Anesthesia and the Developing Brain: Relevance to the Pediatric Cardiac Surgery
Abstract
:1. Introduction
2. History
3. Prospective-Randomized Trials
4. Pain and the Stress Response
5. Electroencephalogram
6. Ventilation and Surgery
7. The Choice of Anesthetic
8. Opioids
9. Midazolam
10. Ketamine
11. Propofol and Etomidate
12. Dexmedetomidine
13. Seizures and EEG
14. Hypothermia
15. Investigations in Infants and Children
16. Conclusions
Conflicts of Interest
References
- Koop, C.E. A perspective on the early days of pediatric surgery. J. Pediatr. Surg. 1998, 33, 953–960. [Google Scholar] [CrossRef]
- Govaerts, M.J.; Sanders, M.; Dewachter, B. Enflurane (Ethrane) and halothane (Fluothane). A comparison of induction and recovery in pediatric practice. Preliminary report. Acta Anaesthesiol. Belg. 1974, 25, 206–214. [Google Scholar]
- Warner, L.O.; Beach, T.P.; Garvin, J.P.; Warner, E.J. Halothane and children: The first quarter century. Anesth. Analg. 1984, 63, 838–840. [Google Scholar]
- Buck, D.; Kurth, C.D.; Varughese, A. Perspectives on Quality and Safety in Pediatric Anesthesia. Anesthesiol. Clin. 2014, 32, 281–294. [Google Scholar] [CrossRef]
- Jevotovic-Todorovic, V.; Hartman, R.E.; Izumi, Y.; Benshoff, N.D.; Dikranian, K.; Zorumski, C.F.; Olney, J.W.; Wozniak, D.F. Early exposure to common anesthestic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 2003, 23, 876–882. [Google Scholar]
- Kato, R.; Tachibana, K.; Nishimoto, N.; Hashimoto, T.; Uchida, Y.; Ito, R.; Tsuruga, K.; Takita, K.; Morimoto, Y. Neonatal exposure to sevoflurane causes significant suppression of hippocampal long-term potentiation in post-growth rats. Anesth. Analg. 2013, 117, 1429–1435. [Google Scholar] [CrossRef]
- Loepke, A.W.; Istaphanous, G.K.; McAuliffe, J.J., III; Miles, L.; Hughes, E.A.; McCann, J.C.; Harlow, K.E.; Kurth, C.D.; Williams, M.T.; Vorhees, C.V.; Danzer, S.C. The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning and memory. Anesth. Analg. 2009, 108, 90–104. [Google Scholar] [CrossRef]
- Liang, G.; Ward, C.; Peng, J.; Zhao, Y.; Huang, B.; Wei, H. Isoflurane causes greater neurodegeneration than an equivalent exposure of sevoflurane in the developing brain of neonatal mice. Anesthesiology 2010, 112, 1325–1334. [Google Scholar] [CrossRef]
- Jones, R.A. Collaborative Dexamethasone Trial Follow-up Group. Randomized, controlled trial of dexamethasone in neonatal chronic lung disease: 13- to 17-year follow-up study: I. Neurologic, psychological, and educational outcomes. Pediatrics 2005, 116, 370–378. [Google Scholar] [CrossRef]
- O’Shea, T.M.; Kothadia, J.M.; Klinepeter, K.L.; Goldstein, D.J.; Jackson, B.G.; Weaver, R.G., III; Dillard, R.G. Randomized placebo-controlled trial of a 42-day tapering course of dexamethasone to reduce the duration of ventilator dependency in very low birth weight infants: Outcome of study participants at 1-year adjusted age. Pediatrics 1999, 104, 15–21. [Google Scholar] [CrossRef]
- Peltoniemi, O.M.; Lano, A.; Puosi, R.; Yliherva, A.; Bonsante, F.; Kari, M.A.; Hallman, M. Neonatal Hydrocortisone Working Group. Trial of early neonatal hydrocortisone: Two-year follow-up. Neonatology 2009, 95, 240–247. [Google Scholar] [CrossRef]
- Bellinger, D.C.; Jonas, R.A.; Rappaport, L.A.; Wypij, D.; Wernovsky, G.; Kuban, K.C.K.; Barnes, P.D.; Holmes, G.L.; Hickey, P.R.; Strand, R.D.; et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N. Eng. J. Med. 1995, 332, 549–555. [Google Scholar] [CrossRef]
- Bellinger, D.C.; Wypij, D.; Kuban, K.C.; Rappaport, L.A.; Hickey, P.R.; Wernovsky, G.; Jonas, R.A.; Newburger, J.W. Developmental and neurologic status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation 1999, 100, 526–532. [Google Scholar]
- Mahle, W.T.; Wernovsky, G. Neurodevelopmental outcomes after complex infant heart surgery. ACC Curr. J. Rev. 2000, 9, 93–97. [Google Scholar] [CrossRef]
- Majnemer, A.; Limperopoulos, C. Developmental progress of children with congenital heart defects requiring open heart surgery. Semin. Pediatr. Neurol. 1999, 6, 12–19. [Google Scholar] [CrossRef]
- Nathan, M.; Sadhwani, A.; Gauvreau, K.; Agus, M.; Ware, J.; Newburger, J.W.; Pigula, F. Association between technical performance scores and neurodevelopmental outcomes after congenital heart surgery. J. Thorac. Cardiovasc. Surg. 2013. [Google Scholar] [CrossRef]
- Newburger, J.W.; Jonas, R.A.; Wernovsky, G.; Wypij, D.; Hickey, P.R.; Kuban, K.; Farrell, D.M.; Holmes, G.L.; Helmers, S.L.; Constantinou, J.; et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N. Engl. J. Med. 1993, 329, 1057–1064. [Google Scholar] [CrossRef]
- Piehl, E.; Foley, L.; Barron, M.; D’Ardenne, C.; Guillod, P.; Wise-Faberowski, L. The effect of sevoflurane on neuronal degeneration and GABAA subunit composition in a developing rat model of organotypic hippocampal slice cultures. J. Neurosurg. Anesthesiol. 2010, 22, 220–229. [Google Scholar] [CrossRef]
- Ramage, T.M.; Chang, F.L.; Shih, J.; Alvi, R.S.; Quitoriano, G.R.; Rau, V.; Barbour, K.C.; Elphick, S.A.; Kong, C.L.; Tantoco, N.K.; et al. Distinct long-term neurocognitive outcomes after equipotent sevoflurane or isoflurane anaesthesia in immature rats. Br. J. Anaesth. 2013, 110 (Suppl. 1), i39–i46. [Google Scholar] [CrossRef]
- Satomoto, M.; Satoh, Y.; Terui, K.; Miyao, H.; Takishima, K.; Ito, M.; Imaki, J. Neonatal exposure of sevoflurane induces abnormal spacial behaviors and deficits in fear conditioning in mice. Anesthesiology 2009, 110, 849–861. [Google Scholar] [CrossRef]
- Seubert, C.N.; Zhu, W.; Pavlinec, C.; Gravenstein, N.; Martynyuk, A.E. Developmental effects of neonatal isoflurane and sevoflurane exposure in rats. Anesthesiology 2013, 119, 358–364. [Google Scholar] [CrossRef]
- Wise-Faberowski, L.; Zhang, H.; Ing, R.; Pearlstein, R.D.; Warner, D.S. Isoflurane-induced neuronal degeneration: an evaluation in organotypic hippocampal slice cultures. Anesth. Analg. 2005, 101, 651–657. [Google Scholar] [CrossRef]
- Bartels, M.; Althoff, R.R.; Boomsma, D.I. Anesthesia and cognitive performance in children: No evidence for a causal relationship. Twin Res. Hum. Genet. 2009, 12, 246–253. [Google Scholar]
- Bhutta, A.T.; Schmitz, M.L.; Swearingen, C.; James, L.P.; Wardbegnoche, W.L.; Lindquist, D.M.; Glasier, C.M.; Tuzcu, V.; Prodhan, P.; Dyamenahalli, U.; et al. Ketamine as a neuroptoyrctive and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: A pilot randomized, double-blind, placebo-controlled trial. Pediatr. Crit. Care Med. 2012, 13, 328–337. [Google Scholar] [CrossRef]
- Block, R.I.; Thomas, J.J.; Bayman, E.O.; Choi, J.Y.; Kimble, K.K.; Todd, M.M. Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology 2012, 117, 494–503. [Google Scholar] [CrossRef]
- Bong, C.L.; Allen, J.C.; Kim, J.T. The effects of exposure to general anesthesia in infancy on academic performance at age 12. Anesth. Analg. 2013, 117, 1419–1428. [Google Scholar] [CrossRef]
- DiMaggio, C.; Sun, L.S.; Kakavouli, A.; Byrne, M.W.; Li, G. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J. Neurosurg. Anesthesiol. 2009, 21, 286–291. [Google Scholar] [CrossRef]
- Hansen, T.G.; Pederson, J.K.; Hennenberg, S.W.; Pedersen, D.A.; Murray, J.C.; Morton, N.S.; Christensen, K. Academic performance in adolescence after inquinal hernia repair in infancy: A nationwide cohort study. Anesthesiology 2011, 114, 1076–1085. [Google Scholar] [CrossRef]
- Kalkman, C.J.; Peelen, L.; Moons, K.G.; Veenhuizen, M.; Bruens, M.; Sinnema, G.; de Jong, T.P. Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 2009, 110, 805–812. [Google Scholar] [CrossRef]
- Wilder, R.T.; Flick, R.P.; Sprung, J.; Katusic, S.K.; Barbaresi, W.J.; Mickelson, C.; Gleich, S.J.; Schroeder, D.R.; Weaver, A.L.; Warner, D.O. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009, 110, 796–804. [Google Scholar] [CrossRef]
- Anand, K.J.S. Clinical importance of pain and stress in preterm neonates. Biol. Neonate 1998, 73, 1–9. [Google Scholar] [CrossRef]
- Olsson, G.L. Inhalational anaesthesia at the extremes of age: Paediatric anaesthesia. Anaesthesia 1995, 50, 34–36. [Google Scholar] [CrossRef]
- Papper, E.M. The pharmacokinetics of inhalational anesthetic agents: Clinical applications. Br. J. Anaesth. 1964, 36, 124–128. [Google Scholar] [CrossRef]
- Lampotang, S.; Gravenstein, J.S.; Euliano, T.Y.; van Meurs, W.L.; Good, M.L.; Kubilis, P.; Westhorpe, R. Influence of pulse oximetry and capnography on time to diagnosis of critical incidents in anesthesia: A pilot study using a full-scale patient simulator. J. Clin. Monit. Comput. 1998, 14, 313–321. [Google Scholar] [CrossRef]
- Moller, J.T.; Svennild, I.; Johannessen, N.W.; Jensen, P.F.; Espersen, K.; Gravenstein, J.S.; Cooper, J.B.; Djernes, M.; Johansen, S.H. Perioperative monitoring with pulse oximetry and late postoperative cognitive dysfunction. Br. J. Anaesth. 1993, 71, 340–347. [Google Scholar]
- Charlton, A.J.; Lindahl, S.G.; Hatch, D.J. Ventilation and ventilatory CO2 response in children during halothane anaesthesia after non-opioid (midazolam) and opioid (papaveretum) premedication. Acta Anaesthesiol. Scand. 1986, 30, 116–121. [Google Scholar] [CrossRef]
- Woloszczuk-Gebicka, B.; Lapczynski, T.; Wierzejski, W. The influence of halothane, isoflurane and sevoflurane on rocuronium infusion in children. Acta Anaesthesiol. Scand. 2001, 45, 73–77. [Google Scholar] [CrossRef]
- Eikermann, M.; Hunkemöller, I.; Peine, L.; Armbruster, W.; Stegen, B.; Hüsing, J.; Peters, J. Optimal rocuronium dose for intubation during inhalation induction with sevoflurane in children. Br. J. Anaesth. 2002, 89, 277–281. [Google Scholar] [CrossRef]
- Kain, Z.N.; Mayes, L.C.; Caramico, L.A.; Silver, D.; Spieker, M.; Nygren, M.M.; Anderson, G.; Rimar, S. Parental presence during induction of anesthesia. A randomized controlled trial. Anesthesiology 1996, 84, 1060–1067. [Google Scholar] [CrossRef]
- Saint-Maurice, C.; Landais, A.; Delleur, M.M.; Esteve, C.; MacGee, K.; Murat, I. The use of midazolam in diagnostic and short surgical procedures in children. Acta Anaesthesiol. Scand. Suppl. 1990, 92, 39–41. [Google Scholar]
- Wellborn, L.G.; Hanallah, R.S.; Norden, J.M.; Ruttimann, U.E.; Callan, C.M. Comparison of emergence characteristics of sevoflurane, desflurane and halothane in pediatric ambulatory patients. Anesth. Analg. 1996, 83, 917–920. [Google Scholar]
- Meyer, R.R.; Münster, P.; Werner, C.; Brambrink, A.M. Isoflurane is associated with a similar incidence of emergence agitation/delirium as sevoflurane in young children—a randomized controlled study. Paediatr. Anaesth. 2007, 17, 56–60. [Google Scholar] [CrossRef]
- Mohanram, A.; Kumar, V.; Iqbal, Z.; Markan, S.; Pagel, P.S. Repetitive generalized seizure-like activity during emergence from sevoflurane anesthesia. Can. J. Anaesth. 2007, 54, 657–661. [Google Scholar] [CrossRef]
- Narayanasamy, A.K.; Ghori, A. Emergence agitation after sevoflurane anaesthesia in children. Br. J. Anaesth. 2013, 111, 121–126. [Google Scholar] [CrossRef]
- Veyckermans, F. Excitation phenomena during sevoflurane anesthesia in children. Curr. Opin. Anesthesiol. 2001, 14, 339–343. [Google Scholar] [CrossRef]
- Crosby, G.; Davis, P.J. General anesthesia in infancy is associated with learning disabilities-or not. Anesth. Analg. 2013, 117, 1270–1272. [Google Scholar] [CrossRef]
- Anand, K.J.; Barton, B.A.; McIntosh, N.; Lagercrantz, H.; Pelausa, E.; Young, T.E.; Vasa, R. Analgesia and sedation in preterm neonates who require ventilatory support: Results from the NOPAIN trial. Neonatal Outcome and Prolonged Analgesia in Neonates. Arch. Pediatr. Adolesc. Med. 1999, 153, 331–338. [Google Scholar]
- Anand, K.J.S.; Scalzo, F. Can adverse neonatal experiences alter brain development and subsequent behaviour. Biol. Neonate 2000, 77, 69–82. [Google Scholar] [CrossRef]
- De Graaf, J.; van Lingen, R.A.; Valkenburg, A.J.; Weisglas-Kuperus, N.; Groot Jebbink, L.; Wijnberg-Williams, B.; Anand, K.J.; Tibboel, D.; van Dijk, M. Does neonatal morphine use affect neuropsychological outcomes at 8 to 9 years of age? Pain 2013, 154, 449–458. [Google Scholar] [CrossRef]
- Anand, K.J.S.; Hansen, D.D.; Hickey, P.R. Hormonal-metabolic stress responses in neonates undergoing cardiac surgery. Anesthesiology 1990, 73, 661–670. [Google Scholar] [CrossRef]
- Palmer, F.B.; Anand, K.J.; Graff, J.C.; Murphy, L.E.; Qu, Y.; Völgyi, E.; Rovnaghi, C.R.; Moore, A.; Tran, QT; Tylavsky, F.A. Early adversity, socioemotional development, and stress in urban 1-year-old children. J. Pediatr. 2013, 163, 1733–1739. [Google Scholar] [CrossRef]
- Darbra, S.; Palleres, M. Alterations in neonatal neurosteroids affect exploration during adolescence and prepulse inhibition in adulthood. Psychoneuroendocrinology 2010, 35, 525–535. [Google Scholar] [CrossRef]
- Ziermans, T.B.; Schohorst, P.F.; Sprong, M.; Magnee, M.J.; van Engeland, H.; Kemner, C. Reduced prepulse inhibition as an early vulnerability marker of the psychosis prodrome in adolescence. Schizophr. Res. 2012, 134, 10–15. [Google Scholar] [CrossRef]
- Sprung, J.; Flick, R.P.; Wilder, R.T.; Katusic, S.K.; Pike, T.L.; Dingli, M.; Gleich, S.J.; Schroeder, D.R.; Barbaresi, W.J.; Hanson, A.C.; Warner, D.O. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology 2009, 111, 302–310. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Forcelli, P.A.; Palchik, G.; Gale, K.; Srivastava, L.K.; Kondratyev, A. Neonatal exposure to phenobarbital potentiates schizophrenia-like behavioral outcomes in the rat. Neuropharamcology 2012, 62, 2337–2345. [Google Scholar] [CrossRef]
- Kurth, C.D.; Priestly, M.; Golden, J.; McCann, J.; Raghupathi, R. Regional patterns of neuronal death after deep hypothermic circulatory arrest in newborn pigs. J. Thorac. Cardiovasc. Surg. 1999, 118, 1068–1077. [Google Scholar] [CrossRef]
- Kurth, C.D.; Priestly, M.; Watzman, H.M.; McCann, J.; Golden, J. Desflurane confers neurologic protection for deep hypothermic arrest in newborn pigs. Anesthesiology 2001, 95, 959–964. [Google Scholar] [CrossRef]
- Lopeke, A.W.; Priestly, M.A.; Schultz, S.E.; McCann, J.; Golden, J.; Kurth, C.D. Desflurane improves neurologic outcome after low flow cardiopulmonary bypass in newborn pigs. Anesthesiology 2002, 97, 1521–1527. [Google Scholar] [CrossRef]
- Lo, S.S.; Sobol, J.B.; Mallavaram, N.; Carson, M.; Chang, C.; Grieve, P.G.; Emerson, R.G.; Stark, R.I.; Sun, L.S. Anesthetic-specific electroencephalographic patterns during emergence from sevoflurane and isoflurane in infants and children. Paediatr. Anaesth. 2009, 19, 1157–1165. [Google Scholar] [CrossRef]
- Liu, J.R.; Liu, Q.; Li, J.; Baek, C.; Han, X.H.; Athiraman, U.; Soriano, S.G. Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology 2012, 117, 64–71. [Google Scholar] [CrossRef]
- Shu, Y.; Zhou, Z.; Wan, Y.; Sanders, R.D.; Li, M.; Pac-Soo, C.K.; Maze, M.; Ma, D. Nociceptive stimuli enhance anesthetic-induced neuroapoptosis in the rat developing brain. Neurobiol. Dis. 2012, 45, 743–750. [Google Scholar] [CrossRef]
- Stratmann, G.; May, L.D.; Sall, J.W.; Alvi, R.S.; Bell, J.S.; Ormerod, B.K.; Rau, V.; Hilton, J.F.; Dai, R.; Lee, M.T.; et al. Effect of hypercarbia and isoflurane on brain cell death and neurocognitive dysfunction in 7-day old rats. Anesthesiology 2009, 110, 849–861. [Google Scholar] [CrossRef]
- Tachibana, K.; Hashimoto, T.; Takita, K.; Ito, R.; Kato, R.; Morimoto, Y. Neonatal exposure to high concentration of carbon dioxide produces persistent learning deficits with impaired hippocampal synaptic plasticity. Brain Res. 2013, 1507, 83–90. [Google Scholar]
- Wiswell, T.E.; Graziani, L.J.; Kornhauser, M.S.; Stanley, C.; Merton, D.A.; McKee, L.; Spitzer, A.R. Effects of hypocarbia on the development of cystic periventricular leukomalacia in the preterm infant treated with high frequency jet ventilation. Pediatrics 1996, 98, 918–924. [Google Scholar]
- Priestly, M.A.; Golden, J.A.; O’Hara, I.B.; McCann, J.; Kurth, C.D. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. J. Cardiovasc. Surg. 2001, 121, 336–343. [Google Scholar] [CrossRef]
- Brosnan, H.; Bickler, P.E. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane. Anesthesiology 2013, 119, 335–344. [Google Scholar] [CrossRef]
- Deng, M.; Hofacer, R.D.; Jiang, C.; Joseph, B.; Hughes, E.A.; Jia, B.; Danzer, S.C.; Loepke, A.W. Brain regional vulnerability to anaesthesia-induced neuroapoptosis shifts with age at exposure and extends into adulthood for some regions. Br. J. Anaesth. 2014. [Google Scholar] [CrossRef]
- Istaphanous, G.K.; Howard, J.; Nan, X.; Hughes, E.A.; McCann, J.C.; McAuliffe, J.J.; Danzer, S.C.; Loepke, A.W. Comparison of the neuroapoptotic properties of eqipotent exposure of sevoflurane in neonatal mice. Anesthesiology 2011, 114, 578–587. [Google Scholar] [CrossRef]
- Orliaguet, G.; Vivien, B.; Langeron, O.; Bouhemad, B.; Coriat, P.; Riou, B. Minimum alveolar concentration of volatile anesthetics in rats during postnatal maturation. Anesthesiology 2001, 95, 734–739. [Google Scholar] [CrossRef]
- Kodama, M.; Satoh, Y.; Otsubo, Y.; Araki, Y.; Yonamine, R.; Masui, K.; Kazama, T. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 2011, 115, 979–991. [Google Scholar] [CrossRef]
- Bambrink, A.K.; Back, S.A.; Riddle, A.; Gong, X.; Moravec, M.D.; Dissen, G.A.; Creeley, C.E.; Dikranian, K.T.; Olney, J.W. Isoflurane induced apoptosis of oligodendrocytes in the neonatal primate brain. Ann. Neurol. 2012, 72, 525–535. [Google Scholar] [CrossRef]
- Bambrink, A.K.; Evers, A.S.; Avidan, M.S.; Farber, N.B.; Smith, D.J.; Zhang, X.; Dissen, G.A.; Creeley, C.E.; Olney, J.W. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 2010, 112, 834–841. [Google Scholar] [CrossRef]
- Creeley, C.E.; Dikrainian, K.T.; Dissen, G.A.; Back, S.A.; Olney, J.W.; Brambrink, A.M. Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology 2014, 120, 626–638. [Google Scholar] [CrossRef]
- Shih, J.; May, L.D.; Gonzalez, H.E.; Lee, E.W.; Alvi, R.S.; Sall, J.W.; Rau, V.; Bickler, P.E.; Lalchandani, G.R.; Yusupova, M.; et al. Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology 2012, 116, 586–602. [Google Scholar] [CrossRef]
- Galli, K.K.; Zimmerman, R.A.; Jarvik, G.P.; Wernovsky, G.; Kuypers, M.K.; Clancy, R.R.; Montenegro, L.M.; Mahle, W.T.; Newman, M.F.; Saunders, A.M.; et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 2004, 127, 692–704. [Google Scholar] [CrossRef]
- Perlman, J.M. White matter injury in the preterm infant: An important determination of abnormal brain development. Early Hum. Dev. 1998, 53, 99–120. [Google Scholar] [CrossRef]
- Rivkin, M.J.; Watson, C.G.; Scoppettuolo, L.A.; Wypij, D.; Vajapeyam, S.; Bellinger, D.C.; DeMaso, D.R.; Robertson, R.L., Jr.; Newburger, J.W. Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J. Thorac. Cardiovasc. Surg. 2013, 146, 543–549. [Google Scholar] [CrossRef]
- McQuillen, P.S.; Goff, D.A.; Licht, D.J. Effects of congenital heart disease on brain development. Prog. Pediatr. Cardiol. 2010, 29, 79–85. [Google Scholar] [CrossRef]
- Miller, G.; Mamourian, A.C.; Tesman, J.R.; Baylen, B.G.; Myers, J.L. Long-term MRI changes in brain after pediatric open heart surgery. J. Child Neurol. 1994, 9, 390–397. [Google Scholar] [CrossRef]
- Bajic, D.; Commons, K.G.; Soriano, S.G. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int. J. Dev. Neurosci. 2013, 31, 258–266. [Google Scholar] [CrossRef]
- Massa, H.; Lacoh, C.M.; Vutskits, L. Effects of morphine on the differentiation and survival of developing pyramidal neurons during the brain growth spurt. Toxicol. Sci. 2012, 130, 168–179. [Google Scholar] [CrossRef]
- Andropoulos, D.B.; Easley, B.; Brady, K.; McKenzie, E.D.; Heinle, J.S.; Dickerson, H.A.; Shekerdemian, L.; Meador, M.; Eisenman, C.; Hunter, J.V.; et al. Changing expectations for neurological outcomes after the neonatal arterial switch operation. Ann. Thorac. Surg. 2012, 94, 1250–1256. [Google Scholar] [CrossRef]
- Andropoulos, D.B.; Easley, B.; Brady, K.; McKenzie, E.D.; Heinle, J.S.; Dickerson, H.A.; Shekerdemian, L.S.; Meador, M.; Eisenman, C.; Hunter, J.V.; et al. Neurodevelopmental outcomes after regional cerebral perfusion with neuromonitoring for neonatal aortic arch reconstruction. Ann. Thorac. Surg. 2013, 95, 648–655. [Google Scholar] [CrossRef]
- Williams, G.D.; Maan, H.; Ramamoorthy, C.; Kamra, K.; Bratton, S.L.; Bair, E.; Kuan, C.C.; Hammer, G.B.; Feinstein, J.A. Perioperative complications in children with pulmonary hypertension undergoing general anesthesia with ketamine. Paediatr. Anaesth. 2010, 20, 28–37. [Google Scholar]
- Williams, G.D.; Philip, B.M.; Chu, L.F.; Boltz, M.G.; Kamra, K.; Terwey, H.; Hammer, G.B.; Perry, S.B.; Feinstein, J.A.; Ramamoorthy, C. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia in spontaneous ventilation. Anesth. Analg. 2007, 105, 1578–1584. [Google Scholar] [CrossRef]
- Pontén, E.; Viberg, H.; Gordh, T.; Eriksson, P.; Fredriksson, A. Clonidine abolishes the adverse effects on apoptosis and behaviour after neonatal ketamine exposure in mice. Acta. Anaesthesiol. Scand. 2012, 56, 1058–1065. [Google Scholar] [CrossRef]
- Bambrink, A.K.; Evers, A.S.; Avidan, M.S.; Farber, N.B.; Smith, D.J.; Martin, L.D.; Dissen, G.A.; Creeley, C.E.; Olney, J.W. Ketamine-induced neuronal apoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 2012, 116, 372–384. [Google Scholar] [CrossRef]
- Sall, J.W.; Stratmann, G.; Leong, J.; Woodward, E.; Bickler, P.E. Propofol at clinically relevant concentrations increases neuronal differentiation but is not toxic to hippocampal neural precursor cells in vitro. Anesthesiology 2012, 117, 1080–1090. [Google Scholar]
- Yu, D.; Jiang, Y.; Gao, J.; Liu, B.; Chen, P. Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neurosci. Lett. 2013, 534, 41–46. [Google Scholar] [CrossRef]
- Pearn, M.L.; Hu, Y.; Niesman, I.R.; Patel, H.H.; Drummond, J.C.; Roth, D.M.; Akassoglou, K.; Patel, P.M.; Head, B.P. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 2012, 116, 352–361. [Google Scholar] [CrossRef]
- Creeley, C.E.; Dikrainian, K.; Dissen, G.; Martin, L.; Olney, J.; Brambrink, A. Propofol-induced apoptosis of neurons and oligodendrocytes in the fetal and neonatal Rhesus macaque brain. Br. J. Anesth. 2013, 110 (Suppl. 1), i29–i38. [Google Scholar] [CrossRef]
- Cao, W.; Pavlinec, C.; Gravenstein, N.; Seubert, C.N.; Martynyuk, A.E. Roles of aldosterone and oxytocin in abnormalities caused by sevoflurane anesthesia in neonatal rats. Anesthesiology 2012, 117, 791–800. [Google Scholar] [CrossRef]
- Clarizia, N.A.; Manlhiot, C.; Schwartz, S.M.; Sivarajan, V.B.; Maratta, R.; Holtby, H.M.; Gruenwald, C.E.; Caldarone, C.A.; van Arsdell, G.S.; McCrindle, B.W. Improved outcomes associated with intraoperative steroid use in high-risk pediatric cardiac surgery. Ann. Thorac. Surg. 2011, 91, 1222–1227. [Google Scholar] [CrossRef]
- Wald, E.L.; Preze, E.; Eickhoff, J.C.; Backer, C.L. The effect of cardiopulmonary bypass on the hypothalamic-pituitary-adrenal axis in children. Pediatr. Crit. Care Med. 2011, 12, 190–196. [Google Scholar] [CrossRef]
- Sanders, R.D.; Maze, M. Contribution of sedative-hypnotic agents to delirium via modulation of the sleep pathway. Can. J. Anaesth. 2011, 58, 149–156. [Google Scholar] [CrossRef]
- Sanders, R.D.; Sun, P.; Patel, S.; Li, M.; Maze, M.; Ma, D. Dexmedetomidine provides cortical neuroprotection: Impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiol. Scand. 2010, 54, 710–716. [Google Scholar]
- Tachibana, K.; Hashimoto, T.; Kato, R.; Uchida, Y.; Ito, R.; Takita, K.; Morimoto, Y. Neonatal administration with dexmedetomidine does not impair the rat hippocampal synaptic plasticity later in adulthood. Paediatr. Anaesth. 2012, 22, 713–719. [Google Scholar] [CrossRef]
- Edwards, D.A.; Shah, H.P.; Cao, W.; Gravenstein, N.; Seubert, C.N.; Martynyuk, A.E. Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane neonatal rat brain. Anesthesiology 2010, 112, 567–575. [Google Scholar] [CrossRef]
- Creeley, C.E.; Olney, J.W. The young: neuroapoptosis induced by anesthetics and what to do about it. Anesth. Analg. 2010, 110, 442–448. [Google Scholar] [CrossRef]
- Guerra, G.G.; Robertson, C.M.T.; Alton, G.Y.; Joffe, A.R.; Cave, D.A.; Dinu, I.A.; Creighton, D.E.; Ross, D.B.; Rebeyka, I.M. Western Canadian Complex Pediatric Therapies Follow-up Group. Neurodevelopmental outcome following exposure to sedative and analgesic drugs for complex cardiac surgery in infancy. Paediatr. Anaesth. 2011, 21, 932–941. [Google Scholar]
- Guerra, G.G.; Robertson, C.M.T.; Alton, G.Y.; Joffe, A.R.; Cave, D.A.; Yasmin, F.; Dinu, I.A.; Creighton, D.E.; Ross, D.B.; Rebeyka, I.M. Western Canadian Complex Pediatric Therapies Follow-up Group. Neurotoxicity of sedative and analgesia drugs in young infants with congenital heart disease: 4-year follow-up. Paediatr. Anaesth. 2014, 24, 257–265. [Google Scholar]
- Andropoulos, D.B.; Ahmad, H.B.; Haq, T.; Brady, K.; Stayer, S.A.; Meador, M.R.; Hunter, J.V.; Rivera, C.; Voigt, R.G.; Turcich, M.; et al. The association between brain injury, perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes after neonatal cardiac surgery: A retrospective cohort study. Paediatr. Anaesth. 2014, 24, 266–274. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wise-Faberowski, L.; Quinonez, Z.A.; Hammer, G.B. Anesthesia and the Developing Brain: Relevance to the Pediatric Cardiac Surgery. Brain Sci. 2014, 4, 295-310. https://doi.org/10.3390/brainsci4020295
Wise-Faberowski L, Quinonez ZA, Hammer GB. Anesthesia and the Developing Brain: Relevance to the Pediatric Cardiac Surgery. Brain Sciences. 2014; 4(2):295-310. https://doi.org/10.3390/brainsci4020295
Chicago/Turabian StyleWise-Faberowski, Lisa, Zoel A. Quinonez, and Gregory B. Hammer. 2014. "Anesthesia and the Developing Brain: Relevance to the Pediatric Cardiac Surgery" Brain Sciences 4, no. 2: 295-310. https://doi.org/10.3390/brainsci4020295
APA StyleWise-Faberowski, L., Quinonez, Z. A., & Hammer, G. B. (2014). Anesthesia and the Developing Brain: Relevance to the Pediatric Cardiac Surgery. Brain Sciences, 4(2), 295-310. https://doi.org/10.3390/brainsci4020295