Musical Expertise and Second Language Learning
Abstract
:1. Introduction
2. Sound Perception and Production in Native and Foreign Languages
2.1. Perception of Frequency Cues
2.2. Perception of Duration Cues
2.3. Perception/Production Relationship
3. Language Segmentation
4. Interpretations and Future Research Directions
5. Conclusion
Acknowledgments
Conflict of Interest
References
- Golestani, N.; Rosen, S.; Scott, S.K. Native-language benefit for understanding speech-in-noise: The contribution of semantics. Biling. Lang. Cogn. 2009, 12, 385–392. [Google Scholar] [CrossRef]
- Flege, J.E.; MacKay, I.R.A. Perceiving Vowels in a Second Language. Stud. Second Lang. Acquis. 2004, 26, 1–34. [Google Scholar] [CrossRef]
- Best, C.T.; McRoberts, G.W.; Goodell, E. American listeners’ perception of non-native consonant contrasts varying in perceptual assimilation to English phonology. J. Acoust. Soc. Am. 2001, 109, 775–794. [Google Scholar] [CrossRef]
- Flege, J.E. Second Language Speech Learning Theory, Findings, and Problems. In Speech Perception and Linguistic Experience: Issues in Cross-Language Research; York Press: Timonium, MD, USA, 1995. [Google Scholar]
- Birdsong, D. Interpreting age effects in second language acquisition. In Handbook of Bilingualism: Psycholinguistic Approaches; Kroll, J.F., de Groot, A.M.B., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 109–127. [Google Scholar]
- Moyer, A. Ultimate attainment in L2 phonology. Stud. Second Lang. Acquis. 1999, 21, 81–108. [Google Scholar] [CrossRef]
- Majerus, S.; Poncelet, M.; van der Linden, M.; Weekes, B.S. Lexical learning in bilingual adults: The relative importance of short-term memory for serial order and phonological knowledge. Cognition 2008, 107, 395–419. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. Individual differences in second language proficiency: Working memory as language aptitude. In Foreign Language Learning. Psycholinguistic Studies on Training and Retention; Healy, A.F., Bourne, L.E., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 339–364. [Google Scholar]
- Guion, S.G.; Pederson, E. Investigating the role of attention in phonetic learning. In Language Experience in Second Language Speech Learning; Bohn, O.-S., Munro, M.J., Eds.; John Benjamins Publishing: Amsterdam, The Netherland, 2007; pp. 57–77. [Google Scholar]
- Segalowitz, N. Individual differences in second language acquisition. In Tutorials in Bilingualism:Psycholinguistic Perspectives; de Groot, A.M.B., Kroll, J.F., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1997; pp. 85–112. [Google Scholar]
- Slevc, L.R.; Miyake, A. Individual differences in second language proficiency: Does musical ability matter? Psychol. Sci. 2006, 17, 675–681. [Google Scholar] [CrossRef]
- Besson, M.; Chobert, J.; Marie, C. Transfer of training between music and speech: Common processing, attention and memory. Front. Psychol. 2011, 2, 94. [Google Scholar]
- Patel, A.D. Music, Language, and the Brain; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Patel, A.D. Music, biological evolution, and the brain. In Emerging Disciplines; Bailar, M., Ed.; Rice University Press: TX, USA, 2010; pp. 91–144. [Google Scholar]
- Besson, M.; Schön, D.; Moreno, S.; Santos, A.; Magne, C. Influence of musical expertise and musical training on pitch processing in music and language. Restor. Neurol. Neurosci. 2007, 25, 399–410. [Google Scholar]
- Koelsch, S.; Gunter, T.C.; Wittfoth, M.; Sammler, D. Interaction between syntax processing in language and in music: An ERP study. J. Cogn. Neurosci. 2005, 17, 1565–1577. [Google Scholar]
- Maess, B.; Koelsch, S.; Gunter, T.C.; Friederici, A.D. Musical syntax is processed in Broca’s area: An MEG study. Nat. Neurosci. 2001, 4, 540–545. [Google Scholar]
- Patel, A.D.; Gibson, E.; Ratner, J.; Besson, M.; Holcomb, P.J. Processing syntactic relations in language and music: An event-related potential study. J. Cogn. Neurosci. 1998, 10, 717–733. [Google Scholar]
- Jentschke, S.; Koelsch, S.; Friederici, A.D. Investigating the relationship of music and language in children: Influences of musical training and language impairment. In The Neurosciences and Music II. from Perception to Performance; Avanzini, G., Lopez, L., Koelsch, S., Majno, M., Eds.; Annals of the New York Academy of Sciences Vol. 1060; Wiley: New York, NY, USA, 2005; pp. 231–242. [Google Scholar]
- Koelsch, S.; Kasper, E.; Sammler, D.; Schulze, K.; Gunter, T.; Friederici, A.D. Music, language and meaning: Brain signatures of semantic processing. Nat. Neurosci. 2004, 7, 302–307. [Google Scholar]
- Kraus, N.; Chandrasekaran, B. Music training for the development of auditory skills. Nat. Rev. Neurosci. 2010, 11, 599–605. [Google Scholar] [CrossRef]
- Strait, D.L.; Kraus, N. Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence. Music Percept. 2011, 29, 133–146. [Google Scholar] [CrossRef]
- Slevc, L.R. Language and music: Sound, structure, and meaning. WIREs Cogn. Sci. 2012, 3, 483–492. [Google Scholar] [CrossRef]
- Marques, C.; Moreno, S.; Luís Castro, S.; Besson, M. Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. J. Cogn. Neurosci. 2007, 19, 1453–1463. [Google Scholar]
- Marie, C.; Delogu, F.; Lampis, G.; Olivetti Belardinelli, M.; Besson, M. Influence of Musical Expertise on Segmental and Tonal Processing in Mandarin Chinese. J. Cogn. Neurosci. 2011, 23, 2701–2715. [Google Scholar]
- Milovanov, R.; Huotilainen, M.; Välimäki, V.; Esquef, P.A.A.; Tervaniemi, M. Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Res. 2008, 1194, 81–89. [Google Scholar]
- Milovanov, R.; Pietilä, P.; Tervaniemi, M.; Esquef, P.A.A. Foreign language pronunciation skills and musical aptitude: a study of Finnish adults with higher education. Learn. Individ. Diff. 2010, 20, 56–60. [Google Scholar] [CrossRef]
- François, C.; Schön, D. Musical expertise boosts implicit learning of both musical and linguistic structures. Cereb. Cortex 2011, 21, 2357–2365. [Google Scholar] [CrossRef]
- François, C.; Chobert, J.; Besson, M.; Schön, D. Music Training for the Development of Speech Segmentation. Cereb. Cortex 2012. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.E. Pitch targets and their realization: Evidence from Mandarin Chinese. Speech Commun. 2001, 33, 319–337. [Google Scholar]
- Brandt, A.K.; Gebrian, M.; Slevc, L.R. Music and early language acquisition. Front. Psychol. 2012, 3, 327. [Google Scholar]
- Schön, D.; Magne, C.; Besson, M. The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology 2004, 41, 341–349. [Google Scholar] [CrossRef]
- Magne, C.; Schön, D.; Besson, M. Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J. Cogn. Neurosci. 2006, 18, 199–211. [Google Scholar] [CrossRef]
- Moreno, S.; Marques, C.; Santos, A.; Santos, M.; Castro, S.L.; Besson, M. Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cereb. Cortex 2009, 19, 712. [Google Scholar] [CrossRef]
- Ott, C.G.M.; Langer, N.; Oechslin, M.; Meyer, M.; Jäncke, L. Processing of voiced and unvoiced acoustic stimuli in musicians. Front. Psychol. 2011, 2, 195. [Google Scholar]
- Elmer, S.; Meyer, M.; Jäncke, L. Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb. Cortex 2012, 22, 650–658. [Google Scholar] [CrossRef]
- Alexander, J.A.; Wong, P.C.M.; Bradlow, A.R. Lexical tone perception in musicians and non-musicians. In Proceedings of the 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, 2005.
- Delogu, F.; Lampis, G.; Belardinelli, M.O. Music-to-language transfer effect: May melodic ability improve learning of tonal languages by native nontonal speakers? Cogn. Process. 2006, 7, 203–207. [Google Scholar]
- Delogu, F.; Lampis, G.; Belardinelli, M.O. From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. Eur. J. Cogn. Psychol. 2010, 22, 46–61. [Google Scholar]
- Gottfried, T.L.; Riester, D. Relation of pitch glide perception and Mandarin tone identification. J. Acoust. Soc. Am. 2000, 108, 2604. [Google Scholar]
- Lee, C.Y.; Hung, T.H. Identification of Mandarin tones by English-speaking musicians and non-musicians. J. Acoust. Soc. Am. 2008, 124, 3235–3248. [Google Scholar] [CrossRef]
- Wong, P.C.M.; Skoe, E.; Russo, N.M.; Dees, T.; Kraus, N. Musical experience shaps human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 2007, 10, 420–422. [Google Scholar]
- Chandrasekaran, B.; Kraus, N.; Wong, P.C.M. Human inferior colliculus activity relates to individual differences in spoken language learning. J. Neurophysiol. 2012, 107, 1325–1336. [Google Scholar] [CrossRef]
- Fujioka, T.; Ross, B.; Kakigi, R.; Pantev, C.; Trainor, L.J. One year of musical training affects development of auditory cortical-evoked fields in young children. Brain 2006, 129, 2593. [Google Scholar]
- Duncan-Johnson, C.C.; Donchin, E. On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology 1977, 14, 456–467. [Google Scholar] [CrossRef]
- Picton, T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992, 9, 456–479. [Google Scholar]
- Magne, C.; Astésano, C.; Aramaki, M.; Ystad, S.; Kronland-Martinet, R.; Besson, M. Influence of syllabic lengthening on semantic processing in spoken french: Behavioral and electrophysiological evidence. Cereb. Cortex 2007, 17, 2659–2668. [Google Scholar] [CrossRef]
- Marie, C.; Magne, C.; Besson, M. Musicians and the metric structure of words. J. Cogni. Neurosci. 2011, 23, 294–305. [Google Scholar] [CrossRef]
- Pallone, G.; Boussard, P.; Daudet, L.; Guillemain, P.; Kronland-Martinet, R.A. Wavelet Based Method for Audio Video Synchronization in Broadcasting Applications. In Proceedings of the DAFX’99, Trondheim, Norway, 1999.
- Sadakata, M.; Sekiayama, K. Enhanced perception of various linguistic features by musicians: A cross-linguistic study. Acta Psychol. 2011, 138, 1–10. [Google Scholar] [CrossRef]
- Cutler, A. The perception of rhythm in language. Cognition 1994, 50, 79–81. [Google Scholar] [CrossRef]
- Cutler, A.; Otake, T. Mora or phoneme? Further evidence for language-specific listening. J. Mem. Lang. 1994, 3, 824–844. [Google Scholar] [CrossRef]
- Iverson, P.; Evans, B.G. Learning English vowels with different first-language vowel systems: Perception of format targets, format movement, and duration. J. Acoust. Soc. Am. 2007, 122, 2842–2854. [Google Scholar] [CrossRef]
- Chobert, J.; Marie, C.; François, C.; Schön, D.; Besson, M. Enhanced passive and active processing of syllables in musician children. J. Cogn. Neurosci. 2011, 23, 3874–3887. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.; Pellathy, T.; Marantz, A.; Yellin, E.; Wexler, K.; Poeppel, D.; McGinnis, M.; et al. Auditory cortex accesses phonological categories: an MEG mismatch study. J. Cogn. Neurosci. 2000, 12, 1038–1055. [Google Scholar]
- Strait, D.L.; Kraus, N.; Parbery-Clark, A.; Ashley, R. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance. Hear. Res. 2010, 261, 22–29. [Google Scholar] [CrossRef]
- Bettoni-Techio, M.; Rauber, A.S.; Koerich, R.D. Perception and production of word-final alveolar stops by Brazilian Portuguese learners of English. In Proceedings of Interspeech 2007, Antwerp, Belgium, 2007; pp. 2293–2296.
- Gottfried, T.L.; Staby, A.M.; Ziemer, C.J. Musical experience and Mandarin tone discrimination and imitation. J. Acoust. Soc. Am. 2004, 115, 2545. [Google Scholar]
- Gottfried, T.L.; Ouyang, G.Y.H. Production of Mandarin tone contrasts by musicians and non-musicians. J. Acoust. Soc. Am. 2005, 118, 2025. [Google Scholar]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef]
- Saffran, J.R.; Aslin, R.N.; Newport, E.L. Statistical learning by 8-month-old infants. Science 1996, 274, 1926–1928. [Google Scholar] [CrossRef]
- Saffran, J.R.; Senghas, A.; Trueswell, J.C. The acquisition of language in children. Proc. Natl. Acad. Sci. USA 2001, 98, 12874–12875. [Google Scholar]
- Saffran, J.R.; Newport, E.L.; Aslin, R.N. Word segmentation: The role of distributional cues. J. Mem. Lang. 1996, 35, 606–621. [Google Scholar] [CrossRef]
- Aslin, R.N.; Saffran, J.R.; Newport, E.L. Computation of conditional probability statistics by 8-month-old infants. Psychol. Sci. 1998, 9, 321–324. [Google Scholar] [CrossRef]
- Kuhl, P.K. Early language acquisition: Cracking the speech code. Nat. Rev. Neurosci. 2004, 207, 203–205. [Google Scholar]
- Gervain, J.; Macagno, F.; Cogoi, S.; Peña, M.; Mehler, J. The neonate brain detects speech structure. Proc Natl. Acad. Sci. USA 2008, 105, 14222–14227. [Google Scholar]
- Teinonen, T.; Fellman, V.; Näätänen, R.; Alku, P.; Huotilainen, M. Statistical language learning in neonates revealed by event-related brain potentials. BMC Neurosci. 2009, 13, 10–21. [Google Scholar]
- Tillmann, B.; McAdams, S. Implicit Learning of musical timbre sequences: statistical regularities confronted with acoustical (dis)similarities. J. Exp. Psychol. Learn. Mem. Cogn. 2004, 30, 1131–1142. [Google Scholar] [CrossRef]
- Saffran, J.R.; Johnson, E.; Aslin, R.N.; Newport, E.L. Statistical learning of tone sequences by human infants and adults. Cognition 1999, 70, 27–52. [Google Scholar] [CrossRef]
- Schön, D.; Boyer, M.; Moreno, S.; Besson, M.; Peretz, I.; Kolinsky, R. Song as an aid for language acquisition. Cognition 2008, 106, 975–983. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV); Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Raven, J.C.; Corporation, P.; Lewis, H.K. Coloured Progressive Matrices: Sets A, AB, B; Oxford Psychologist Press: London, UK, 1962. [Google Scholar]
- Korkman, M.; Kirk, U.; Kemp, S. NEPSY: A Developmental Neuropsychological Assessment; Psychological Corporation: San Antonio, TX, USA, 1998. [Google Scholar]
- Jacquier-Roux, M.; Valdois, S.; Zorman, M.O. Outil de Dépistage des Dyslexies; Cogni-Sciences: Grenoble, France, 2005. [Google Scholar]
- Lahav, A.; Saltzman, E.; Schlaug, G. Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 2007, 27, 308–314. [Google Scholar] [CrossRef]
- Hyde, K.L.; Lerch, J.; Norton, A.; Forgeard, M.; Winner, E.; Evans, A.C.; Schlaug, G. Musical training shapes structural brain development. J. Neurosci. 2009, 29, 3019. [Google Scholar] [CrossRef]
- Pelucchi, B.; Hay, J.F.; Saffran, J.R. Learning in reverse: Eight-month-old infants track backwards transitional probabilities. Cognition 2009, 113, 244–247. [Google Scholar] [CrossRef]
- Patel, A.D. Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol. 2011, 2, 142. [Google Scholar] [CrossRef]
- Degé, F.; Schwarzer, G. The effect of a music program on phonological awareness in preschoolers. Front. Psychol. 2011, 2, 24. [Google Scholar]
- Tervaniemi, M.; Kruck, S.; De Baene, W.; Schröger, E.; Alter, K.; Friederici, A.D. Top-down modulation of auditory processing: Effects of sound context, musical expertise and attentional focus. Eur. J. Neurosci. 2009, 30, 1636–1642. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Papagno, C.; Vallar, G. When long-term learning depends on short-term storage. J. Mem. Lang. 1988, 27, 586–596. [Google Scholar] [CrossRef]
- Papagno, C.; Valentine, T.; Baddeley, A.D. Phonological short-term memory and foreign-language vocabulary learning. J. Mem. Lang. 1991, 30, 331–347. [Google Scholar] [CrossRef]
- Ellis, N.C.; Sinclair, S.G. Working memory in the acquisition of vocabulary and syntax: Putting language in good order. Q. J. Exp. Psychol. 1996, 49, 234–250. [Google Scholar]
- Fortkamp, M.B.M. Working memory capacity and aspects of L2 speech production. Commun. Cogn. 1999, 32, 259–295. [Google Scholar]
- Kormos, J.; Sáfár, A. Phonological short-term membory, working memory and foreign language performance in intensive language learning. Biling. Lang. Cogn. 2008, 11, 261–271. [Google Scholar]
- Chan, A.S.; Ho, Y.C.; Cheung, M.C. Music training improves verbal memory. Nature 1998, 396, 128. [Google Scholar] [CrossRef]
- Ho, Y.; Cheung, M.; Chan, A. Music training improves verbal but not visual memory: Cross sectional and longitudinal explorations in children. Neuropsychology 2003, 17, 439–450. [Google Scholar] [CrossRef]
- Tierney, A.T.; Bergeson-Dana, T.; Pisoni, D.B. Effects of early musical experience on auditory sequence memory. Empir. Musicol. Rev. 2008, 3, 117–186. [Google Scholar]
- Pallesen, K.J.; Brattico, E.; Bailey, C.J.; Korvenoja, A.; Koivisto, J.; Gjedde, A.; Carlson, S. Cognitive control in auditory working memory is enhanced in musicians. PLoS One 2010, 5, e11120. [Google Scholar]
- Parbery-Clark, A.; Skoe, E.; Lam, C.; Kraus, N. Musician enhancement for speech in noise. Ear Hear. 2009, 30, 653–661. [Google Scholar] [CrossRef]
- Parbery-Clark, A.; Strait, D.L.; Anderson, S.; Hittner, E.; Kraus, N. Musical Experience and the Aging Auditory System: Implication for Cognitive Abilities and Hearning Speech in Noise. PLoS One 2011, 6, e18082. [Google Scholar]
- Brandler, S.; Rammsayer, T.H. Differences in mental abilities between musicians and non-musicians. Psychol. Music 2003, 31, 123–138. [Google Scholar] [CrossRef]
- Jakobson, L.S.; Cuddy, L.L.; Kilgour, A.R. Time tagging: A key to musicians’ superior memory. Music Percept. 2003, 20, 307–313. [Google Scholar] [CrossRef]
- Gaab, N.; Schlaug, G. Musicians differ from nonmusicians in brain activation despite performance matching. Ann. N. Y. Acad. Sci. 2003, 999, 385–388. [Google Scholar] [CrossRef]
- Janata, P.; Tillman, B.; Bharucha, J.J. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2002, 2, 121–140. [Google Scholar] [CrossRef]
- Schulze, K.; Gaab, N.; Schlaug, G. Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neurosci. 2009, 10, 106. [Google Scholar] [CrossRef]
- Brown, S.; Martinez, M.J. Activation of premotor vocal areas during musical discrimination. Brain Cogn. 2007, 63, 59–69. [Google Scholar] [CrossRef]
- Brown, S.; Martinez, M.J.; Parsons, L. M. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 2004, 15, 2033–2037. [Google Scholar] [CrossRef]
- Gordon, R.; Schön, D.; Magne, C.; Astésano, C.; Besson, M. Words and melody are intertwined in perception of sung words: EEG and behavioral evidence. PLoS One 2010, 5, 9889. [Google Scholar]
- Hickok, G.; Buchsbaum, B.; Humphries, C.; Muftuler, T. Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. J. Cogn. Neuroscie. 2003, 15, 673–682. [Google Scholar]
- Koelsch, S.; Schulze, K.; Sammler, D.; Fritz, T.; Muller, K.; Gruber, O. Functional architecture of verbal and tonal working memory: An fMRI study. Hum. Brain Mapp. 2009, 30, 859–873. [Google Scholar] [CrossRef]
- Ohnishi, T.; Matsuda, H.; Asada, T.; Aruga, M.; Hirakata, M.; Nishikawa, M.; Katoh, A.; Imabayashi, E. Functional anatomy of musical perception in musicians. Cereb. Cortex 2001, 11, 754–760. [Google Scholar] [CrossRef]
- Schön, D.; Gordon, R.; Campagne, A.; Magne, C.; Astesano, C.; Anton, J.L.; Besson, M. More evidence for similar cerebral networks in language, music and song perception. Neuroimage 2010, 51, 450–461. [Google Scholar] [CrossRef]
- Hickok, G. Computational neuroanatomy of speech production. Nat. Rev. Neurosci. 2012, 13, 135–145. [Google Scholar] [CrossRef]
- Gelfand, J.; Bookheimer, S. Dissociating neural mechanisms of temporal sequencing and processing phonemes. Neuron 2003, 38, 831–842. [Google Scholar] [CrossRef]
- Golestani, N.; Zatorre, R.J. Learning new sounds of speech: Reallocation of neural substrates. NeuroImage 2004, 21, 494–506. [Google Scholar] [CrossRef]
- Seppänen, M.; Hämäläinen, J.; Pesonen, A.K.; Tervaniemi, M. Music Training Enhances Rapid Neural Plasticity of N1 and P2 Source Activation for Unattended Sounds. Front. Hum. Neurosci. 2012, 6, 43. [Google Scholar]
- Seppänen, M.; Pesonen, A.K.; Tervaniemi, M. Music training enhances the rapid plasticity of P3a/P3b event-related brain potentials for unattended and attended target sounds. Attent. Percept. Psychophys. 2012, 74, 600–612. [Google Scholar] [CrossRef]
- François, C.; Tillmann, B.; Schön, D. Cognitive and methodological consideration on the effects of musical expertise on speech segmentation. Ann. N. Y. Acad. Sci. 2012, 1252, 108–115. [Google Scholar]
- Flöel, A.; de Vries, M.; Scholz, J.; Breitenstein, C.; Johansen-Berg, H. White matter integrity in the vicinity of Broca’s area predicts grammar learning success. NeuroImage 2009, 47, 1974–1981. [Google Scholar]
- Conway, C.M.; Pisoni, D.B.; Kronenberger, W.G. The importance of sound for cognitive sequencing: The auditory scaffolding hypothesis. Curr. Dir. Psychol. Sci. 2009, 18, 275–279. [Google Scholar] [CrossRef]
- Musacchia, G.; Strait, D.; Kraus, N. Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hear. Res. 2008, 241, 34–42. [Google Scholar] [CrossRef]
- Wong, P.C.M.; Perrachione, T.K.; Parrish, T.B. Neural characteristics of successful and less successful speech and word learning in adults. Hum. Brain Mapp. 2007, 28, 995–1006. [Google Scholar] [CrossRef]
- Musacchia, G.; Sams, M.; Skoe, E.; Kraus, N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. USA 2007, 104, 15894. [Google Scholar] [CrossRef]
- Parbery-Clark, A.; Tierney, A.; Strait, D.L.; Kraus, N. Musicians have fine-tuned neural distinction of speech syllables. Neuroscience 2012, 219, 111–119. [Google Scholar] [CrossRef]
- Chobert, J.; François, C.; Velay, J.L.; Besson, M. Twelve months of active musical training in 8 to 10 year old children enhances the preattentive processing of syllabic duration and Voice Onset Time. Cereb. Cortex 2012. [Google Scholar] [CrossRef]
- Hornickel, J.; Anderson, S.; Skoe, E.; Yi, H.; Kraus, N. Subcortical representation of speech fine structure related to reading ability. NeuroReport 2012, 23, 6–9. [Google Scholar] [CrossRef]
- Hornickel, J.; Kraus, N. Unstable representation of sound: A biological marker of dyslexia. J. Neurosci. 2013, 33, 3500–3504. [Google Scholar] [CrossRef]
- Chobert, J.; François, C.; Habib, M.; Besson, M. Deficit in the preattentive processing of syllabic duration and VOT in children with dyslexia. Neuropsychologia 2012, 50, 2044–2055. [Google Scholar] [CrossRef]
- Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 2011, 15, 3–10. [Google Scholar] [CrossRef]
- Bogliotti, C.; Serniclaes, W.; Messaoud-Galusi, S.; Sprenger-Charolles, L. Discrimination of speech sounds by children with dyslexia: Comparisons with chronological age and reading level controls. J. Exp. Child Psychol. 2008, 101, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Serniclaes, W.; Heghe, S.V.; Mousty, P.; Carré, R.; Sprenger-Charolles, L. Allophonic mode of speech perception in dyslexia. J. Exp. Child Psychol. 2004, 87, 336–361. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.S.H.; Fong, K.M. Do Chinese Dyslexic Children Have Difficulties Learning English as a Second Language? J. Psycholinguist. Res. 2005, 34, 603–618. [Google Scholar] [CrossRef]
- Lundberg, I. Second language learning and reading with the additional load of dyslexia. Ann. Dyslexia 2002, 52, 165–187. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chobert, J.; Besson, M. Musical Expertise and Second Language Learning. Brain Sci. 2013, 3, 923-940. https://doi.org/10.3390/brainsci3020923
Chobert J, Besson M. Musical Expertise and Second Language Learning. Brain Sciences. 2013; 3(2):923-940. https://doi.org/10.3390/brainsci3020923
Chicago/Turabian StyleChobert, Julie, and Mireille Besson. 2013. "Musical Expertise and Second Language Learning" Brain Sciences 3, no. 2: 923-940. https://doi.org/10.3390/brainsci3020923
APA StyleChobert, J., & Besson, M. (2013). Musical Expertise and Second Language Learning. Brain Sciences, 3(2), 923-940. https://doi.org/10.3390/brainsci3020923