A Multi-Task EfficientNetV2S Approach with Hierarchical Hybrid Attention for MRI Enhancing Brain Tumor Segmentation and Classification
Abstract
1. Introduction
- A novel Hierarchical Hybrid Attention (HHA) mechanism that integrates global-context and local-spatial pathways with correlation-driven, per-pixel fusion, enabling joint modeling of channel- and spatial cues.
- A unified multi-task learning framework that simultaneously performs tumor segmentation and classification using a shared encoder, eliminating the need for separate models.
- The model leverages an EfficientNetV2S backbone combined with HHA, replacing standard U-Net weak encoder and simple feature concatenation. This advanced backbone with dynamic resizing handles variations in tumor appearance, size, and location, ensuring robust performance across diverse MRI scans.
- Enhanced Hybrid Attention (EHA) variant that incorporates multi-head self-attention to capture long-range dependencies, further improving contextual modeling.
- Multi-contrast preprocessing strategy that enriches input representation through complementary contrast enhancement, enabling the model to learn complementary features across contrast scales.
- Comprehensive experimental validation demonstrating state-of-the-art performance on a public brain tumor MRI dataset, with superior results in both segmentation (92.25% Dice, 86% Jaccard) and classification (99.53% accuracy).
2. Related Work
3. Methodology
3.1. Framework Overview
3.2. Data Pre-Processing
3.3. Proposed EfficientNetV2S HHA Architecture
3.4. Generalized Hierarchical Hybrid Attention (HHA)
3.4.1. Enhanced Hybrid Attention (EHA)
3.4.2. Correlation-Driven Fusion Gate
3.5. Multi-Scale Feature Fusion
3.5.1. Classification Head
3.5.2. Segmentation Head
3.6. Multi-Task Loss Function
3.7. Hyperparameters Setting
| Algorithm 1. EfficientNetV2S HHA algorithm |
| Algorithm of Multi-Task Brain Tumor Model Construction EfficientNetV2S HHA |
| SEQUENCE Input: MRI slices (images), binary masks, multi-class labels Output: Predicted brain tumor type and segmentation mask BEGIN 1. Define EfficientNetV2S encoder as the backbone. 2. Initialize Hierarchical Hybrid Attention (HHA) module. 4. Preprocess images and masks (resize to 256 × 256, multi-contrast CLAHE, and normalize images to [0,1]). 5. Extract multi-scale feature maps F0, F1, F2, F3, F4 from the encoder. 6. Apply HHA on each feature map to obtain attentive skips S0…S4. 7. Build top-down decoder with progressive fusion: 7.1 U4 = Concat(Up(S4), S3) → ConvBlock 7.2 U3 = Concat(Up(U4), S2) → ConvBlock 7.3 U2 = Concat(Up(U3), S1) → ConvBlock 7.4 U1 = Concat(Up(U2), S0) → ConvBlock 8. Segmentation head: 8.1 SegFeat = Up(U1) → Conv1 × 1 8.2 Mask prediction: M_hat = Sigmoid (SegFeat) 9. Classification head: 9.1 Z = Concat(S3, Resize(S4), Up(U4)) → ConvBlock 9.2 p = GAP → Dense → Dropout → Dense → Softmax 10. Define task losses: 10.1 L_seg = 1 − Dice (M, M_hat) 10.2 L_cls = CrossEntropy(y, p) 10.3 L_total = w_seg · L_seg + w_cls · L_cls (automatic weighted loss) 11. Compile model: 11.1 Optimizer = Adam (learning rate = 1 × 10−4) 11.2 Metrics: Dice, Jaccard (IoU), accuracy, precision, recall, F1 12. Train: 12.1 For each epoch: (a) Forward pass → compute L_total (b) Backpropagate and update backbone, HHA, heads, and AWL weights (c) Validate on hold-out set, apply LR scheduler and early stopping 13. Inference: 13.1 Given a test image I: (M_hat, p) = Model(I) 13.2 Threshold M_hat > τ (e.g., τ = 0.5) to obtain binary mask 13.3 Predicted class: y_hat = argmax(p) END END SEQUENCE |
3.8. Experimental Environment
3.9. Evaluation Metrics
4. Result Analysis and Discussion
4.1. Performance Evaluation of the EfficientnetV2S HHA
4.2. Data Splitting Strategy Analysis
4.3. Ablation Study and Component Analysis
4.4. Comparative Analysis with SOTA Methods
4.4.1. Segmentation Performance Comparison
4.4.2. Classification Performance Comparison
4.4.3. Comparison with the SOTA Architectures
4.4.4. Comparison with the SOTA Attentions
4.4.5. Evaluation of Segmentation and Classification Configurations
4.5. Training Dynamics and Convergence Analysis
4.6. Qualitative Results and Visual Analysis
4.7. Feature Learning Analysis
Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, C.S.; Karunakara, K. A comprehensive review on brain tumor segmentation and classification of MRI images. Multimed. Tools Appl. 2021, 80, 17611–17643. [Google Scholar] [CrossRef]
- Gu, X.; Shen, Z.; Xue, J.; Fan, Y.; Ni, T. Brain Tumor MR Image Classification Using Convolutional Dictionary Learning with Local Constraint. Front. Neurosci. 2021, 15, 679847. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Haldorai, A.; Yasmin, M.; Nayak, R.S. Brain tumor detection and classification using machine learning: A comprehensive survey. Complex Intell. Syst. 2022, 8, 3161–3183. [Google Scholar] [CrossRef]
- Siegel Mph, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, M.S.I.; Babu, H.M.H. BreastMultiNet: A multi-scale feature fusion method using deep neural network to detect breast cancer. Array 2022, 16, 100256. [Google Scholar] [CrossRef]
- Ogasawara, C.; Philbrick, B.D.; Adamson, D.C. Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines 2021, 9, 319. [Google Scholar] [CrossRef]
- Daly, A.F.; Beckers, A. The Epidemiology of Pituitary Adenomas. Endocrinol. Metab. Clin. N. Am. 2020, 49, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Korfiatis, P.; Erickson, B. Deep learning can see the unseeable: Predicting molecular markers from MRI of brain gliomas. Clin. Radiol. 2019, 74, 367–373. [Google Scholar] [CrossRef]
- Taheri, S.; Ong, S.H.; Chong, V.F.H. Level-set segmentation of brain tumors using a threshold-based speed function. Image Vis. Comput. 2010, 28, 26–37. [Google Scholar] [CrossRef]
- Islam, M.K.; Ali, M.S.; Miah, M.S.; Rahman, M.M.; Alam, M.S.; Hossain, M.A. Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm. Mach. Learn. Appl. 2021, 5, 100044. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Lecture Notes in Computer Science; (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Z.; Dong, J.; Hou, Y.; Liu, B. Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation. IEEE Access 2020, 8, 58533–58545. [Google Scholar] [CrossRef]
- Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 1. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, K. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis. Comput. Math. Methods Med. 2016, 2016, 8356294. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Rabby, S.F.; Arafat, M.A.; Hasan, T. BT-Net: An end-to-end multi-task architecture for brain tumor classification, segmentation, and localization from MRI images. Array 2024, 22, 100346. [Google Scholar] [CrossRef]
- Kordnoori, S.; Sabeti, M.; Shakoor, M.H.; Moradi, E. Deep multi-task learning structure for segmentation and classification of supratentorial brain tumors in MR images. Interdiscip. Neurosurg. 2024, 36, 101931. [Google Scholar] [CrossRef]
- Hussain, S.S.; Wani, N.A.; Kaur, J.; Ahmad, N.; Ahmad, S. Next-Generation Automation in Neuro-Oncology: Advanced Neural Networks for MRI-Based Brain Tumor Segmentation and Classification. IEEE Access 2025, 13, 41141–41158. [Google Scholar] [CrossRef]
- Preetha, R.; Priyadarsini, M.J.P.; Nisha, J.S. Brain tumor segmentation using multi-scale attention U-Net with EfficientNetB4 encoder for enhanced MRI analysis. Sci. Rep. 2025, 15, 9914. [Google Scholar] [CrossRef]
- Akter, A.; Nosheen, N.; Ahmed, S.; Hossain, M.; Abu Yousuf, M.; Almoyad, M.A.A.; Hasan, K.F.; Moni, M.A. Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor. Expert. Syst. Appl. 2024, 238, 122347. [Google Scholar] [CrossRef]
- Bradski, G. The opencv library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. Available online: https://docs.opencv.org/ (accessed on 22 December 2025).
- Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. 2021. Available online: http://arxiv.org/abs/2104.00298 (accessed on 1 October 2025).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Greg, S.; Corrado, G.S.; Davis, A.; Dean, J.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. TensorFlow Documentation: EfficientNetV2. 2015. Available online: https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet_v2 (accessed on 22 December 2025).
- El-Shafai, W.; Mahmoud, A.A.; El-Rabaie, E.-S.M.; Taha, T.E.; Zahran, O.F.; El-Fishawy, A.S.; Soliman, N.F.; Alhussan, A.A.; El-Samie, F.E.A. Hybrid Segmentation Approach for Different Medical Image Modalities. Comput. Mater. Contin. 2022, 73, 3455–3472. [Google Scholar] [CrossRef]
- Sobhaninia, Z.; Rezaei, S.; Karimi, N.; Emami, A.; Samavi, S. Brain tumor segmentation by cascaded deep neural networks using multiple image scales. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering, ICEE 2020, Tabriz, Iran, 4–6 August 2020. [Google Scholar] [CrossRef]
- Ni, Z.L.; Bian, G.-B.; Zhou, X.-H.; Hou, Z.-G.; Xie, X.-L.; Wang, C.; Zhou, Y.-J.; Li, R.-Q.; Li, Z. RAUNet: Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments; Lecture Notes in Computer Science; (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2019; Volume 11954, pp. 139–149. [Google Scholar] [CrossRef]
- Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; González-Ortega, D.; Antón-Rodríguez, M. A Deep Learning Approach for Brain Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network. Healthcare 2021, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Mayala, S.; Herdlevær, I.; Haugsøen, J.B.; Anandan, S.; Gavasso, S.; Brun, M. Brain Tumor Segmentation Based on Minimum Spanning Tree. Front. Signal Process. 2022, 2, 816186. [Google Scholar] [CrossRef]
- Razzaghi, P.; Abbasi, K.; Shirazi, M.; Rashidi, S. Multimodal brain tumor detection using multimodal deep transfer learning. Appl. Soft Comput. 2022, 129, 109631. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Parida, P.; Muralibabu, K.; Dash, S. Efficient simultaneous segmentation and classification of brain tumors from MRI scans using deep learning. Biocybern. Biomed. Eng. 2023, 43, 616–633. [Google Scholar] [CrossRef]
- Ravinder, M.; Saluja, G.; Allabun, S.; Alqahtani, M.S.; Abbas, M.; Othman, M.; Soufiene, B.O. Enhanced brain tumor classification using graph convolutional neural network architecture. Sci. Rep. 2023, 13, 14938. [Google Scholar] [CrossRef]
- Cardoso, F.; Vellasco, M.; Figueiredo, K. Comparative Study Between Q-NAS and Traditional CNNs for Brain Tumor Classification. Commun. Comput. Inf. Sci. 2024, 2141, 93–105. [Google Scholar] [CrossRef]
- Ardan, I.S.; Indraswari, R. Design of Brain Tumor Detection System on MRI Image Using CNN. In Proceedings of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS 2024), Manama, Bahrain, 28–29 January 2024; pp. 1388–1393. [Google Scholar] [CrossRef]
- Ullah, M.S.; Khan, M.A.; Albarakati, H.M.; Damaševičius, R.; Alsenan, S. Multimodal brain tumor segmentation and classification from MRI scans based on optimized DeepLabV3+ and interpreted networks information fusion empowered with explainable AI. Comput. Biol. Med. 2024, 182, 109183. [Google Scholar] [CrossRef] [PubMed]
- Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M. Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation. arXiv 2018, arXiv:1802.06955. [Google Scholar]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. UNET 3+: A Full-Scale Connected UNET for Medical Image Segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. In Proceedings of the Computer Vision—ECCV 2022 Workshops, Tel Aviv, Israel, 23–27 October 2022; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 13803, pp. 205–218. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. 2017. Available online: https://github.com/ (accessed on 25 October 2025).
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]















| Reference | Key Contribution | Identified Limitations |
|---|---|---|
| Taheri et al. [9] | Level set segmentation with a threshold-driven speed function. | Sensitive to noise and intensity inhomogeneity; struggles with low-contrast and diffuse tumor boundaries. |
| Islam et al. [10] | Combined superpixel generation with K-means clustering for tumor detection. | Relies on handcrafted features; performance limited by the clustering algorithm’s assumptions on tumor shape and texture. |
| Ronneberger et al. [11] | Introduced the U-Net architecture with symmetric encoder–decoder and skip connections for biomedical image segmentation. | Skip connections transfer encoder features directly, propagating noise and blurring boundaries; encoder capacity is often limited. |
| Oktay et al. [12] | Proposed Attention U-Net, using attention gates to selectively weigh features passed via skip connections. | Attention is applied sequentially (channel then spatial); does not explicitly model interactions between channel and spatial cues. |
| Zhang et al. [13] | Integrated attention gates into a Residual U-Net for brain tumor segmentation in MRI. | Inherits the axis-separable attention design; focuses solely on segmentation without joint classification. |
| Alom et al. [14] | Developed the Recurrent Residual U-Net (R2U-Net) to refine feature extraction through recurrent layers. | Increased computational complexity; may suffer from convergence issues or overfitting on smaller medical datasets. |
| Diakogiannis et al. [15] | Designed ResUNet-a, a deep learning framework with advanced residuals for semantic segmentation. | Originally tailored for remote sensing; may not fully capture the specific textures and contextual priors of brain tumors. |
| Zhao and Jia [16] | Employed a multi-scale CNN to handle the variable size of brain tumors. | A single-task model; lacks a mechanism for adaptive fusion of features from different scales. |
| Kamnitsas et al. [17] | Proposed DeepMedic, a dual-pathway 3D CNN utilizing multi-scale contextual information. | High computational and memory demands due to 3D processing; not designed for joint classification. |
| Rabby et al. [18] | Introduced BT-Net, a multi-task model based on VGG16 for segmentation, classification, and localization. | Uses a relatively weak VGG16 backbone; employs a simple attention mechanism without cross-feature interaction. |
| Kordnoori et al. [19] | Presented a deep multi-task model with a shared encoder for segmentation and classification. | Utilizes a standard CNN encoder without advanced attention; feature fusion is simplistic. |
| Hussain et al. [20] | Developed a Residual Attention U-Net for joint segmentation and classification. | Attention mechanism remains sequential and independent across channels and spatial dimensions. |
| Preetha et al. [21] | Combined a multi-scale Attention U-Net with an EfficientNetB4 encoder for brain tumor segmentation. | Focuses on a single task (segmentation); attention design does not jointly model global context and local spatial detail. |
| Parameter Type | Value |
|---|---|
| Input image size | 256 × 256 × 3 |
| Batch size | 16 |
| Epoch | 150 |
| Optimizer | Adam |
| Learning rate (LR) | 0.0001 |
| Loss function | Multi-task: Dice Loss (segmentation) + Sparse Categorical Cross-Entropy (classification), weighted by AutomaticWeightedLoss |
| Dropout rates | 0.3 (conv layers), 0.5 (dense layers) |
| Attention heads | 4 (EnhancedHybridAttention) |
| Reduction ratio | 8 (HybridDualAttention) |
| Model | Dice (%) | Jaccard (%) | Accuracy (%) | Precision (%) | Recall (%) | F1_Score (%) |
|---|---|---|---|---|---|---|
| EfficientnetV2S HHA | 92.25 | 85.77 | 99.53 | 99.53 | 99.48 | 99.53 |
| Precision | Recall | F1_Score | Sensitivity | Specificity | |
|---|---|---|---|---|---|
| NO_TUMOR | 1.00 | 1.00 | 1.00 | 1.00 | 0.9981 |
| GLIOMA_TUMOR | 0.98 | 0.99 | 0.99 | 0.9923 | 0.9923 |
| MENINGIOMA_TUMOR | 0.99 | 0.99 | 0.99 | 0.98 | 0.9800 |
| PITUITARY_TUMOR | 1.00 | 0.99 | 1.00 | 1.00 | 0.9954 |
| Ratio of Splitting | Dice (%) | Jaccard (%) | Accuracy (%) | Precision (%) | Recall (%) | F1_Score (%) |
|---|---|---|---|---|---|---|
| 80-10-10 | 91.99 | 85.36 | 98.82 | 98.84 | 99.03 | 98.82 |
| 70-10-20 | 92.25 | 85.77 | 99.53 | 99.53 | 99.48 | 99.53 |
| 70-15-15 | 92.00 | 85.46 | 99.21 | 99.22 | 98.89 | 99.21 |
| 60-20-20 | 91.29 | 84.17 | 98.82 | 98.82 | 98.59 | 98.82 |
| Model | Dice (%) | Jaccard (%) | Accuracy (%) | Precision (%) | Recall (%) | F1_Score (%) | Total Parameter | FLOPs (G) | Total Training Time |
|---|---|---|---|---|---|---|---|---|---|
| Attention U-Net | 89.91 | 83.33 | 98.41 | 98.41 | 98.30 | 98.41 | 8,282,789 | 31.6 | 2 h 20 m 12 s |
| U-Net base model | 89.63 | 82.67 | 98.58 | 98.61 | 98.47 | 98.58 | 28,503,781 | 108.7 | 3 h 2 m 48 s |
| EfficientNetV2S-base-model | 90.13 | 83.56 | 96.35 | 96.40 | 96.32 | 96.36 | 39,443,858 | 150.5 | 3 h 47 m 47 s |
| EfficientNetV2S with EHA only | 91.92 | 84.52 | 99.29 | 99.30 | 99.05 | 99.29 | 40,516,134 | 154.6 | 4 h 29 m 45 s |
| EfficientNetV2S HHA | 92.25 | 85.77 | 99.53 | 99.53 | 99.48 | 99.53 | 55,247,068 | 210.8 | 4 h 8 m 29 s |
| Author (Year) | Accuracy (%) | Dice (%) | Jaccard (%) |
|---|---|---|---|
| Ronneberger et al. (2015) [11] | 88.03 | 83.45 | 84.2 |
| Oktay et al. (2018) [12] | 91.80 | 86.12 | 85.50 |
| ZhenLiang et al. (2019) [28] | 93.35 | 91.10 | 89.30 |
| El-Shafai et al. (2022) [26] | 93.47 | 35.18 | 21.34 |
| Sobhaninia et al. (2020) [27] | - | 80.03 | - |
| Francisco et al. (2021) [29] | - | 82.80 | - |
| Mayala et al. (2022) [30] | - | 84.69 | 74.43 |
| Razzaghi et al. (2022) [31] | - | 86.02 | - |
| Sahoo et al. (2023) [32] | 99.60 | 90.20 | - |
| The proposed EfficientNetV2S HHA | 99.70 | 92.25 | 85.77 |
| Author (Year) | Accuracy (%) |
|---|---|
| Ravinder et al. (2023) [33] | 95.01 |
| Cardoso et al. (2024) [34] | 92.00 |
| Ardan et al. (2024) [35] | 95.00 |
| Ullah et al. (2024) [36] | 95.42 |
| Syed et al. (2025) [20] | 99.40 |
| The proposed EfficientNetV2S HHA | 99.53 |
| Model Configuration | Dice (%) | Jaccard (%) | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
|---|---|---|---|---|---|---|
| U-Net [11] | 89.63 | 82.67 | 98.58 | 98.61 | 98.47 | 98.58 |
| Attention U-Net [12] | 89.91 | 83.33 | 98.41 | 98.41 | 98.30 | 98.41 |
| R2U-Net [37] | 77.97 | 64.78 | 96.46 | 96.46 | 95.78 | 96.45 |
| U-Net3+ [38] | 90.13 | 82.40 | 98.35 | 98.34 | 98.02 | 98.34 |
| ResUnet-a [15] | 88.21 | 80.76 | 96.81 | 97.00 | 95.07 | 96.75 |
| Swin-Unet [39] | 87.32 | 79.03 | 97.17 | 97.19 | 96.74 | 97.17 |
| TransUnet [40] | 90.25 | 83.05 | 98.88 | 98.90 | 98.45 | 98.87 |
| EfficientNetV2S HHA (the proposed model) | 92.25 | 85.77 | 99.53 | 99.53 | 99.48 | 99.53 |
| Dice (%) | Jaccard (%) | Accuracy (%) | |
|---|---|---|---|
| Seed = 5 | 91.66 | 84.87 | 99.29 |
| Seed = 40 | 91.29 | 84.25 | 99.20 |
| Seed = 42 | 92.03 | 85.35 | 99.48 |
| Seed = 32 | 91.21 | 84.11 | 99.43 |
| Model Configuration | Dice (%) | Jaccard (%) | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
|---|---|---|---|---|---|---|
| EfficientNetV2S + ECA [41] | 89.41 | 83.12 | 97.06 | 97.18 | 96.93 | 97.05 |
| EfficientNetV2S + DSA [42] | 89.98 | 83.94 | 97.44 | 97.53 | 97.42 | 97.48 |
| EfficientNetV2S + CBAM [43] | 90.97 | 84.42 | 98.41 | 98.41 | 98.23 | 98.41 |
| EfficientNetV2S + HHA (the proposed model) | 92.25 | 85.77 | 99.53 | 99.53 | 99.48 | 99.53 |
| Model Configuration | Dice (%) | Jaccard (%) | Accuracy (%) | Precision (%) | Recall (%) | F1_Score (%) |
|---|---|---|---|---|---|---|
| EfficientNetV2S HHA for Segmentation only | 91.13 | 86.04 | - | - | - | - |
| EfficientNetV2S HHA for Classification only | - | - | 98.02 | 98.24 | 98.02 | 98.23 |
| EfficientNetV2S HHA | 92.25 | 85.77 | 99.53 | 99.53 | 99.48 | 99.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Benzorgat, N.; Xia, K.; Benzorgat, M.N.E.; Algabri, M.N.A. A Multi-Task EfficientNetV2S Approach with Hierarchical Hybrid Attention for MRI Enhancing Brain Tumor Segmentation and Classification. Brain Sci. 2026, 16, 37. https://doi.org/10.3390/brainsci16010037
Benzorgat N, Xia K, Benzorgat MNE, Algabri MNA. A Multi-Task EfficientNetV2S Approach with Hierarchical Hybrid Attention for MRI Enhancing Brain Tumor Segmentation and Classification. Brain Sciences. 2026; 16(1):37. https://doi.org/10.3390/brainsci16010037
Chicago/Turabian StyleBenzorgat, Nawal, Kewen Xia, Mustapha Noure Eddine Benzorgat, and Malek Nasser Ali Algabri. 2026. "A Multi-Task EfficientNetV2S Approach with Hierarchical Hybrid Attention for MRI Enhancing Brain Tumor Segmentation and Classification" Brain Sciences 16, no. 1: 37. https://doi.org/10.3390/brainsci16010037
APA StyleBenzorgat, N., Xia, K., Benzorgat, M. N. E., & Algabri, M. N. A. (2026). A Multi-Task EfficientNetV2S Approach with Hierarchical Hybrid Attention for MRI Enhancing Brain Tumor Segmentation and Classification. Brain Sciences, 16(1), 37. https://doi.org/10.3390/brainsci16010037

