Advances of Artificial Intelligence in Neuroimaging
1. Introduction
2. Summary of Accepted Papers
3. Statistics on the Special Issue
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CNN | Convolutional neural network |
COVID | Coronavirus disease |
CT | Computed tomography |
DL | Deep learning |
DTI | Diffusion tensor imaging |
EEG | Electroencephalography |
fMRI | Functional magnetic resonance imaging |
GAN | Generative adversarial network |
MDD | Major depressive disorder |
ML | Machine learning |
MRI | Magnetic resonance imaging |
PET | Positron emission tomography |
rTMS | Repetitive transcranial magnetic stimulation |
sMRI | Structural magnetic resonance imaging |
SVMs | Support vector machines |
VR | Virtual reality |
List of Contributions
- Ghanem, M.; Ghaith, A.K.; El-Hajj, V.G.; Bhandarkar, A.; de Giorgio, A.; Elmi-Terander, A.; Bydon, M. Limitations in evaluating machine learning models for imbalanced binary outcome classification in spine surgery: A systematic review. Brain Sci. 2023, 13, 1723. https://doi.org/10.3390/brainsci13121723.
- Rasheed, Z.; Ma, Y.-K.; Ullah, I.; Ghadi, Y.Y.; Khan, M.Z.; Khan, M.A.; Abdusalomov, A.; Alqahtani, F.; Shehata, A.M. Brain tumor classification from MRI using image enhancement and convolutional neural network techniques. Brain Sci. 2023, 13, 1320. https://doi.org/10.3390/brainsci13091320.
- Shah, S.P.; Heiss, J.D. Artificial intelligence as a complementary tool for clincal [clinical] decision-making in stroke and epilepsy. Brain Sci. 2024, 14, 228. https://doi.org/10.3390/brainsci14030228.
- Rudroff, T. Artificial intelligence’s transformative role in illuminating brain function in long COVID patients using PET/FDG. Brain Sci. 2024, 14, 73. https://doi.org/10.3390/brainsci14010073.
- Xiong, J.; Zhu, H.; Li, X.; Hao, S.; Zhang, Y.; Wang, Z.; Xi, Q. Auto-classification of Parkinson’s disease with different motor subtypes using arterial spin labelling MRI based on machine learning. Brain Sci. 2023, 13, 1524. https://doi.org/10.3390/brainsci13111524.
- Wang, J.; Li, T.; Sun, Q.; Guo, Y.; Yu, J.; Yao, Z.; Hou, N.; Hu, B. Automatic diagnosis of major depressive disorder using a high- and low-frequency feature fusion framework. Brain Sci. 2023, 13, 1590. https://doi.org/10.3390/brainsci13111590.
- Liu, X.; Zheng, G.; Beheshti, I.; Ji, S.; Gou, Z.; Cui, W. Low-rank tensor fusion for enhanced deep learning-based multimodal brain age estimation. Brain Sci. 2024, 14, 1252. https://doi.org/10.3390/brainsci14121252.
- Yamao, T.; Miwa, K.; Kaneko, Y.; Takahashi, N.; Miyaji, N.; Hasegawa, K.; Wagatsuma, K.; Kamitaka, Y.; Ito, H.; Matsuda, H. Deep learning-driven estimation of centiloid scales from amyloid pet images with 11C-PiB and 18F-labeled tracers in Alzheimer’s disease. Brain Sci. 2024, 14, 406. https://doi.org/10.3390/brainsci14040406.
- Saha, C.; Figley, C.R.; Lithgow, B.; Fitzgerald, P.B.; Koski, L.; Mansouri, B.; Anssari, N.; Wang, X.; Moussavi, Z. Can brain volume-driven characteristic features predict the response of Alzheimer’s patients to repetitive transcranial magnetic stimulation? a pilot study. Brain Sci. 2024, 14, 226. https://doi.org/10.3390/brainsci14030226.
- Grigas, O.; Damaševičius, R.; Maskeliūnas, R. Positive effect of super-resolved structural magnetic resonance imaging for mild cognitive impairment detection. Brain Sci. 2024, 14, 381. https://doi.org/10.3390/brainsci14040381.
- Cerna, J.; Gupta, P.; He, M.; Ziegelman, L.; Hu, Y.; Hernandez, M.E. Tai chi practice buffers aging effects in functional brain connectivity. Brain Sci. 2024, 14, 901. https://doi.org/10.3390/brainsci14090901.
- Sone, D.; Sato, N.; Shigemoto, Y.; Beheshti, I.; Kimura, Y.; Matsuda, H. Estimated disease progression trajectory of white matter disruption in unilateral temporal lobe epilepsy: A data-driven machine learning approach. Brain Sci. 2024, 14, 992. https://doi.org/10.3390/brainsci14100992.
- Tadayyoni, H.; Campos, M.S.R.; Quevedo, A.J.U.; Murphy, B.A. Biomarkers of immersion in virtual reality based on features extracted from the EEG signals: A machine learning approach. Brain Sci. 2024, 14, 470. https://doi.org/10.3390/brainsci14050470.
- Shih, Y.-T.; Wang, L.; Wong, C.H.Y.; Sin, E.L.L.; Rauterberg, M.; Yuan, Z.; Chang, L. The effects of distancing design collaboration necessitated by COVID-19 on brain synchrony in teams compared to co-located design collaboration: A preliminary study. Brain Sci. 2024, 14, 60. https://doi.org/10.3390/brainsci14010060.
- Huynh, N.; Yan, D.; Ma, Y.; Wu, S.; Long, C.; Sami, M.T.; Almudaifer, A.; Jiang, Z.; Chen, H.; Dretsch, M.N.; et al. The use of generative adversarial network and graph convolution network for neuroimaging-based diagnostic classification. Brain Sci. 2024, 14, 456. https://doi.org/10.3390/brainsci14050456.
- Huang, J. The commonality and individuality of human brains when performing tasks. Brain Sci. 2024, 14, 125. https://doi.org/10.3390/brainsci14020125.
- Manabe, T.; Rahul, F.N.U.; Fu, Y.; Intes, X.; Schwaitzberg, S.D.; De, S.; Cavuoto, L.; Dutta, A. Distinguishing laparoscopic surgery experts from novices using EEG topographic features. Brain Sci. 2023, 13, 1706. https://doi.org/10.3390/brainsci13121706.
References
- Ombao, H.; Lindquist, M.; Thompson, W.; Aston, J. (Eds.) Handbook of Neuroimaging Data Analysis; Chapman and Hall/CRC: New York, NY, USA, 2016. [Google Scholar]
- Scott, M. (Ed.) Encyclopedia of Neuroimaging: Volume VI (Advances and New Frontiers); Hayle Medical: New York, NY, USA, 2015. [Google Scholar]
- Yen, C.; Lin, C.-L.; Chiang, M.-C. Exploring the frontiers of neuroimaging: A review of recent advances in understanding brain functioning and disorders. Life 2023, 13, 1472. [Google Scholar] [CrossRef] [PubMed]
- Berson, E.R.; Aboian, M.S.; Malhotra, A.; Payabvash, S. Artificial intelligence for neuroimaging and musculoskeletal radiology: Overview of current commercial algorithms. Semin. Roentgenol. 2023, 58, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Borchert, R.J.; Azevedo, T.; Badhwar, A.; Bernal, J.; Betts, M.; Bruffaerts, R.; Burkhart, M.C.; Dewachter, I.; Gellersen, H.M.; Low, A.; et al. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimer’s Dement. 2023, 19, 5885–5904. [Google Scholar] [CrossRef] [PubMed]
- Brahma, N.; Vimal, S. Artificial intelligence in neuroimaging: Opportunities and ethical challenges. Brain Spine 2024, 4, 102919. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Sunwoo, L. Artificial intelligence in neuroimaging: Clinical applications. Investig. Magn. Reson. Imaging (iMRI) 2022, 26, 1–9. [Google Scholar] [CrossRef]
- Dalboni da Rocha, J.L.; Lai, J.; Pandey, P.; Myat, P.S.M.; Loschinskey, Z.; Bag, A.K.; Sitaram, R. Artificial intelligence for neuroimaging in pediatric cancer. Cancers 2025, 17, 622. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Leung, C.K.; Camorlinga, S.; Reed, M.H.; Bunge, M.K.; Wrogemann, J.; Higgins, R.J. A computer-aided change detection system for paediatric acute intracranial haemorrhage. In Proceedings of the C3S2E 2008, Montreal, QC, Canada, 12–13 May 2008; pp. 109–111. [Google Scholar] [CrossRef]
- Monsour, R.; Dutta, M.; Mohamed, A.-Z.; Borkowski, A.; Viswanadhan, N.A. Neuroimaging in the era of artificial intelligence: Current applications. Fed. Pract. 2022, 39 (Suppl. S1), S14–S20. [Google Scholar] [CrossRef] [PubMed]
- Damer, A.; Chaudry, E.; Eftekhari, D.; Benseler, S.M.; Safi, F.; Aviv, R.I.; Tyrrell, P.N. Neuroimaging scoring tools to differentiate inflammatory central nervous system small-vessel vasculitis: A need for artificial intelligence/machine learning?—A scoping review. Tomography 2023, 9, 1811–1828. [Google Scholar] [CrossRef] [PubMed]
- Pierre, K.; Turetsky, J.; Raviprasad, A.; Razavi, S.M.S.; Mathelier, M.; Patel, A.; Lucke-Wold, B. Machine learning in neuroimaging of traumatic brain injury: Current landscape, research gaps, and future directions. Trauma Care 2024, 4, 31–43. [Google Scholar] [CrossRef]
- Xu, M.; Ouyang, Y.; Yuan, Z. Deep learning aided neuroimaging and brain regulation. Sensors 2023, 23, 4993. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beheshti, I.; Sone, D.; Leung, C.K. Advances of Artificial Intelligence in Neuroimaging. Brain Sci. 2025, 15, 351. https://doi.org/10.3390/brainsci15040351
Beheshti I, Sone D, Leung CK. Advances of Artificial Intelligence in Neuroimaging. Brain Sciences. 2025; 15(4):351. https://doi.org/10.3390/brainsci15040351
Chicago/Turabian StyleBeheshti, Iman, Daichi Sone, and Carson K. Leung. 2025. "Advances of Artificial Intelligence in Neuroimaging" Brain Sciences 15, no. 4: 351. https://doi.org/10.3390/brainsci15040351
APA StyleBeheshti, I., Sone, D., & Leung, C. K. (2025). Advances of Artificial Intelligence in Neuroimaging. Brain Sciences, 15(4), 351. https://doi.org/10.3390/brainsci15040351