 in cases, 0/73 in controls | 230–270 kb | NRXN1 | Recurrent | ||||||
10q21 | Deletion | 2/111 in cases, 0/73 in controls | 90–180 kb | CTNNA3 | Recurrent | ||||||
Chr14 | Deletion | 2/111 in cases, 0/73 in controls | 400–500 kb | FSCB | Recurrent | ||||||
Chr21 | Duplication | 1/111 in cases, 0/73 in controls | 170–180 kb | KCNE1-KCNE2-RCAN1 | De novo | ||||||
Fernandez et al., 2012 [150] | 460 (148 trios)/1131 (436 trios) | European | Genomewide SNP genotyping | Rare CNVs (<1%) | 1. No significant increase in the number of de novo or transmitted rare CNVs in cases versus controls; 2. Enrichment of genes within histamine receptor (subtypes 1 and 2) signaling pathways by pathways analyses. | Chr5 | Duplication | 51.8 Mb | 447 RefSeq | De novo | |
6p25.3 | Duplication | 316 kb | 1 RefSeq gene | De novo | |||||||
20p13 | Deletion | 1.2 Mb | 27 RefSeq genes | De novo | |||||||
22q11.21 | Duplication | 2.5 Mb | 56 RefSeq genes | De novo | |||||||
Nag et al., 2013 [153] | 232/234 | Latin American | Genomewide SNP genotyping | Large CNVs | 1. The rearrangements of COL8A1 and NRXN1 have a nominal significance; 2. Cases with higher large CNV burden: 25/232 in TS; 15/234 in controls (p = 0.006). | 3q12.1 | Duplication | 7/232 in cases, 0/234 in controls p = 0.004 | ~600 kb | COL8A1 | De novo |
2p16 | Deletion | 4/232 in cases, 0/234 in controls p = 0.03 | ~400 kb | NRXN1 | De novo | ||||||
McGrath et al., 2014 [154] | 1086 TS, 1613 OCD/1789 | European | Genomewide SNP genotyping | Large, rare CNVs | Burden of large deletions CNVs previously associated with other neurodevelopmental disorders increased 3.3-fold, whereas no global significant difference in burden of large rare CNVs (p = 0.09). | 16p13.11 | Deletion | 5 cases deletions in 16p13.11 locus, 3 deletions are de novo | >500 kb | De novo | |
Bertelsen et al., 2016 [155] | 1181/118,730 | European | qPCR or genome-wide genotyping | AADAC deletion | AADAC deletion association test: p = 4.6 × 10−4; OR = 2.1; 95% CI (1.37–3.07). | 3q25.1 | Deletion | 43/1181 (1.82%) in TS cases, 2340/118,730 (0.99%) in controls | ~36 kb | AADAC | Recurrent |
Huang et al., 2017 [156] | 2434/4093 | European | Genomewide SNP genotyping | Rare CNVs ≥ 30 kb | 1. Enrichment of global CNV burden, for large (>1 Mb), singleton events (OR = 2.28, 95% CI (1.39–3.79), p = 1.2 × 10−3); 2. Enrichment of global CNV burden of known, pathogenic CNVs (OR = 3.03,95% CI (1.85–5.07), p = 1.5 × 10−5); 3. Genome-wide significant loci: (NRXN1 deletions, OR = 20.3, 95% CI (2.6–156.2); CNTN6 duplications, OR = 10.1, 95% CI (2.3–45.4)). | 3p26 | Duplication | 12/2434 (0.49%) in cases, 2/4093 (0.05%) in controls | ~640 kb | CNTN6 | Recurrent |
2p16 | Deletion | 12/2434 (0.49%) in cases, 1/4093 (0.02%) in controls | NRXN1 |
Diseases | Technology | Study Design | Sample Size | Project | Finding | Year | Reference |
---|---|---|---|---|---|---|---|
ASD | WES | Case-control | 3871 ASD cases and 9937 controls (15,480 DNA samples) | Autism Sequencing Consortium (ASC) | 33 ASD risk genes, and rare coding variations enriched in 107 genes implicated in synaptic, transcriptional, and chromatin remodeling pathways; de novo loss-of-function mutations in over 5% of autistic subjects. | 2014 | [166] |
ASD | WES | Family study | 2517 families (2508 probands, 1911 siblings, 5034 parents) | Simons Simplex Collection (SSC) | 27 ASD associated genes; 13% of de novo (DN) missense mutations and 42% of DN likely gene-disrupting (LGD) mutations contributed to 12% and 9% of diagnoses, respectively. Including copy number variants, coding DN mutations contribute to about 30% of all simplex and 45% of female diagnoses. | 2014 | [167] |
ASD | SNP chip and WES | Family study | 2591 families (10,220 individuals) | SSC, ASC | Small de novo deletions overlaps high effect with de novo loss of function; Identified 71 ASD risk loci, including 6 CNV regions and 65 risk genes. | 2015 | [168] |
ASD | WES | Family study | 5947 families (4032 trios, 1918 quads) | SSC, ASC | Identified 7.5% of de novo mutations as postzygotic mosaic mutations (PZMs); Damaging, nonsynonymous PZMs within critical exons of prenatally expressed genes were more common in ASD probands than controls (p < 1 × 10−6), and genes carrying these PZMs were enriched for expression in the amygdala (p = 5.4 × 10−3). | 2017 | [169] |
SCZ | WES | Case-control | 2536 SCZ and 2543 controls | Swedish SCZ case-control study via Hospital Discharge Register | Polygenic burden of SCZ primarily arising from rare disruptive mutations distributed across many genes and enrichment in the voltage-gated calcium ion channel and the signaling complex formed by the activity-regulated cytoskeleton-associated (ARC) scaffold protein of the postsynaptic density (PSD). | 2014 | [170] |
SCZ | WES | Combined family and case-control study | 4264 cases, 9343 controls and 1077 trios | UK10K schizophrenia analysis (UK, Finnish), Swedish schizophrenia case-control study | Histone H3K4 methylation pathway is associated with SCZ; Genome-wide significant association between rare loss-of-function (LoF) variants in SETD1A and risk for schizophrenia (p = 3.3 × 10−9). | 2016 | [171] |
SCZ | WES | Case-control | 4946 SCZ, 6242 controls, and 1144 with other psychiatric illnesses | Swedish SCZ case-control study via Hospital Discharge Register | Ultra rare gene-disruptive and putatively protein-damaging variants were more abundant in schizophrenia cases than controls (p = 1.3 × 10−10). | 2016 | [172] |
SCZ | WES | Meta-analysis for combined SNVs and CNVs | 4133 SCZ and 9274 controls (4,133 SCZ and 9274 controls AND 1077 trios; 6882 cases and 11,255 controls using CNVs) | UK10K, INTERVAL, Finnish SCZ STUDY, Swedish SCZ Study | Rare, damaging variants contribute to the risk of schizophrenia both with and without intellectual disability; and support an overlap of genetic risk between schizophrenia and other neurodevelopmental disorders. | 2017 | [173] |
BPD | WES | Combined family and case-control study | 8 families (36 BPD), independent case-control samples consisting of 3541 BPD cases and 4774 controls | Swedish Exome Sequencing Study; BRIDGES | 84 rare (frequency < 1%), damaging variants segregating within families; the case-control meta-analyses yielded 19 genes that were nominally associated with BPD; overlap of potential risk genes with autism and schizophrenia. | 2016 | [174] |
BPD | WES | 4 families (15 individuals) | NIMH Bipolar Genetics Initiativee | 14 variants in 14 genes were associated with bipolar disorder when tested against 2545 unaffected controls and 2543 patients with schizophrenia (p < 0.05 after Bonferroni correction). | 2017 | [175] | |
MDD | WES | Combined family and case-control linkage and association studies | Discovery cohort: 2393 individuals; Replication cohort: 1604 individuals | Discovery: the Erasmus Rucphen Family (ERF) study for depressive symptoms; Replication: Rotterdam Study for depressive symptoms | Missense c.1114C >T mutation (rs115482041) in the RCL1 gene segregating with depression across multiple generations. Rs115482041 showed significant association with depressive symptoms (N = 2393, βT-allele = 2.33, p-value = 1 × 10−4) and explained 2.9% of the estimated genetic variance of depressive symptoms (22%) in ERF; and significant association with depressive symptoms in samples from the independent population-based Rotterdam study (N = 1604, βT-allele = 3.60, p-value = 3 × 10−2). | 2017 | [176] |
MDD | WES | Combined family and case-control study | Discovery cohort: 1265 individuals Replication cohort: 3612 individuals | Discovery cohort: Rotterdam Study for depressive symptoms; Replication cohort: Erasmus Rucphen Family (ERF) study | A missense Asn396Ser mutation (rs77960347) in the endothelial lipase (LIPG) gene, occurring with an allele frequency of 1% in the general population, which was significantly associated with depressive symptoms (p-value = 5.2 × 10−8, β = 7.2). Replication in three independent data sets (N = 3612) confirmed the association of Asn396Ser (p-value = 7.1 × 10−3, β = 2.55) with depressive symptoms. | 2017 | [177] |
MDD | WES | Combined family and case-control study | Discovery: 1999 individuals; Replication: 2356 individuals | Discovery: the Erasmus Rucphen Family (ERF) study for depressive symptoms; Replication: Rotterdam Study for depressive symptoms | Rare nonsynonymous variants in NKPD1 is associated with depressive symptoms in discovery cohort (p = 3.7 × 10−8); variants explained 0.9% of the age- and sex-adjusted variance and 3.8% of heritability of depressive symptoms in the ERF population; meta-analysis of the discovery and replication studies improved the association signal (p = 1.0 × 10−9). | 2017 | [178] |
ASD | WGS | Family study | 2626 ASD cases and 2579 family controls | AGRE, autism Treatment Network, Genomes to Outcomes Study; Baby Siblings Research Consortium, The Autism Simplex Collection, Infant Sibling Study, Pathways in ASD | An average of 73.8 de novo SNVs and 12.6 de novo insertions and deletions or CNVs per ASD subject; 18 new candidate ASD-risk genes were identified. In 294 of 2620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD. | 2017 | [179] |
BPD | WGS | Family study | 41 families (200 individuals) and 254 individuals as controls | NIMH | An increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels; most of the risk variants in noncoding predicted regulatory effects. | 2015 | [180] |
SCZ | WGS | Family study | 9 multiplex families (90 individuals) | Coriell Institute in Camden | In one family, seven siblings with schizophrenia spectrum disorders each carry a novel private missense variant within the SHANK2 gene. In another family, four affected siblings and their unaffected mother each carry a novel private missense variant in the SMARCA1 gene on the X chromosome. | 2016 | [181] |
MDD | WGS | Case-control, low coverage WGS | Discovery: 5303 cases, 5337 controls (Chinese women); Replication cohort 1: a separate Han Chinese cohort of 3231 cases with recurrent MDD, and 3186 controls; Replication cohort 2: 9240 European MDD cases and 9519 controls | CONVERGE Consortium | Two genome-wide significant loci contributing to risk of MDD on chromosome 10: SIRT1 gene (p = 2.53 × 10−10) and LHPP gene (p = 6.45 × 10−12); common SNPs explained between 20% and 29% of the variance in MDD risk; support a substantial polygenic component to the risk of MDD involving many alleles of individually very small effect; the MDD risk allele frequencies of rs12415800 and rs35936514 are different according to ethnicity, confirmed in Chinese replication cohort but failed in European MDD cohorts. Results support a complex etiology for MDD. | 2015–2017 | [182,183,184,185] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Zheng, Y.; Li, Z.; Xiong, L. Progress in Genetic Studies of Tourette’s Syndrome. Brain Sci. 2017, 7, 134. https://doi.org/10.3390/brainsci7100134
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette’s Syndrome. Brain Sciences. 2017; 7(10):134. https://doi.org/10.3390/brainsci7100134
Chicago/Turabian StyleQi, Yanjie, Yi Zheng, Zhanjiang Li, and Lan Xiong. 2017. "Progress in Genetic Studies of Tourette’s Syndrome" Brain Sciences 7, no. 10: 134. https://doi.org/10.3390/brainsci7100134
APA StyleQi, Y., Zheng, Y., Li, Z., & Xiong, L. (2017). Progress in Genetic Studies of Tourette’s Syndrome. Brain Sciences, 7(10), 134. https://doi.org/10.3390/brainsci7100134