Musical Training and Perceptual History Shape Alpha Dynamics in Audiovisual Speech Integration
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Electroencephalogram (EEG) Acquisition
2.3.1. Experimental Procedure
2.3.2. EEG Acquisition and Data Processing
2.4. EEG Data Analysis
2.4.1. Selection of Trials for Conditions
2.4.2. Selection of Preceding Trials for the Current Audio-Only Condition
2.4.3. Time-Frequency Analysis
2.4.4. Source Analysis Using Dynamic Imaging of Coherent Sources (DICS)
2.5. Statistical Analysis
2.5.1. Behavioral Data
2.5.2. Source-Level EEG Data
2.5.3. Correlation Between Alpha Power and Behavior
2.5.4. Effect Sizes
3. Results
3.1. Behavioral Analysis of Audio-Visual Information
3.2. Neural Oscillatory Patterns on Audio-Visual Integration


3.3. Behavioral Impact of Preceding Trials on Auitory-Only Responses
3.4. Neural Correlates of Preceding Trial Influence on Auditory-Only Responses


3.5. Correlations Between Alpha Power and Behavior
4. Discussion
4.1. Effects of Musical Training
4.2. Perceptual History
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samuel, A.G. Speech perception. Annu. Rev. Psychol. 2011, 62, 49–72. [Google Scholar] [CrossRef]
- Mcgurk, H.; Macdonald, J. Hearing lips and seeing voices. Nature 1976, 264, 746–748. [Google Scholar] [CrossRef]
- Nath, A.R.; Beauchamp, M.S. A neural basis for interindividual differences in the McGurk effect, a multisensory speech illusion. NeuroImage 2012, 59, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Strand, J.F.; Cooperman, A.; Rowe, J.; Simenstad, A. Individual Differences in Susceptibility to the McGurk Effect: Links With Lipreading and Detecting Audiovisual Incongruity. J. Speech Lang. Hear. Res. 2014, 57, 2322–2331. [Google Scholar] [PubMed]
- Alsius, A.; Paré, M.; Munhall, K.G. Forty Years after Hearing Lips and Seeing Voices: The McGurk Effect Revisited. Multisens. Res. 2018, 31, 111–144. [Google Scholar]
- Sakamoto, S.; Mishima, H.; Suzuki, Y. Effect of Consonance between Features and Voice Impression on the McGurk Effect. Interdiscip. Inf. Sci. 2012, 18, 83–85. [Google Scholar] [CrossRef]
- van Wassenhove, V.; Grant, K.W.; Poeppel, D. Temporal window of integration in auditory-visual speech perception. Neuropsychologia 2007, 45, 598–607. [Google Scholar] [CrossRef]
- Schwartz, J.L. A reanalysis of McGurk data suggests that audiovisual fusion in speech perception is subject-dependent. J. Acoust. Soc. Am. 2010, 127, 1584–1594. [Google Scholar] [CrossRef]
- Proverbio, A.M.; Massetti, G.; Rizzi, E.; Zani, A. Skilled musicians are not subject to the McGurk effect. Sci. Rep. 2016, 6, 30423. [Google Scholar] [CrossRef]
- Grant, K.W.; Seitz, P.F. Measures of auditory–visual integration in nonsense syllables and sentences. J. Acoust. Soc. Am. 1998, 104, 2438–2450. [Google Scholar] [CrossRef]
- Navarra, J.; Alsius, A.; Soto-Faraco, S.; Spence, C. Assessing the role of attention in the audiovisual integration of speech. Inf. Fusion 2010, 11, 4–11. [Google Scholar] [CrossRef]
- Palmer, T.D.; Ramsey, A.K. The function of consciousness in multisensory integration. Cognition 2012, 125, 353–364. [Google Scholar] [CrossRef]
- Berger, C.C.; Ehrsson, H.H. Mental imagery changes multisensory perception. Curr. Biol. 2013, 23, 1367–1372. [Google Scholar] [CrossRef]
- Tuomainen, J.; Andersen, T.S.; Tiippana, K.; Sams, M. Audio-visual speech perception is special. Cognition 2005, 96, 13–22. [Google Scholar] [CrossRef]
- Lüttke, C.S.; Ekman, M.; Van Gerven, M.A.J.; De Lange, F.P. McGurk illusion recalibrates subsequent auditory perception. Sci. Rep. 2016, 6, 32891. [Google Scholar] [CrossRef] [PubMed]
- Magnotti, J.F.; Lado, A.; Zhang, Y.; Maasø, A.; Nath, A.; Beauchamp, M.S. Repeatedly experiencing the McGurk effect induces long-lasting changes in auditory speech perception. Commun. Psychol. 2024, 2, 25. [Google Scholar] [CrossRef]
- Lüttke, C.S.; Pérez-Bellido, A.; de Lange, F.P. Rapid recalibration of speech perception after experiencing the McGurk illusion. R. Soc. Open Sci. 2018, 5, 170909. [Google Scholar] [CrossRef] [PubMed]
- Micheyl, C.; Delhommeau, K.; Perrot, X.; Oxenham, A.J. Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res. 2006, 219, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Psarris, G.; Eleftheriadis, N.; Sidiras, C.; Sereti, A.; Iliadou, V.M. Temporal resolution and pitch discrimination in music education: Novel data in children. Eur. Arch. Oto Rhino Laryngol. 2024, 281, 4103–4111. [Google Scholar] [CrossRef]
- Mishra, S.K.; Panda, M.R.; Herbert, C. Enhanced auditory temporal gap detection in listeners with musical training. J. Acoust. Soc. Am. 2014, 136, EL173–EL178. [Google Scholar] [CrossRef]
- Hyde, K.L.; Lerch, J.; Norton, A.; Forgeard, M.; Winner, E.; Evans, A.C.; Schlaug, G. Musical training shapes structural brain development. J. Neurosci. 2009, 29, 3019–3025. [Google Scholar] [CrossRef]
- Musacchia, G.; Sams, M.; Skoe, E.; Kraus, N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. USA 2007, 104, 15894–15898. [Google Scholar] [CrossRef]
- Lee, H.H.; Groves, K.; Ripollés, P.; Carrasco, M. Audiovisual integration in the McGurk effect is impervious to music training. Sci. Rep. 2024, 14, 3262. [Google Scholar] [CrossRef]
- Politzer-Ahles, S.; Pan, L. Skilled musicians are indeed subject to the McGurk effect. R. Soc. Open Sci. 2019, 6, 181868. [Google Scholar] [CrossRef]
- Van der Burg, E.; Alais, D.; Cass, J. Rapid recalibration to audiovisual asynchrony follows the physical—Not the perceived—Temporal order. Atten. Percept. Psychophys. 2018, 80, 2060–2068. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, M.; Mostert, P.; de Lange, F.P. Opposite Effects of Recent History on Perception and Decision. Curr. Biol. 2017, 27, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Scheliga, S.; Kellermann, T.; Lampert, A.; Rolke, R.; Spehr, M.; Habel, U. Neural correlates of multisensory integration in the human brain: An ALE meta-analysis. Rev. Neurosci. 2023, 34, 223–245. [Google Scholar] [CrossRef]
- Park, H.; Kayser, C. Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. Elife 2019, 8, e47001. [Google Scholar] [CrossRef] [PubMed]
- Romero, Y.R.; Keil, J.; Balz, J.; Niedeggen, M.; Gallinat, J.; Senkowski, D. Alpha-band oscillations reflect altered multisensory processing of the McGurk illusion in Schizophrenia. Front. Hum. Neurosci. 2016, 10, 41. [Google Scholar] [CrossRef]
- Keil, J.; Senkowski, D. Neural Oscillations Orchestrate Multisensory Processing. Neuroscientist 2018, 24, 609–626. [Google Scholar] [CrossRef]
- Lange, J.; Keil, J.; Schnitzler, A.; van Dijk, H.; Weisz, N. The role of alpha oscillations for illusory perception. Behav. Brain Res. 2014, 271, 294–301. [Google Scholar] [CrossRef]
- Lum, J.A.G.; Barham, M.P.; Hyde, C.; Hill, A.T.; White, D.J.; E Hughes, M.; Clark, G.M. Top-down and bottom-up oscillatory dynamics regulate implicit visuomotor sequence learning. Cereb. Cortex 2024, 34, bhae266. [Google Scholar] [CrossRef]
- Mercier, M.R.; Molholm, S.; Fiebelkorn, I.C.; Butler, J.S.; Schwartz, T.H.; Foxe, J.J. Neuro-oscillatory phase alignment drives speeded multisensory response times: An electro-corticographic investigation. J. Neurosci. 2015, 35, 8546–8557. [Google Scholar] [CrossRef]
- MacAluso, E.; Noppeney, U.; Talsma, D.; Vercillo, T.; Hartcher-O’Brien, J.; Adam, R. The Curious Incident of Attention in Multisensory Integration: Bottom-up vs. Top-down. Multisensory Res. 2016, 29, 557–583. [Google Scholar] [CrossRef]
- Misselhorn, J.; Friese, U.; Engel, A.K. Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching. Sci. Rep. 2019, 9, 5030. [Google Scholar] [CrossRef]
- Friese, U.; Daume, J.; Göschl, F.; König, P.; Wang, P.; Engel, A.K. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control. Sci. Rep. 2016, 6, 32775. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, T.; Noel, J.-P.; Bockbrader, M.; Foglia, C.; Colachis, S.; Orset, B.; Evans, N.; Herbelin, B.; Rezai, A.; Panzeri, S.; et al. Pre-movement sensorimotor oscillations shape the sense of agency by gating cortical connectivity. Nat. Commun. 2025, 16, 3594. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.; Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef]
- Klein, C.; Diaz Hernandez, L.; Koenig, T.; Kottlow, M.; Elmer, S.; Jäncke, L. The Influence of Pre-stimulus EEG Activity on Reaction Time During a Verbal Sternberg Task is Related to Musical Expertise. Brain Topogr. 2016, 29, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Kausel, L.; Zamorano, F.; Billeke, P.; Sutherland, M.E.; Alliende, M.I.; Larrain-Valenzuela, J.; Soto-Icaza, P.; Aboitiz, F. Theta and alpha oscillations may underlie improved attention and working memory in musically trained children. Brain Behav. 2024, 14, e3517. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Iemi, L.; Schoffelen, J.M.; de Lange, F.P.; Haegens, S. Alpha oscillations shape sensory representation and perceptual sensitivity. J. Neurosci. 2021, 34, 9581–9592. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Kujala, J.; Hämäläinen, M.; Timmermann, L.; Schnitzler, A.; Salmelin, R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc. Natl. Acad. Sci. USA 2001, 98, 694–699. [Google Scholar] [CrossRef]
- Visalli, A.; Montefinese, M.; Viviani, G.; Finos, L.; Vallesi, A.; Ambrosini, E. lmeEEG: Mass linear mixed-effects modeling of EEG data with crossed random effects. J. Neurosci. Methods 2024, 401, 109991. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Wang, C.; Rajagovindan, R.; Han, S.M.; Ding, M. Top-down control of visual alpha oscillations: Sources of control signals and their mechanisms of action. Front. Hum. Neurosci. 2016, 10, 15. [Google Scholar] [CrossRef]
- Wöstmann, M.; Alavash, M.; Obleser, J. Alpha oscillations in the human brain implement distractor suppression independent of target selection. J. Neurosci. 2019, 39, 9797–9805. [Google Scholar] [CrossRef]
- Gray, R.; Sarampalis, A.; Başkent, D.; Harding, E.E. Working-Memory, Alpha-Theta Oscillations and Musical Training in Older Age: Research Perspectives for Speech-on-speech Perception. Front. Aging Neurosci. 2022, 14, 806439. [Google Scholar] [CrossRef]
- López-Madrona, V.J.; Trébuchon, A.; Bénar, C.G.; Schön, D.; Morillon, B. Different sustained and induced alpha oscillations emerge in the human auditory cortex during sound processing. Commun. Biol. 2024, 7, 1570. [Google Scholar] [CrossRef]
- O’Donohue, M.; Lacherez, P.; Yamamoto, N. Musical training refines audiovisual integration but does not influence temporal recalibration. Sci. Rep. 2022, 12, 15292. [Google Scholar] [CrossRef]
- MacLean, J.; Stirn, J.; Bidelman, G.M. Alpha-Band Brain Activity Shapes Online Perceptual Learning of Concurrent Speech Differentially in Musicians vs. Nonmusicians. Eur. J. Neurosci. 2025, 61, e70100. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Qiao, R.; Shi, Y.; Tang, Y.; Hou, Z.; Tian, Y. The effects of attention in auditory–visual integration revealed by time-varying networks. Front. Neurosci. 2023, 17, 1235480. [Google Scholar] [CrossRef] [PubMed]
- Arnal, L.H.; Giraud, A.L. Cortical oscillations and sensory predictions. Trends Cogn. Sci. 2012, 16, 390–398. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information Open access under CC BY-NC-ND license. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef]
- Alpert, G.F.; Hein, G.; Tsai, N.; Naumer, M.J.; Knight, R.T. Temporal characteristics of audiovisual information processing. J. Neurosci. 2008, 28, 5344–5349. [Google Scholar] [CrossRef]
- Foxe, J.J.; Snyder, A.C. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front. Psychol. 2011, 2, 154. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.; Bidelman, G.M. Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hear. Res. 2014, 308, 84–97. [Google Scholar] [CrossRef]
- Van Veen, B.D.; Van Drongelen, W.; Yuchtman, M.; Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 1997, 44, 867–880. [Google Scholar] [CrossRef]
- Tomasi, D.; Volkow, N.D. Associations between handedness and brain functional connectivity patterns in children. Nat. Commun. 2024, 15, 2355. [Google Scholar] [CrossRef]
- Fernández, L.M.; Macaluso, E.; Soto-Faraco, S. Audiovisual integration as conflict resolution: The conflict of the McGurk illusion. Hum. Brain Mapp. 2017, 38, 5691–5705. [Google Scholar] [CrossRef] [PubMed]
- Roa Romero, Y.; Senkowski, D.; Keil, J. Early and late beta-band power reflect audiovisual perception in the McGurk illusion. J. Neurophysiol. 2015, 113, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Tragantzopoulou, P.; Giannouli, V. A Song for the Mind: A Literature Review on Singing and Cognitive Health in Aging Populations. Brain Sci. 2025, 15, 227. [Google Scholar] [CrossRef] [PubMed]




| Subjects | First Instrument | Age Began Musical Training (yrs) | Secondary Instrument | Age Began Musical Training (yrs) | Years of Musical Training |
|---|---|---|---|---|---|
| Mus 1 | Korean traditional Vocal | 14 | 20 | ||
| Mus 2 | Piano | 9 | 12 | ||
| Mus 3 | Piano | 9 | 11 | ||
| Mus 4 | Piano | 6 | Vocal | 17 | 20 |
| Mus 5 | Bass guitar | 20 | 16 | ||
| Mus 6 | Piano | 6 | Cello | 25 | 19 |
| Mus 7 | Piano | 5 | Vocal | 23 | 25 |
| Mus 8 | Haegeum | 16 | Vocal | 24 | 10 |
| Mus 9 | Piano | 8 | Clarinet | 16 | 20 |
| Mus 10 | Drum | 17 | 12 | ||
| Mus 11 | Guitar | 10 | 10 | ||
| Mus 12 | Violin | 3 | Piano | 10 | 13 |
| Mus 13 | Guitar | 13 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Han, J.-H.; Lee, H.-J. Musical Training and Perceptual History Shape Alpha Dynamics in Audiovisual Speech Integration. Brain Sci. 2025, 15, 1258. https://doi.org/10.3390/brainsci15121258
Lee J, Han J-H, Lee H-J. Musical Training and Perceptual History Shape Alpha Dynamics in Audiovisual Speech Integration. Brain Sciences. 2025; 15(12):1258. https://doi.org/10.3390/brainsci15121258
Chicago/Turabian StyleLee, Jihyun, Ji-Hye Han, and Hyo-Jeong Lee. 2025. "Musical Training and Perceptual History Shape Alpha Dynamics in Audiovisual Speech Integration" Brain Sciences 15, no. 12: 1258. https://doi.org/10.3390/brainsci15121258
APA StyleLee, J., Han, J.-H., & Lee, H.-J. (2025). Musical Training and Perceptual History Shape Alpha Dynamics in Audiovisual Speech Integration. Brain Sciences, 15(12), 1258. https://doi.org/10.3390/brainsci15121258

