AI-Driven Information for Relatives of Patients with Malignant Middle Cerebral Artery Infarction: A Preliminary Validation Study Using GPT-4o
Abstract
:1. Introduction
2. Methods
2.1. Questions and Setting
2.2. Quality Analysis
2.3. Statistical Methods
3. Results
4. Discussion
5. Limitations
6. Perspectives
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Artificial Intelligence (AI) | Computer systems designed to simulate human intelligence, often used in analyzing data, automating tasks, or assisting in medical education. |
ChatGPT/GPT-4o | Generative pre-trained transformer, a type of large language model by OpenAI, used here to answer medical questions for relatives of critically ill patients. |
Decompressive Hemicraniectomy (DHC) | A neurosurgical procedure where part of the skull is removed to relieve intracranial pressure, commonly used for severe brain swelling after a stroke. |
Flesch Reading Ease (FRE) | A readability test measuring text complexity, with lower scores indicating harder-to-read text. FRE is used to assess if medical explanations are accessible to laypersons. |
Flesch–Kincaid Grade Level (FKG) | A readability index indicating the grade level required to understand a text, used to evaluate the accessibility of medical information provided by AI. |
Gunning Fog Index (GFI) | A readability test for English text that estimates the years of formal education needed to understand the text at first read. |
Intraclass Correlation Coefficient (ICC) | A statistical measure used to evaluate the reliability of raters or measurements, here applied to assess consistency among evaluators scoring AI-generated medical information. |
Large Language Model (LLM) | A type of AI model trained on vast amounts of text data to generate human-like responses. Examples include ChatGPT and GPT-4o. |
Malignant Middle Cerebral Artery Infarction (MMCAI) | A severe type of ischemic stroke involving brain swelling that may require surgery, like DHC, due to increased intracranial pressure. |
Quality Analysis of Medical Artificial Intelligence (QAMAI) | A tool for evaluating the quality of health information provided by AI, including factors like accuracy, clarity, and usefulness. |
Retrieval-Augmented Generation (RAG) | A technique in AI that retrieves information from external sources to improve the accuracy of generated responses. |
Statistical Package for the Social Sciences (SPSS) | A software suite used for statistical analysis, here employed to analyze the reliability and quality of AI responses. |
Abbreviations
DHC | Decompressive hemicraniectomy |
FRE | Flesch Reading-Ease |
FKG | Flesch-Kincaid Grade |
GFI | Gunning Fog Index |
GPT | Generative pre-trained transformer |
ICC | Intraclass correlation coefficient |
LLM | Large language model |
mDISCERN | Modified DISCERN |
MMCAI | Malignant middle cerebral artery infarction |
QAMAI | Quality Analysis of Medical Artificial Intelligence |
RAG | Retrieval-augmented generation |
SPSS | Statistical Package for the Social Sciences |
References
- Wei, Q.; Yao, Z.; Cui, Y.; Wei, B.; Jin, Z.; Xu, X. Evaluation of ChatGPT-generated medical responses: A systematic review and meta-analysis. J. Biomed. Inform. 2024, 151, 104620. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wan, Z.; Ni, C.; Song, Q.; Li, Y.; Clayton, E.W.; Malin, B.A.; Yin, Z. A Systematic Review of ChatGPT and Other Conversational Large Language Models in Healthcare. medRxiv 2024, 2024, 24306390. [Google Scholar] [CrossRef]
- Aguirre, A.; Hilsabeck, R.; Smith, T.; Xie, B.; He, D.; Wang, Z.; Zou, N. Assessing the Quality of ChatGPT Responses to Dementia Caregivers’ Questions: Qualitative Analysis. JMIR Aging 2024, 7, e53019. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Dong, X.; Hong, S.; Hu, Y.; Ping Liang, P.; Li, L.; Zou, B.; Wu, X.; Wang, D.; et al. Evaluating the performance of the language model ChatGPT in responding to common questions of people with epilepsy. Epilepsy Behav. EB 2024, 151, 109645. [Google Scholar] [CrossRef]
- Hillmann, H.A.K.; Angelini, E.; Karfoul, N.; Feickert, S.; Mueller-Leisse, J.; Duncker, D. Accuracy and comprehensibility of chat-based artificial intelligence for patient information on atrial fibrillation and cardiac implantable electronic devices. EP Eur. 2023, 26, euad369. [Google Scholar] [CrossRef]
- Dimitriadis, F.; Alkagiet, S.; Tsigkriki, L.; Kleitsioti, P.; Sidiropoulos, G.; Efstratiou, D.; Askalidi, T.; Tsaousidis, A.; Siarkos, M.; Giannakopoulou, P.; et al. ChatGPT and Patients With Heart Failure. Angiology 2024, 7, 33197241238403. [Google Scholar] [CrossRef]
- Tunçer, G.; Güçlü, K.G. How Reliable is ChatGPT as a Novel Consultant in Infectious Diseases and Clinical Microbiology? Infect Dis. Clin. Microbiol. 2024, 6, 55–59. [Google Scholar] [CrossRef]
- Koh, M.C.Y.; Ngiam, J.N.; Tambyah, P.A.; Archuleta, S. ChatGPT as a tool to improve access to knowledge on sexually transmitted infections. Sex. Transm. Infect. 2024, 100, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Janopaul-Naylor, J.R.; Koo, A.; Qian, D.C.; McCall, N.S.; Liu, Y.; Patel, S.A. Physician Assessment of ChatGPT and Bing Answers to American Cancer Society’s Questions to Ask About Your Cancer. Am. J. Clin. Oncol. 2024, 47, 17–21. [Google Scholar] [CrossRef]
- Patel, J.M.; Hermann, C.E.; Growdon, W.B.; Aviki, E.; Stasenko, M. ChatGPT accurately performs genetic counseling for gynecologic cancers. Gynecol. Oncol. 2024, 183, 115–119. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.W.; Lee, Y.S.; Tae, J.H.; Choi, S.Y.; Chang, I.H.; Kim, J.H. Availability of ChatGPT to provide medical information for patients with kidney cancer. Sci. Rep. 2024, 14, 1542. [Google Scholar] [CrossRef] [PubMed]
- Gencer, A. Readability analysis of ChatGPT’s responses on lung cancer. Sci. Rep. 2024, 14, 17234. [Google Scholar] [CrossRef] [PubMed]
- Xue, E.; Bracken-Clarke, D.; Iannantuono, G.M.; Choo-Wosoba, H.; Gulley, J.L.; Floudas, C.S. Utility of Large Language Models for Health Care Professionals and Patients in Navigating Hematopoietic Stem Cell Transplantation: Comparison of the Performance of ChatGPT-3.5, ChatGPT-4, and Bard. J. Med. Internet Res. 2024, 26, e54758. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.; Polverini, D.; Lombardi, R.; Pennisi, G.; Ravaioli, F.; Armandi, A.; Buzzetti, E.; Dalbeni, A.; Liguori, A.; Mantovani, A.; et al. Evaluation of ChatGPT as a Counselling Tool for Italian-Speaking MASLD Patients: Assessment of Accuracy, Completeness and Comprehensibility. J. Pers. Med. 2024, 14, 568. [Google Scholar] [CrossRef]
- Giuffrè, M.; Kresevic, S.; You, K.; Dupont, J.; Huebner, J.; Grimshaw, A.A.; Shung, D.L. Systematic review: The use of large language models as medical chatbots in digestive diseases. Aliment. Pharmacol. Ther. 2024, 60, 144–166. [Google Scholar] [CrossRef]
- Razdan, S.; Siegal, A.R.; Brewer, Y.; Sljivich, M.; Valenzuela, R.J. Assessing ChatGPT’s ability to answer questions pertaining to erectile dysfunction: Can our patients trust it? Int. J. Impot. Res. 2023, 36, 734–740. [Google Scholar] [CrossRef]
- Davis, R.; Eppler, M.; Ayo-Ajibola, O.; Loh-Doyle, J.C.; Nabhani, J.; Samplaski, M.; Gill, I.; Cacciamani, G.E. Evaluating the Effectiveness of Artificial Intelligence-powered Large Language Models Application in Disseminating Appropriate and Readable Health Information in Urology. J. Urol. 2023, 210, 688–694. [Google Scholar] [CrossRef]
- Ozgor, B.Y.; Simavi, M.A. Accuracy and reproducibility of ChatGPT’s free version answers about endometriosis. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2024, 165, 691–695. [Google Scholar] [CrossRef]
- Peled, T.; Sela, H.Y.; Weiss, A.; Grisaru-Granovsky, S.; Agrawal, S.; Rottenstreich, M. Evaluating the validity of ChatGPT responses on common obstetric issues: Potential clinical applications and implications. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2024, 166, 1127–1133. [Google Scholar] [CrossRef]
- Wang, L.; Mao, Y.; Wang, L.; Sun, Y.; Song, J.; Zhang, Y. Suitability of GPT-4o as an Evaluator of Cardiopulmonary Resuscitation Skills Examinations. Resuscitation 2024, 204, 110404. [Google Scholar] [CrossRef]
- Gajjar, A.A.; Kumar, R.P.; Paliwoda, E.D.; Kuo, C.C.; Adida, S.; Legarreta, A.D.; Deng, H.; Anand, S.K.; Hamilton, D.K.; Buell, T.J.; et al. Usefulness and Accuracy of Artificial Intelligence Chatbot Responses to Patient Questions for Neurosurgical Procedures. Neurosurgery 2024. [Google Scholar] [CrossRef] [PubMed]
- Khaldi, A.; Machayekhi, S.; Salvagno, M.; Maniaci, A.; Vaira, L.A.; La Via, L.; Taccone, F.S.; Lechien, J.R. Accuracy of ChatGPT responses on tracheotomy for patient education. Eur. Arch. Otorhinolaryngol. 2024, 281, 6167–6172. [Google Scholar] [CrossRef] [PubMed]
- Mnajjed, L.; Patel, R.J. Assessment of ChatGPT generated educational material for head and neck surgery counseling. Am. J. Otolaryngol. 2024, 45, 104410. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Pang, Y.; Liu, L.S. Online Health Information Seeking Behavior: A Systematic Review. Healthcare 2021, 9, 1740. [Google Scholar] [CrossRef]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Int. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef]
- Das, S.; Mitchell, P.; Ross, N.; Whitfield, P.C. Decompressive Hemicraniectomy in the Treatment of Malignant Middle Cerebral Artery Infarction: A Meta-Analysis. World Neurosurg. 2019, 123, 8–16. [Google Scholar] [CrossRef]
- Vaira, L.A.; Lechien, J.R.; Abbate, V.; Allevi, F.; Audino, G.; Beltramini, G.A.; Bergonzani, M.; Boscolo-Rizzo, P.; Califano, G.; Cammaroto, G.; et al. Validation of the Quality Analysis of Medical Artificial Intelligence (QAMAI) tool: A new tool to assess the quality of health information provided by AI platforms. Eur. Arch. Otorhinolaryngol. 2024, 281, 6123–6131. [Google Scholar] [CrossRef]
- Charnock, D.; Shepperd, S.; Needham, G.; Gann, R. Discern: An instrument for judging the quality of written consumer health information on treatment choices. J. Epidemiol. Community Health. 1999, 53, 105–111. [Google Scholar] [CrossRef]
- Shedlosky-Shoemaker, R.; Sturm, A.C.; Saleem, M.; Kelly, K.M. Tools for Assessing Readability and Quality of Health-Related Web Sites. J. Genet Couns. 2009, 18, 49–59. [Google Scholar] [CrossRef]
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke Off J. Int. Stroke Soc. 2022, 17, 18–29. [Google Scholar] [CrossRef]
- Reinink, H.; Jüttler, E.; Hacke, W.; Hofmeijer, J.; Vicaut, E.; Vahedi, K.; Slezins, J.; Su, Y.; Fan, L.; Kumral, E.; et al. Surgical Decompression for Space-Occupying Hemispheric Infarction: A Systematic Review and Individual Patient Meta-analysis of Randomized Clinical Trials. JAMA Neurol. 2021, 78, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Göttsche, J.; Flottmann, F.; Jank, L.; Thomalla, G.; Rimmele, D.L.; Czorlich, P.; Westphal, M.; Regelsberger, J. Decompressive craniectomy in malignant MCA infarction in times of mechanical thrombectomy. Acta Neurochir. 2020, 162, 3147–3152. [Google Scholar] [CrossRef] [PubMed]
- Hacke, W.; Schwab, S.; Horn, M.; Spranger, M.; De Georgia, M.; von Kummer, R. “Malignant” middle cerebral artery territory infarction: Clinical course and prognostic signs. Arch. Neurol. 1996, 53, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, P.; Timofeev, I.; Kirkpatrick, P. Surgery for brain edema. Neurosurg. Focus. 2007, 22, E14. [Google Scholar] [CrossRef]
- Goodman, R.S.; Patrinely, J.R.; Stone, C.A.; Zimmerman, E.; Donald, R.R.; Chang, S.S.; Berkowitz, S.T.; Finn, A.P.; Jahangir, E.; Scoville, E.A.; et al. Accuracy and Reliability of Chatbot Responses to Physician Questions. JAMA Netw. Open. 2023, 6, e2336483. [Google Scholar] [CrossRef]
- Liu, M.; Okuhara, T.; Chang, X.; Shirabe, R.; Nishiie, Y.; Okada, H.; Kiuchi, T. Performance of ChatGPT Across Different Versions in Medical Licensing Examinations Worldwide: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2024, 26, e60807. [Google Scholar] [CrossRef]
- Cabral, S.; Restrepo, D.; Kanjee, Z.; Wilson, P.; Crowe, B.; Abdulnour, R.-E.; Rodman, A. Clinical Reasoning of a Generative Artificial Intelligence Model Compared with Physicians. JAMA Intern. Med. 2024, 184, 581–583. [Google Scholar] [CrossRef]
- Barrit, S.; Torcida, N.; Mazeraud, A.; Boulogne, S.; Benoit, J.; Carette, T.; Carron, T.; Delsaut, B.; Diab, E.; Kermorvant, H.; et al. Specialized Large Language Model Outperforms Neurologists at Complex Diagnosis in Blinded Case-Based Evaluation. Brain Sci. 2025, 15, 347. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.; Xia, F.; Chi, E.; Le, Q.; Zhou, D. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv 2022, arXiv:2201.11903. Available online: https://arxiv.org/abs/2201.11903v6 (accessed on 12 September 2024).
- Learning to Reason with LLMS. OpenAI. Available online: https://openai.com/index/learning-to-reason-with-llms (accessed on 12 September 2024).
- Hill-Yardin, E.L.; Hutchinson, M.R.; Laycock, R.; Spencer, S.J. A Chat(GPT) about the future of scientific publishing. Brain Behav. Immun. 2023, 110, 152–154. [Google Scholar] [CrossRef]
- Sevgi, U.T.; Erol, G.; Doğruel, Y.; Sönmez, O.F.; Tubbs, R.S.; Güngor, A. The role of an open artificial intelligence platform in modern neurosurgical education: A preliminary study. Neurosurg. Rev. 2023, 46, 86. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.W.; Ertl-Wagner, B.B. Accuracy of Information and References Using ChatGPT-3 for Retrieval of Clinical Radiological Information. Can. Assoc. Radiol. J. 2024, 75, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Begley, S.L.; Chen, A.; Rob, M.; Pelcher, I.; Ward, M.; Schulder, M. Exploring the Intersection of Artificial Intelligence and Neurosurgery: Let us be Cautious With ChatGPT. Neurosurgery 2023, 93, 1366–1373. [Google Scholar] [CrossRef]
- Vaira, L.A.; Lechien, J.R.; Abbate, V.; Allevi, F.; Audino, G.; Beltramini, G.A.; Bergonzani, M.; Bolzoni, A.; Committeri, U.; Crimi, S.; et al. Accuracy of ChatGPT-Generated Information on Head and Neck and Oromaxillofacial Surgery: A Multicenter Collaborative Analysis. Otolaryngol.-Head Neck Surg. 2024, 170, 1492–1503. [Google Scholar] [CrossRef]
- Frosolini, A.; Gennaro, P.; Cascino, F.; Gabriele, G. In Reference to “Role of Chat GPT in Public Health”, to Highlight the AI’s Incorrect Reference Generation. Ann. Biomed. Eng. 2023, 51, 2120–2122. [Google Scholar] [CrossRef]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.-T.; Rocktäschel, T.; et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv 2021, arXiv:2005.11401. [Google Scholar] [CrossRef]
- Momenaei, B.; Wakabayashi, T.; Shahlaee, A.; Durrani, A.F.; Pandit, S.A.; Wang, K.; Mansour, H.A.; Abishek, R.M.; Xu, D.; Sridhar, J.; et al. Appropriateness and Readability of ChatGPT-4-Generated Responses for Surgical Treatment of Retinal Diseases. Ophthalmol. Retina. 2023, 7, 862–868. [Google Scholar] [CrossRef]
- Onder, C.E.; Koc, G.; Gokbulut, P.; Taskaldiran, I.; Kuskonmaz, S.M. Evaluation of the reliability and readability of ChatGPT-4 responses regarding hypothyroidism during pregnancy. Sci. Rep. 2024, 14, 243. [Google Scholar] [CrossRef]
- Eng, E.; Mowers, C.; Sachdev, D.; Yerke-Hansen, P.; Jackson, G.R.; Knapik, D.M.; Sabesan, V.J. Chat Generative Pre-Trained Transformer (ChatGPT)—3.5 Responses Require Advanced Readability for the General Population and May Not Effectively Supplement Patient-Related Information Provided by the Treating Surgeon Regarding Common Questions About Rotator Cuff Repair. Arthroscopy 2025, 41, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Temel, M.H.; Erden, Y.; Bağcıer, F. Information Quality and Readability: ChatGPT’s Responses to the Most Common Questions About Spinal Cord Injury. World Neurosurg. 2024, 181, e1138–e1144. [Google Scholar] [CrossRef]
- Clear & Simple. National Institutes of Health (NIH). 8 May 2015. Available online: https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/clear-communication/clear-simple (accessed on 3 October 2024).
- Parker, R.; Kreps, G.L. Library outreach: Overcoming health literacy challenges. J. Med. Libr. Assoc. JMLA. 2005, 93, S81–S85. [Google Scholar] [PubMed]
- Kirchner, G.J.; Kim, R.Y.; Weddle, J.B.; Bible, J.E. Can Artificial Intelligence Improve the Readability of Patient Education Materials? Clin. Orthop. 2023, 481, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Rameau, A. Applications of ChatGPT in Otolaryngology-Head Neck Surgery: A State of the Art Review. Otolaryngol. Head Neck Surg. Off. J. Am. Acad. Otolaryngol. Head Neck Surg. 2024, 171, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Samaan, J.S.; Yeo, Y.H.; Rajeev, N.; Hawley, L.; Abel, S.; Ng, W.H.; Srinivasan, N.; Park, J.; Burch, M.; Watson, R.; et al. Assessing the Accuracy of Responses by the Language Model ChatGPT to Questions Regarding Bariatric Surgery. Obes Surg. 2023, 33, 1790–1796. [Google Scholar] [CrossRef]
- Kuşcu, O.; Pamuk, A.E.; Sütay Süslü, N.; Hosal, S. Is ChatGPT accurate and reliable in answering questions regarding head and neck cancer? Front Oncol. 2023, 13, 1256459. [Google Scholar] [CrossRef]
- Yeo, Y.H.; Samaan, J.S.; Ng, W.H.; Ting, P.S.; Trivedi, H.; Vipani, A.; Ayoub, W.; Tang, J.D.; Liran, O.; Spiegel, B.; et al. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin. Mol. Hepatol. 2023, 29, 721–732. [Google Scholar] [CrossRef]
- Heya, T.A.; Ineza, Y.; Arefin, S.E.; Uzor, G.; Serwadda, A. Stable or Shaky? The Semantics of ChatGPT’s Behavior Under Repeated Queries. In Proceedings of the 2024 IEEE 18th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 29 January–1 February 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 110–116. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Barrit, S.; Hadwe, S.E.; Carron, R.; Madsen, J.R. Letter to the Editor. Rise of large language models in neurosurgery. J. Neurosurg. 2024, 141, 878–880. [Google Scholar] [CrossRef] [PubMed]
Questions |
---|
Indications: |
1. What is a decompressive hemicraniectomy and why is it necessary in this case? |
2. Are there any alternative treatments to decompressive hemicraniectomy for this condition? |
3. Can the condition worsen if surgery is delayed, or do we have time to think about it? |
Surgical Procedure: |
4. How long will the surgery take? |
5. What are the possible risks and complications associated with this surgery? |
6. What happens to the brain without the skull to protect it? |
Postoperative Care: |
7. After surgery, when will relatives be allowed to see the patient? |
8. How soon will the patient wake up? |
9. During the coma period, can the patient hear me and how should I talk to them? |
10. How long will the patient need to stay in the ICU and hospital after the surgery? |
11. What type of care and support will be needed at home? |
12. Will the patient need permanent assistance? |
13. When will the removed part of the skull be replaced? |
Prognosis: |
14. What are the chances of survival? |
15. What is the functional prognosis? |
16. What are the chances of a full recovery? |
17. What factors influence the patient’s recovery? |
Outcomes: |
18. How long will it take to see the maximum improvements in the patient’s condition? |
19. What is the long-term impact on the patient’s cognitive abilities? |
20. Will the patient be able to recognize his relatives? |
21. Are there any aids to daily living that will be needed? |
Ethical Issues: |
22. What are the ethical considerations for withdrawing life support if necessary? |
Rehabilitation: |
23. What does rehabilitation consist of and how long will it take? |
24. How can family members support the patient’s rehabilitation at home? |
25. Are there any new or emerging rehabilitation techniques that could benefit the patient? |
Intensivist [1] | ||||||||
QAMAI items (5-Likert Scale) | Indications (n = 3) | Surgical Procedure (n = 3) | Postoperative Care (n = 7) | Prognosis (n = 4) | Outcomes (n = 4) | Ethical Issues (n = 1) | Rehabilitation (n = 3) | Total (n = 25) |
Accuracy | 3.67 ± 2.31 | 4.67 ± 0.58 | 4.14 ± 0.69 | 4.5 ± 0.58 | 4.5 ± 0.58 | 5 | 4.67 ± 0.58 | 4.36 ± 0.91 |
Clarity | 5 | 3.67 ± 0.58 | 4.29 ± 0.76 | 3.75 ± 0.5 | 4.5 ± 0.58 | 5 | 4.67 ± 0.58 | 4.32 ± 0.69 |
Relevance | 4 ± 1.73 | 4 | 4.57 ± 0.53 | 4 ± 0.82 | 4.25 ± 0.5 | 5 | 5 | 4.36 ± 0.76 |
Completeness | 3 | 3 | 3.43 ± 0.98 | 3 | 3.5 ± 0.58 | 5 | 3.67 ± 0.58 | 3.36 ± 0.7 |
Sourcing | 2.67 ± 0.58 | 3 | 2.71 ± 0.76 | 1 | 1.75 ± 0.96 | 1 | 3 | 2.28 ± 0.94 |
Usefulness | 3.33 ± 1.15 | 3.67 ± 0.58 | 3.71 ± 0.76 | 2.75 ± 0.5 | 4 | 5 | 4 ± 1 | 3.64 ± 0.81 |
QAMAI total score (/30) | 21.67± 4.93 | 22 ± 1 | 22.86 ± 3.34 | 19 ± 0.82 | 22.5 ± 2.38 | 26 | 25 ± 2 | 22.32 ± 3.08 |
Neurologist [2] | ||||||||
QAMAI items (5-Likert Scale) | Indications (n = 3) | Surgical Procedure (n = 3) | Postoperative Care (n = 7) | Prognosis (n = 4) | Outcomes (n = 4) | Ethical Issues (n = 1) | Rehabilitation (n = 3) | Total (n = 25) |
Accuracy | 4.67 ± 0.58 | 4.67 ± 0.58 | 4.29 ± 0.95 | 3.75 ± 0.5 | 4.25 ± 0.5 | 5 | 4.33 ± 0.58 | 4.32 ± 0.69 |
Clarity | 4.67 ± 0.58 | 5 | 4.43 ± 0.53 | 4 | 4.75 ± 0.5 | 5 | 5 | 4.6 ± 0.5 |
Relevance | 5 | 4.67 ± 0.58 | 3.71 ± 0.95 | 4 | 5 | 5 | 4.67 ± 0.58 | 4.6 ± 0.5 |
Completeness | 4 ± 1 | 4 ± 1 | 4.67 ± 0.58 | 3.25 ± 0.5 | 3.25 ± 0.5 | 5 | 4 | 3.72 ± 0.79 |
Sourcing | 3 | 3.67 ± 1.15 | 2.71 ± 0.49 | 2.75 ± 0.5 | 2.75 ± 0.5 | 3 | 3 | 2.92 ± 0.57 |
Usefulness | 5 | 4.67 ± 0.58 | 4.43 ± 0.53 | 4 | 4.75 ± 0.5 | 5 | 4.33 ± 0.58 | 4.52 ± 0.51 |
QAMAI total score (/30) | 26.33 ± 2.08 | 26.67 ± 3.51 | 24 ± 3.56 | 21.75 ± 0.96 | 24.75 ± 1.5 | 28 | 25.33 ± 0.58 | 24.68 ± 2.81 |
Neurosurgeon [5] | ||||||||
QAMAI items (5-Likert Scale) | Indications (n = 3) | Surgical Procedure (n = 3) | Postoperative Care (n = 7) | Prognosis (n = 4) | Outcomes (n = 4) | Ethical Issues (n = 1) | Rehabilitation (n = 3) | Total (n = 25) |
Accuracy | 4.33 ± 1.15 | 4.33 ± 0.58 | 4.14 ± 0.69 | 4.5 ± 0.58 | 4.25 ± 0.5 | 5 | 4.33 ± 0.58 | 4.32 ± 0.63 |
Clarity | 5 | 4.33 ± 0.58 | 4.14 ± 0.69 | 3.5 ± 0.58 | 4.25 ± 0.5 | 5 | 4 ± 1 | 4.2 ± 0.71 |
Relevance | 4.33 ± 0.58 | 4 ± 1 | 4.14 ± 0.69 | 4.25 ± 0.96 | 3.75 ± 0.96 | 5 | 4.33 ± 0.58 | 4.16 ± 0.8 |
Completeness | 4 | 4.33 ± 0.58 | 3.71 ± 0.49 | 3.75 ± 0.5 | 3.75 ± 0.96 | 4 | 3.33 ± 0.58 | 3.8 ± 0.58 |
Sourcing | 3.33 ± 0.58 | 4 | 3 ± 0.82 | 2.5 ± 0.58 | 2.75 ± 0.5 | 3 | 3.67 ± 0.58 | 3.12 ± 0.73 |
Usefulness | 4 ± 1 | 3.33 ± 0.58 | 3.57 ± 0.79 | 3.75 ± 0.5 | 3.5 ± 0.58 | 5 | 4.33 ± 0.58 | 3.76 ± 0.72 |
QAMAI total score (/30) | 25 ± 3 | 24.33 ± 2.52 | 22.71 ± 3.59 | 22.25 ± 1.71 | 22.25 ± 2.99 | 27 | 24 ± 2.65 | 23.36 ± 2.86 |
Neurosurgeon [6] | ||||||||
QAMAI items (5-Likert Scale) | Indications (n = 3) | Surgical Procedure (n = 3) | Postoperative Care (n = 7) | Prognosis (n = 4) | Outcomes (n = 4) | Ethical Issues (n = 1) | Rehabilitation (n = 3) | Total (n = 25) |
Accuracy | 4 | 3.33 ± 1.15 | 4.57 ± 0.53 | 4.5 ± 0.58 | 4.25 ± 0.5 | 5 | 4.67 ± 0.58 | 4.32 ± 0.69 |
Clarity | 4.67 ± 0.58 | 4 ± 1.73 | 5 | 5 | 4.25 ± 0.5 | 5 | 5 | 4.72 ± 0.68 |
Relevance | 5 | 4.67 ± 0.58 | 4.86 ± 0.38 | 5 | 4 ± 1.41 | 5 | 5 | 4.76 ± 0.66 |
Completeness | 5 | 3.67 ± 1.53 | 5 | 5 | 4.25 ± 0.96 | 5 | 5 | 4.72 ± 0.74 |
Sourcing | 3 | 3 | 3 | 3.5 ± 1 | 3 | 3 | 3 | 3.08 ± 0.4 |
Usefulness | 4.67 ± 0.58 | 4.67 ± 0.58 | 4.86 ± 0.38 | 5 | 4 ± 1.41 | 5 | 5 | 4.72 ± 0.68 |
QAMAI total score (/30) | 26.33 ± 0.58 | 23.33 ± 5.51 | 27.29 ± 1.11 | 28 ± 1.41 | 23.75 ± 4.03 | 28 | 27.67 ± 0.58 | 26.32 ± 2.91 |
QAMAI Items (5-Likert Scale) | Pearson | p-Value |
---|---|---|
Accuracy | 0.408 | 0.001 |
Clarity | 0.509 | 0.001 |
Relevance | 0.469 | 0.001 |
Completeness | 0.437 | 0.001 |
Sourcing | 0.282 | 0.002 |
Usefulness | 0.610 | 0.001 |
QAMAI total score (/30) | 0.616 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Barajraji, M.; Barrit, S.; Ben-Hamouda, N.; Harel, E.; Torcida, N.; Pizzarotti, B.; Massager, N.; Lechien, J.R. AI-Driven Information for Relatives of Patients with Malignant Middle Cerebral Artery Infarction: A Preliminary Validation Study Using GPT-4o. Brain Sci. 2025, 15, 391. https://doi.org/10.3390/brainsci15040391
Al Barajraji M, Barrit S, Ben-Hamouda N, Harel E, Torcida N, Pizzarotti B, Massager N, Lechien JR. AI-Driven Information for Relatives of Patients with Malignant Middle Cerebral Artery Infarction: A Preliminary Validation Study Using GPT-4o. Brain Sciences. 2025; 15(4):391. https://doi.org/10.3390/brainsci15040391
Chicago/Turabian StyleAl Barajraji, Mejdeddine, Sami Barrit, Nawfel Ben-Hamouda, Ethan Harel, Nathan Torcida, Beatrice Pizzarotti, Nicolas Massager, and Jerome R. Lechien. 2025. "AI-Driven Information for Relatives of Patients with Malignant Middle Cerebral Artery Infarction: A Preliminary Validation Study Using GPT-4o" Brain Sciences 15, no. 4: 391. https://doi.org/10.3390/brainsci15040391
APA StyleAl Barajraji, M., Barrit, S., Ben-Hamouda, N., Harel, E., Torcida, N., Pizzarotti, B., Massager, N., & Lechien, J. R. (2025). AI-Driven Information for Relatives of Patients with Malignant Middle Cerebral Artery Infarction: A Preliminary Validation Study Using GPT-4o. Brain Sciences, 15(4), 391. https://doi.org/10.3390/brainsci15040391