Musical Expertise and Second Language Learning
Abstract
1. Introduction
2. Sound Perception and Production in Native and Foreign Languages
2.1. Perception of Frequency Cues
2.2. Perception of Duration Cues
2.3. Perception/Production Relationship
3. Language Segmentation
4. Interpretations and Future Research Directions
5. Conclusion
Acknowledgments
Conflict of Interest
References
- Golestani, N.; Rosen, S.; Scott, S.K. Native-language benefit for understanding speech-in-noise: The contribution of semantics. Biling. Lang. Cogn. 2009, 12, 385–392. [Google Scholar] [CrossRef]
- Flege, J.E.; MacKay, I.R.A. Perceiving Vowels in a Second Language. Stud. Second Lang. Acquis. 2004, 26, 1–34. [Google Scholar] [CrossRef]
- Best, C.T.; McRoberts, G.W.; Goodell, E. American listeners’ perception of non-native consonant contrasts varying in perceptual assimilation to English phonology. J. Acoust. Soc. Am. 2001, 109, 775–794. [Google Scholar] [CrossRef]
- Flege, J.E. Second Language Speech Learning Theory, Findings, and Problems. In Speech Perception and Linguistic Experience: Issues in Cross-Language Research; York Press: Timonium, MD, USA, 1995. [Google Scholar]
- Birdsong, D. Interpreting age effects in second language acquisition. In Handbook of Bilingualism: Psycholinguistic Approaches; Kroll, J.F., de Groot, A.M.B., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 109–127. [Google Scholar]
- Moyer, A. Ultimate attainment in L2 phonology. Stud. Second Lang. Acquis. 1999, 21, 81–108. [Google Scholar] [CrossRef]
- Majerus, S.; Poncelet, M.; van der Linden, M.; Weekes, B.S. Lexical learning in bilingual adults: The relative importance of short-term memory for serial order and phonological knowledge. Cognition 2008, 107, 395–419. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. Individual differences in second language proficiency: Working memory as language aptitude. In Foreign Language Learning. Psycholinguistic Studies on Training and Retention; Healy, A.F., Bourne, L.E., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 339–364. [Google Scholar]
- Guion, S.G.; Pederson, E. Investigating the role of attention in phonetic learning. In Language Experience in Second Language Speech Learning; Bohn, O.-S., Munro, M.J., Eds.; John Benjamins Publishing: Amsterdam, The Netherland, 2007; pp. 57–77. [Google Scholar]
- Segalowitz, N. Individual differences in second language acquisition. In Tutorials in Bilingualism:Psycholinguistic Perspectives; de Groot, A.M.B., Kroll, J.F., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1997; pp. 85–112. [Google Scholar]
- Slevc, L.R.; Miyake, A. Individual differences in second language proficiency: Does musical ability matter? Psychol. Sci. 2006, 17, 675–681. [Google Scholar] [CrossRef]
- Besson, M.; Chobert, J.; Marie, C. Transfer of training between music and speech: Common processing, attention and memory. Front. Psychol. 2011, 2, 94. [Google Scholar]
- Patel, A.D. Music, Language, and the Brain; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Patel, A.D. Music, biological evolution, and the brain. In Emerging Disciplines; Bailar, M., Ed.; Rice University Press: TX, USA, 2010; pp. 91–144. [Google Scholar]
- Besson, M.; Schön, D.; Moreno, S.; Santos, A.; Magne, C. Influence of musical expertise and musical training on pitch processing in music and language. Restor. Neurol. Neurosci. 2007, 25, 399–410. [Google Scholar]
- Koelsch, S.; Gunter, T.C.; Wittfoth, M.; Sammler, D. Interaction between syntax processing in language and in music: An ERP study. J. Cogn. Neurosci. 2005, 17, 1565–1577. [Google Scholar]
- Maess, B.; Koelsch, S.; Gunter, T.C.; Friederici, A.D. Musical syntax is processed in Broca’s area: An MEG study. Nat. Neurosci. 2001, 4, 540–545. [Google Scholar]
- Patel, A.D.; Gibson, E.; Ratner, J.; Besson, M.; Holcomb, P.J. Processing syntactic relations in language and music: An event-related potential study. J. Cogn. Neurosci. 1998, 10, 717–733. [Google Scholar]
- Jentschke, S.; Koelsch, S.; Friederici, A.D. Investigating the relationship of music and language in children: Influences of musical training and language impairment. In The Neurosciences and Music II. from Perception to Performance; Avanzini, G., Lopez, L., Koelsch, S., Majno, M., Eds.; Annals of the New York Academy of Sciences Vol. 1060; Wiley: New York, NY, USA, 2005; pp. 231–242. [Google Scholar]
- Koelsch, S.; Kasper, E.; Sammler, D.; Schulze, K.; Gunter, T.; Friederici, A.D. Music, language and meaning: Brain signatures of semantic processing. Nat. Neurosci. 2004, 7, 302–307. [Google Scholar]
- Kraus, N.; Chandrasekaran, B. Music training for the development of auditory skills. Nat. Rev. Neurosci. 2010, 11, 599–605. [Google Scholar] [CrossRef]
- Strait, D.L.; Kraus, N. Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence. Music Percept. 2011, 29, 133–146. [Google Scholar] [CrossRef]
- Slevc, L.R. Language and music: Sound, structure, and meaning. WIREs Cogn. Sci. 2012, 3, 483–492. [Google Scholar] [CrossRef]
- Marques, C.; Moreno, S.; Luís Castro, S.; Besson, M. Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. J. Cogn. Neurosci. 2007, 19, 1453–1463. [Google Scholar]
- Marie, C.; Delogu, F.; Lampis, G.; Olivetti Belardinelli, M.; Besson, M. Influence of Musical Expertise on Segmental and Tonal Processing in Mandarin Chinese. J. Cogn. Neurosci. 2011, 23, 2701–2715. [Google Scholar]
- Milovanov, R.; Huotilainen, M.; Välimäki, V.; Esquef, P.A.A.; Tervaniemi, M. Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Res. 2008, 1194, 81–89. [Google Scholar]
- Milovanov, R.; Pietilä, P.; Tervaniemi, M.; Esquef, P.A.A. Foreign language pronunciation skills and musical aptitude: a study of Finnish adults with higher education. Learn. Individ. Diff. 2010, 20, 56–60. [Google Scholar] [CrossRef]
- François, C.; Schön, D. Musical expertise boosts implicit learning of both musical and linguistic structures. Cereb. Cortex 2011, 21, 2357–2365. [Google Scholar] [CrossRef]
- François, C.; Chobert, J.; Besson, M.; Schön, D. Music Training for the Development of Speech Segmentation. Cereb. Cortex 2012. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.E. Pitch targets and their realization: Evidence from Mandarin Chinese. Speech Commun. 2001, 33, 319–337. [Google Scholar]
- Brandt, A.K.; Gebrian, M.; Slevc, L.R. Music and early language acquisition. Front. Psychol. 2012, 3, 327. [Google Scholar]
- Schön, D.; Magne, C.; Besson, M. The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology 2004, 41, 341–349. [Google Scholar] [CrossRef]
- Magne, C.; Schön, D.; Besson, M. Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J. Cogn. Neurosci. 2006, 18, 199–211. [Google Scholar] [CrossRef]
- Moreno, S.; Marques, C.; Santos, A.; Santos, M.; Castro, S.L.; Besson, M. Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cereb. Cortex 2009, 19, 712. [Google Scholar] [CrossRef]
- Ott, C.G.M.; Langer, N.; Oechslin, M.; Meyer, M.; Jäncke, L. Processing of voiced and unvoiced acoustic stimuli in musicians. Front. Psychol. 2011, 2, 195. [Google Scholar]
- Elmer, S.; Meyer, M.; Jäncke, L. Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb. Cortex 2012, 22, 650–658. [Google Scholar] [CrossRef]
- Alexander, J.A.; Wong, P.C.M.; Bradlow, A.R. Lexical tone perception in musicians and non-musicians. In Proceedings of the 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, 2005.
- Delogu, F.; Lampis, G.; Belardinelli, M.O. Music-to-language transfer effect: May melodic ability improve learning of tonal languages by native nontonal speakers? Cogn. Process. 2006, 7, 203–207. [Google Scholar]
- Delogu, F.; Lampis, G.; Belardinelli, M.O. From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. Eur. J. Cogn. Psychol. 2010, 22, 46–61. [Google Scholar]
- Gottfried, T.L.; Riester, D. Relation of pitch glide perception and Mandarin tone identification. J. Acoust. Soc. Am. 2000, 108, 2604. [Google Scholar]
- Lee, C.Y.; Hung, T.H. Identification of Mandarin tones by English-speaking musicians and non-musicians. J. Acoust. Soc. Am. 2008, 124, 3235–3248. [Google Scholar] [CrossRef]
- Wong, P.C.M.; Skoe, E.; Russo, N.M.; Dees, T.; Kraus, N. Musical experience shaps human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 2007, 10, 420–422. [Google Scholar]
- Chandrasekaran, B.; Kraus, N.; Wong, P.C.M. Human inferior colliculus activity relates to individual differences in spoken language learning. J. Neurophysiol. 2012, 107, 1325–1336. [Google Scholar] [CrossRef]
- Fujioka, T.; Ross, B.; Kakigi, R.; Pantev, C.; Trainor, L.J. One year of musical training affects development of auditory cortical-evoked fields in young children. Brain 2006, 129, 2593. [Google Scholar]
- Duncan-Johnson, C.C.; Donchin, E. On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology 1977, 14, 456–467. [Google Scholar] [CrossRef]
- Picton, T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992, 9, 456–479. [Google Scholar]
- Magne, C.; Astésano, C.; Aramaki, M.; Ystad, S.; Kronland-Martinet, R.; Besson, M. Influence of syllabic lengthening on semantic processing in spoken french: Behavioral and electrophysiological evidence. Cereb. Cortex 2007, 17, 2659–2668. [Google Scholar] [CrossRef]
- Marie, C.; Magne, C.; Besson, M. Musicians and the metric structure of words. J. Cogni. Neurosci. 2011, 23, 294–305. [Google Scholar] [CrossRef]
- Pallone, G.; Boussard, P.; Daudet, L.; Guillemain, P.; Kronland-Martinet, R.A. Wavelet Based Method for Audio Video Synchronization in Broadcasting Applications. In Proceedings of the DAFX’99, Trondheim, Norway, 1999.
- Sadakata, M.; Sekiayama, K. Enhanced perception of various linguistic features by musicians: A cross-linguistic study. Acta Psychol. 2011, 138, 1–10. [Google Scholar] [CrossRef]
- Cutler, A. The perception of rhythm in language. Cognition 1994, 50, 79–81. [Google Scholar] [CrossRef]
- Cutler, A.; Otake, T. Mora or phoneme? Further evidence for language-specific listening. J. Mem. Lang. 1994, 3, 824–844. [Google Scholar] [CrossRef]
- Iverson, P.; Evans, B.G. Learning English vowels with different first-language vowel systems: Perception of format targets, format movement, and duration. J. Acoust. Soc. Am. 2007, 122, 2842–2854. [Google Scholar] [CrossRef]
- Chobert, J.; Marie, C.; François, C.; Schön, D.; Besson, M. Enhanced passive and active processing of syllables in musician children. J. Cogn. Neurosci. 2011, 23, 3874–3887. [Google Scholar] [CrossRef]
- Phillips, C.; Pellathy, T.; Marantz, A.; Yellin, E.; Wexler, K.; Poeppel, D.; McGinnis, M.; et al. Auditory cortex accesses phonological categories: an MEG mismatch study. J. Cogn. Neurosci. 2000, 12, 1038–1055. [Google Scholar]
- Strait, D.L.; Kraus, N.; Parbery-Clark, A.; Ashley, R. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance. Hear. Res. 2010, 261, 22–29. [Google Scholar] [CrossRef]
- Bettoni-Techio, M.; Rauber, A.S.; Koerich, R.D. Perception and production of word-final alveolar stops by Brazilian Portuguese learners of English. In Proceedings of Interspeech 2007, Antwerp, Belgium, 2007; pp. 2293–2296.
- Gottfried, T.L.; Staby, A.M.; Ziemer, C.J. Musical experience and Mandarin tone discrimination and imitation. J. Acoust. Soc. Am. 2004, 115, 2545. [Google Scholar]
- Gottfried, T.L.; Ouyang, G.Y.H. Production of Mandarin tone contrasts by musicians and non-musicians. J. Acoust. Soc. Am. 2005, 118, 2025. [Google Scholar]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef]
- Saffran, J.R.; Aslin, R.N.; Newport, E.L. Statistical learning by 8-month-old infants. Science 1996, 274, 1926–1928. [Google Scholar] [CrossRef]
- Saffran, J.R.; Senghas, A.; Trueswell, J.C. The acquisition of language in children. Proc. Natl. Acad. Sci. USA 2001, 98, 12874–12875. [Google Scholar]
- Saffran, J.R.; Newport, E.L.; Aslin, R.N. Word segmentation: The role of distributional cues. J. Mem. Lang. 1996, 35, 606–621. [Google Scholar] [CrossRef]
- Aslin, R.N.; Saffran, J.R.; Newport, E.L. Computation of conditional probability statistics by 8-month-old infants. Psychol. Sci. 1998, 9, 321–324. [Google Scholar] [CrossRef]
- Kuhl, P.K. Early language acquisition: Cracking the speech code. Nat. Rev. Neurosci. 2004, 207, 203–205. [Google Scholar]
- Gervain, J.; Macagno, F.; Cogoi, S.; Peña, M.; Mehler, J. The neonate brain detects speech structure. Proc Natl. Acad. Sci. USA 2008, 105, 14222–14227. [Google Scholar]
- Teinonen, T.; Fellman, V.; Näätänen, R.; Alku, P.; Huotilainen, M. Statistical language learning in neonates revealed by event-related brain potentials. BMC Neurosci. 2009, 13, 10–21. [Google Scholar]
- Tillmann, B.; McAdams, S. Implicit Learning of musical timbre sequences: statistical regularities confronted with acoustical (dis)similarities. J. Exp. Psychol. Learn. Mem. Cogn. 2004, 30, 1131–1142. [Google Scholar] [CrossRef]
- Saffran, J.R.; Johnson, E.; Aslin, R.N.; Newport, E.L. Statistical learning of tone sequences by human infants and adults. Cognition 1999, 70, 27–52. [Google Scholar] [CrossRef]
- Schön, D.; Boyer, M.; Moreno, S.; Besson, M.; Peretz, I.; Kolinsky, R. Song as an aid for language acquisition. Cognition 2008, 106, 975–983. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV); Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Raven, J.C.; Corporation, P.; Lewis, H.K. Coloured Progressive Matrices: Sets A, AB, B; Oxford Psychologist Press: London, UK, 1962. [Google Scholar]
- Korkman, M.; Kirk, U.; Kemp, S. NEPSY: A Developmental Neuropsychological Assessment; Psychological Corporation: San Antonio, TX, USA, 1998. [Google Scholar]
- Jacquier-Roux, M.; Valdois, S.; Zorman, M.O. Outil de Dépistage des Dyslexies; Cogni-Sciences: Grenoble, France, 2005. [Google Scholar]
- Lahav, A.; Saltzman, E.; Schlaug, G. Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 2007, 27, 308–314. [Google Scholar] [CrossRef]
- Hyde, K.L.; Lerch, J.; Norton, A.; Forgeard, M.; Winner, E.; Evans, A.C.; Schlaug, G. Musical training shapes structural brain development. J. Neurosci. 2009, 29, 3019. [Google Scholar] [CrossRef]
- Pelucchi, B.; Hay, J.F.; Saffran, J.R. Learning in reverse: Eight-month-old infants track backwards transitional probabilities. Cognition 2009, 113, 244–247. [Google Scholar] [CrossRef]
- Patel, A.D. Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol. 2011, 2, 142. [Google Scholar] [CrossRef]
- Degé, F.; Schwarzer, G. The effect of a music program on phonological awareness in preschoolers. Front. Psychol. 2011, 2, 24. [Google Scholar]
- Tervaniemi, M.; Kruck, S.; De Baene, W.; Schröger, E.; Alter, K.; Friederici, A.D. Top-down modulation of auditory processing: Effects of sound context, musical expertise and attentional focus. Eur. J. Neurosci. 2009, 30, 1636–1642. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Papagno, C.; Vallar, G. When long-term learning depends on short-term storage. J. Mem. Lang. 1988, 27, 586–596. [Google Scholar] [CrossRef]
- Papagno, C.; Valentine, T.; Baddeley, A.D. Phonological short-term memory and foreign-language vocabulary learning. J. Mem. Lang. 1991, 30, 331–347. [Google Scholar] [CrossRef]
- Ellis, N.C.; Sinclair, S.G. Working memory in the acquisition of vocabulary and syntax: Putting language in good order. Q. J. Exp. Psychol. 1996, 49, 234–250. [Google Scholar]
- Fortkamp, M.B.M. Working memory capacity and aspects of L2 speech production. Commun. Cogn. 1999, 32, 259–295. [Google Scholar]
- Kormos, J.; Sáfár, A. Phonological short-term membory, working memory and foreign language performance in intensive language learning. Biling. Lang. Cogn. 2008, 11, 261–271. [Google Scholar]
- Chan, A.S.; Ho, Y.C.; Cheung, M.C. Music training improves verbal memory. Nature 1998, 396, 128. [Google Scholar] [CrossRef]
- Ho, Y.; Cheung, M.; Chan, A. Music training improves verbal but not visual memory: Cross sectional and longitudinal explorations in children. Neuropsychology 2003, 17, 439–450. [Google Scholar] [CrossRef]
- Tierney, A.T.; Bergeson-Dana, T.; Pisoni, D.B. Effects of early musical experience on auditory sequence memory. Empir. Musicol. Rev. 2008, 3, 117–186. [Google Scholar]
- Pallesen, K.J.; Brattico, E.; Bailey, C.J.; Korvenoja, A.; Koivisto, J.; Gjedde, A.; Carlson, S. Cognitive control in auditory working memory is enhanced in musicians. PLoS One 2010, 5, e11120. [Google Scholar]
- Parbery-Clark, A.; Skoe, E.; Lam, C.; Kraus, N. Musician enhancement for speech in noise. Ear Hear. 2009, 30, 653–661. [Google Scholar] [CrossRef]
- Parbery-Clark, A.; Strait, D.L.; Anderson, S.; Hittner, E.; Kraus, N. Musical Experience and the Aging Auditory System: Implication for Cognitive Abilities and Hearning Speech in Noise. PLoS One 2011, 6, e18082. [Google Scholar]
- Brandler, S.; Rammsayer, T.H. Differences in mental abilities between musicians and non-musicians. Psychol. Music 2003, 31, 123–138. [Google Scholar] [CrossRef]
- Jakobson, L.S.; Cuddy, L.L.; Kilgour, A.R. Time tagging: A key to musicians’ superior memory. Music Percept. 2003, 20, 307–313. [Google Scholar] [CrossRef]
- Gaab, N.; Schlaug, G. Musicians differ from nonmusicians in brain activation despite performance matching. Ann. N. Y. Acad. Sci. 2003, 999, 385–388. [Google Scholar] [CrossRef]
- Janata, P.; Tillman, B.; Bharucha, J.J. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2002, 2, 121–140. [Google Scholar] [CrossRef]
- Schulze, K.; Gaab, N.; Schlaug, G. Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neurosci. 2009, 10, 106. [Google Scholar] [CrossRef]
- Brown, S.; Martinez, M.J. Activation of premotor vocal areas during musical discrimination. Brain Cogn. 2007, 63, 59–69. [Google Scholar] [CrossRef]
- Brown, S.; Martinez, M.J.; Parsons, L. M. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 2004, 15, 2033–2037. [Google Scholar] [CrossRef]
- Gordon, R.; Schön, D.; Magne, C.; Astésano, C.; Besson, M. Words and melody are intertwined in perception of sung words: EEG and behavioral evidence. PLoS One 2010, 5, 9889. [Google Scholar]
- Hickok, G.; Buchsbaum, B.; Humphries, C.; Muftuler, T. Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. J. Cogn. Neuroscie. 2003, 15, 673–682. [Google Scholar]
- Koelsch, S.; Schulze, K.; Sammler, D.; Fritz, T.; Muller, K.; Gruber, O. Functional architecture of verbal and tonal working memory: An fMRI study. Hum. Brain Mapp. 2009, 30, 859–873. [Google Scholar] [CrossRef]
- Ohnishi, T.; Matsuda, H.; Asada, T.; Aruga, M.; Hirakata, M.; Nishikawa, M.; Katoh, A.; Imabayashi, E. Functional anatomy of musical perception in musicians. Cereb. Cortex 2001, 11, 754–760. [Google Scholar] [CrossRef]
- Schön, D.; Gordon, R.; Campagne, A.; Magne, C.; Astesano, C.; Anton, J.L.; Besson, M. More evidence for similar cerebral networks in language, music and song perception. Neuroimage 2010, 51, 450–461. [Google Scholar] [CrossRef]
- Hickok, G. Computational neuroanatomy of speech production. Nat. Rev. Neurosci. 2012, 13, 135–145. [Google Scholar] [CrossRef]
- Gelfand, J.; Bookheimer, S. Dissociating neural mechanisms of temporal sequencing and processing phonemes. Neuron 2003, 38, 831–842. [Google Scholar] [CrossRef]
- Golestani, N.; Zatorre, R.J. Learning new sounds of speech: Reallocation of neural substrates. NeuroImage 2004, 21, 494–506. [Google Scholar] [CrossRef]
- Seppänen, M.; Hämäläinen, J.; Pesonen, A.K.; Tervaniemi, M. Music Training Enhances Rapid Neural Plasticity of N1 and P2 Source Activation for Unattended Sounds. Front. Hum. Neurosci. 2012, 6, 43. [Google Scholar]
- Seppänen, M.; Pesonen, A.K.; Tervaniemi, M. Music training enhances the rapid plasticity of P3a/P3b event-related brain potentials for unattended and attended target sounds. Attent. Percept. Psychophys. 2012, 74, 600–612. [Google Scholar] [CrossRef]
- François, C.; Tillmann, B.; Schön, D. Cognitive and methodological consideration on the effects of musical expertise on speech segmentation. Ann. N. Y. Acad. Sci. 2012, 1252, 108–115. [Google Scholar]
- Flöel, A.; de Vries, M.; Scholz, J.; Breitenstein, C.; Johansen-Berg, H. White matter integrity in the vicinity of Broca’s area predicts grammar learning success. NeuroImage 2009, 47, 1974–1981. [Google Scholar]
- Conway, C.M.; Pisoni, D.B.; Kronenberger, W.G. The importance of sound for cognitive sequencing: The auditory scaffolding hypothesis. Curr. Dir. Psychol. Sci. 2009, 18, 275–279. [Google Scholar] [CrossRef]
- Musacchia, G.; Strait, D.; Kraus, N. Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hear. Res. 2008, 241, 34–42. [Google Scholar] [CrossRef]
- Wong, P.C.M.; Perrachione, T.K.; Parrish, T.B. Neural characteristics of successful and less successful speech and word learning in adults. Hum. Brain Mapp. 2007, 28, 995–1006. [Google Scholar] [CrossRef]
- Musacchia, G.; Sams, M.; Skoe, E.; Kraus, N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. USA 2007, 104, 15894. [Google Scholar] [CrossRef]
- Parbery-Clark, A.; Tierney, A.; Strait, D.L.; Kraus, N. Musicians have fine-tuned neural distinction of speech syllables. Neuroscience 2012, 219, 111–119. [Google Scholar] [CrossRef]
- Chobert, J.; François, C.; Velay, J.L.; Besson, M. Twelve months of active musical training in 8 to 10 year old children enhances the preattentive processing of syllabic duration and Voice Onset Time. Cereb. Cortex 2012. [Google Scholar] [CrossRef]
- Hornickel, J.; Anderson, S.; Skoe, E.; Yi, H.; Kraus, N. Subcortical representation of speech fine structure related to reading ability. NeuroReport 2012, 23, 6–9. [Google Scholar] [CrossRef]
- Hornickel, J.; Kraus, N. Unstable representation of sound: A biological marker of dyslexia. J. Neurosci. 2013, 33, 3500–3504. [Google Scholar] [CrossRef]
- Chobert, J.; François, C.; Habib, M.; Besson, M. Deficit in the preattentive processing of syllabic duration and VOT in children with dyslexia. Neuropsychologia 2012, 50, 2044–2055. [Google Scholar] [CrossRef]
- Goswami, U. A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 2011, 15, 3–10. [Google Scholar] [CrossRef]
- Bogliotti, C.; Serniclaes, W.; Messaoud-Galusi, S.; Sprenger-Charolles, L. Discrimination of speech sounds by children with dyslexia: Comparisons with chronological age and reading level controls. J. Exp. Child Psychol. 2008, 101, 137–155. [Google Scholar] [CrossRef]
- Serniclaes, W.; Heghe, S.V.; Mousty, P.; Carré, R.; Sprenger-Charolles, L. Allophonic mode of speech perception in dyslexia. J. Exp. Child Psychol. 2004, 87, 336–361. [Google Scholar] [CrossRef]
- Ho, C.S.H.; Fong, K.M. Do Chinese Dyslexic Children Have Difficulties Learning English as a Second Language? J. Psycholinguist. Res. 2005, 34, 603–618. [Google Scholar] [CrossRef]
- Lundberg, I. Second language learning and reading with the additional load of dyslexia. Ann. Dyslexia 2002, 52, 165–187. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chobert, J.; Besson, M. Musical Expertise and Second Language Learning. Brain Sci. 2013, 3, 923-940. https://doi.org/10.3390/brainsci3020923
Chobert J, Besson M. Musical Expertise and Second Language Learning. Brain Sciences. 2013; 3(2):923-940. https://doi.org/10.3390/brainsci3020923
Chicago/Turabian StyleChobert, Julie, and Mireille Besson. 2013. "Musical Expertise and Second Language Learning" Brain Sciences 3, no. 2: 923-940. https://doi.org/10.3390/brainsci3020923
APA StyleChobert, J., & Besson, M. (2013). Musical Expertise and Second Language Learning. Brain Sciences, 3(2), 923-940. https://doi.org/10.3390/brainsci3020923
