Neurological Damage Measured by S-100b and Neuron-Specific Enolase in Patients Treated with Electroconvulsive Therapy
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
- (1)
- Men and women over 15 years of age.
- (2)
- Diagnosis of the following psychiatric disorders in which ECT is part of the treatment algorithm: depression (unipolar or bipolar), mania, catatonia or schizophrenia and psychosis Not Otherwise Specified (NOS), according to Diagnosis and Statistics Manual Fourth Edition (DSM-IV; APA, 1994 [22]).
- (3)
- Diagnosis of psychiatric disorders resistant to pharmacological treatment based on guidelines from the National Institute of Clinical Excellence (NICE) available at the time of the study.
- (4)
- Major indication for the use of ECT due to symptom severity in the included psychiatric disorders.
- (1)
- Concomitant medical illness such as diabetes, hypertension, liver failure, renal failure, acute ischemic stroke, hemorrhagic stroke, melanoma, acute traumatic brain injury and cancer of any etiology.
- (2)
- Current diagnosis of substance use disorder.
- (3)
- Contraindication to ECT or anesthesia.
2.2. Measurement of S-100b and NE
2.3. Statistical Analysis
2.4. Ethical Implications of the Study
3. Results
3.1. Characteristics Related to Interventions
3.2. Initial–Final Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaliora, S.C.; Zervas, I.M.; Papadimitriou, G.N. Electroconvulsive therapy: 80 years of use in psychiatry. Psychiatriki 2018, 29, 291–302. [Google Scholar] [CrossRef]
- Ishihara, K.; Sasa, M. Mechanism underlying the therapeutic effects of electroconvulsive therapy (ECT) on depression. Jpn. J. Pharmacol. 1999, 80, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Sánchez González, R.; Alcoverro, O.; Pagerols, J.; Rojo, J.E. Electrophysiological mechanisms of action of electroconvulsive therapy. Actas Esp. Psiquiatr. 2009, 37, 343–351. [Google Scholar]
- Grover, S.; Mattoo, S.K.; Gupta, N. Theories on mechanism of action of electroconvulsive therapy. German J. Psychiatry 2005, 8, 70–84. [Google Scholar]
- McDonald, W.M.; Thompson, T.R.; McCall, W.V.; Zorumski, C.F. Terapia Electroconvulsiva. In Tratado de Psicofarmacología, 1st ed.; Schatzberg, A.F., Nemeroff, C.B., Eds.; Masson: Barcelona, Spain, 2006; Volume 1, pp. 751–755. [Google Scholar]
- Sackeim, H.A. The anticonvulsant hypothesis of the mechanisms of action of ECT: Current status. J. ECT 1999, 15, 5–26. [Google Scholar] [CrossRef]
- McDonald, W.M.; McCall, W.V.; Epstein, C.M. Electroconvulsive therapy: Sixty years of progress and a comparison with transcranial magnetic stimulation and vagal nerve stimulation. In Neuropsychopharmacology: The Fifth Generation of Progress; Davis, K.L., Charney, D.S., Coyle, J.T., Eds.; Lippincott Williams and Wilkins: New York, NY, USA, 2002; Volume 30, pp. 1098–1108. [Google Scholar]
- Bassa, A.; Sagués, T.; Porta-Casteràs, D.; Serra, P.; Martínez-Amorós, E.; Palao, D.J.; Cano, M.; Cardoner, N. The Neurobiological Basis of Cognitive Side Effects of Electroconvulsive Therapy: A Systematic Review. Brain Sci. 2021, 11, 1273. [Google Scholar] [CrossRef]
- İlhan Atagün, M.; Atay Canbek, Ö. A Systematic Review of the Literature Regarding the Relationship Between Oxidative Stress and Electroconvulsive Therapy. Alpha Psychiatry 2022, 23, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Watts, B.V.; Peltzman, T.; Shiner, B. Mortality after electroconvulsive therapy. Br. J. Psychiatry 2021, 219, 588–593. [Google Scholar] [CrossRef]
- Schmidt, S. S100b: Pathogenetic and pathophysiologic significance in neurology. Nervenarztr 1998, 69, 639–646. [Google Scholar] [CrossRef]
- Nooijen, P.T.; Schoonderwaldt, H.C.; Wevers, R.A.; Hommes, O.R.; Lamers, K.J. Neuron-specific enolase, S-100 protein, myelin basic protein and lactate in CSF in dementia. Dement. Geriatr. Cogn. Disord. 1997, 8, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Cho, Y.; Ko, Y.; Heo, N.H.; Kang, H.G.; Han, S. Neuron-specific enolase level as a predictor of neurological outcome in near-hanging patients: A retrospective multicenter study. PLoS ONE 2021, 16, e0246898. [Google Scholar] [CrossRef] [PubMed]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Langeh, U.; Singh, S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr. Neuropharmacol. 2021, 192, 265–277. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Mergl, R.; Stach, B.; Jahn, I.; Gertz, H.J.; Schönknecht, P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer's disease. Neurosci. Lett. 2014, 6, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Aurell, A.; Rosengren, L.E.; Karlsson, B.; Olsson, J.E.; Zbornikova, V.; Haglid, K.G. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 1999, 22, 1254–1258. [Google Scholar] [CrossRef]
- Chabok, S.Y.; Moghadam, A.D.; Saneei, Z.; Amlashi, F.G.; Leili, E.K.; Amiri, Z.M. Neuron-specific enolase and S100BB as outcome predictors in severe diffuse axonal injury. J. Trauma Acute Care Surg. 2012, 72, 1654–1657. [Google Scholar] [CrossRef] [PubMed]
- Jolly, A.J.; Singh, S.M. Does electroconvulsive therapy cause brain damage: An update. Indian J. Psychiatry 2020, 62, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Cai, B.; Gao, X.; Su, Z.; Zhang, J. The establishment of neuron-specific enolase reference interval for the healthy population in southwest China. Sci. Rep. 2020, 10, 6332. [Google Scholar] [CrossRef] [PubMed]
- Katayama, T.; Sawada, J.; Takahashi, K.; Yahara, O.; Hasebe, N. Meta-analysis of cerebrospinal fluid neuron-specific enolase levels in Alzheimer’s disease, Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Alzheimers Res. Ther. 2021, 13, 163. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Publishing, Inc.: Arlington County, VA, USA, 1994. [Google Scholar]
- O'Connell, R.A. A review of the use of electroconvulsive therapy. Hosp. Community Psychiatry 1982, 33, 469–473. [Google Scholar] [CrossRef]
- Cohen, D.; Taieb, O.; Flament, M.; Benoit, N.; Chevret, S.; Corcos, M.; Fossati, P.; Jeammet, P.; Allilaire, J.F.; Basquin, M. Absence of cognitive impairment at long-term follow-up in adolescents treated with ECT for severe mood disorder. Am. J. Psychiatry 2000, 157, 460–462. [Google Scholar] [CrossRef]
- UK ECT Review Group. Efficacy and safety of electroconvulsive therapy in depressive disorders: A systematic review and meta-analysis. Lancet 2003, 361, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Hirsch, J.G.; Krause, M.; Ende, G.; Henn, F.A.; Sartorius, A.; Gass, A. Diffusion weighted MRI in the early phase after electroconvulsive therapy. Neurol. Res. 2007, 29, 256–259. [Google Scholar] [CrossRef]
- Sterling, P. ECT damage is easy to find if you look for it. Nature 2000, 403, 242. [Google Scholar] [CrossRef] [PubMed]
- van der Wurff, F.B.; Stek, M.L.; Hoogendijk, W.J.; Beekman, A.T. The efficacy and safety of ECT in depressed older adults: A literature review. Int. J. Geriatr. Psychiatry 2003, 18, 894–904. [Google Scholar] [CrossRef]
- Sackeim, H.A.; Prudic, J.; Fuller, R.; Keilp, J.; Lavori, P.W.; Olfson, M. The cognitive effects of electroconvulsive therapy in community settings. Neuropsychopharmacology 2007, 32, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Agelink, M.W.; Andrich, J.; Postert, T.; Würzinger, U.; Zeit, T.; Klotz, P.; Przuntek, H. Relation between electroconvulsive therapy, cognitive side effects, neuron specific enolase, and protein S-100. J. Neurol. Neurosurg. Psychiatry 2001, 71, 394–396. [Google Scholar] [CrossRef]
- Arts, B.; Peters, M.; Ponds, R.; Honig, A.; Menheere, P.; van Os, J. S100 and impact of ECT on depression and cognition. J. ECT 2006, 22, 206–212. [Google Scholar] [CrossRef]
- Zachrisson, O.C.; Balldin, J.; Ekman, R.; Naesh, O.; Rosengren, L.; Agren, H.; Blennow, K. No evident neuronal damage after electroconvulsive therapy. Psychiatry Res. 2000, 96, 157–165. [Google Scholar] [CrossRef]
- Ingebrigtsen, T.; Romner, B.; Kongstad, P.; Langbakk, B. Increased serum concentrations of protein S-100 after minor head injury: A biochemical serum marker with prognostic value? J. Neurol. Neurosurg. Psychiatry 1995, 59, 103–104. [Google Scholar] [CrossRef]
- Jönsson, H.; Johnsson, P.; Höglund, P.; Alling, C.; Blomquist, S. Elimination of S100B and renal function after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2000, 14, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ortega, K.; Canul-Euan, A.A.; Solis-Paredes, J.M.; Borboa-Olivares, H.; Reyes-Muñoz, E.; Estrada-Gutierrez, G.; Camacho-Arroyo, I. S100B actions on glial and neuronal cells in the developing brain: An overview. Front. Neurosci. 2024, 18, 1425525. [Google Scholar] [CrossRef] [PubMed]
- Whitaker-Azmitia, P.M.; Azmitia, E.C. Astroglial 5-HT1a receptors and S-100 beta in development and plasticity. Perspect. Dev. Neurobiol. 1994, 2, 233–238. [Google Scholar] [PubMed]
- Roder, J.K.; Roder, J.C.; Gerlai, R. Conspecific exploration in the T-maze: Abnormalities in S100 beta transgenic mice. Physiol. Behav. 1996, 60, 31–36. [Google Scholar] [CrossRef]
- Nygaard, O.; Langbakk, B.; Romner, B. Age- and sex-related changes of S-100 protein concentrations in cerebrospinal fluid and serum in patients with no previous history of neurological disorder. Clin. Chem. 1997, 43, 541–543. [Google Scholar] [CrossRef]
Features | N | Mean | SD | Min. | Max. |
---|---|---|---|---|---|
Age | 55 | 38.6 | 15.1 | 15 | 70 |
Sex | N | % | |||
Male | 17 | 30.91 | |||
Female | 38 | 69.09 | |||
Diagnosis | N | % | |||
Depression | 29 | 52.73 | |||
Catatonia | 5 | 9.09 | |||
Mania | 9 | 16.36 | |||
Schizophrenia and psychosis NOS | 12 | 21.82 | |||
Position of electrodes | N | % | |||
Bilateral | 51 | 92.73 | |||
Unilateral | 4 | 7.27 | |||
Number of ECT sessions | N | Mean | SD | Min. | Max. |
55 | 6.43 | 2.40 | 3 | 15 | |
Stimulus intensity | N | Mean | SD | Min. | Max. |
55 | 29.2 | 14.1 | 10 | 70 |
Baseline (SD) | After ECT (SD) | Mean Difference | p | |
---|---|---|---|---|
Marker | ||||
S-100b | 0.0831 (0.058) | 0.074 (0.049) | 0.009 | 0.243 |
NSE | 16.87 (29.27) | 12.92(11.84) | 3.95 | 0.288 |
Scale | ||||
CGI | 5.05 (0.78) | 2.85 (0.84) | 2.2 | <0.000 |
BPRS | 23.75 (7.32) | 10.71 (6.74) | 13.03 | <0.000 |
MMSE | 20.49 (11.05) | 27.14 (7.03) | −6.65 | <0.000 |
HAMD | 21.10 (3.50) | 9.34 (4.80) | 11.75 | <0.000 |
Bush–Francis | 17.20 (9.57) | 5.20 (6.57) | 12 | 0.089 |
Young | 24.66 (6.83) | 7.11 (4.42) | 17.55 | <0.000 |
PANSS | 105.33 (14.19) | 68.66 (17.77) | 36.66 | <0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Chow, Á.A.; López-Cruz, C.J.; Crail-Meléndez, D.; Ramírez-Bermúdez, J.; Santos-Zambrano, J.; Luz-Escamilla, L.A. Neurological Damage Measured by S-100b and Neuron-Specific Enolase in Patients Treated with Electroconvulsive Therapy. Brain Sci. 2024, 14, 822. https://doi.org/10.3390/brainsci14080822
Ruiz-Chow ÁA, López-Cruz CJ, Crail-Meléndez D, Ramírez-Bermúdez J, Santos-Zambrano J, Luz-Escamilla LA. Neurological Damage Measured by S-100b and Neuron-Specific Enolase in Patients Treated with Electroconvulsive Therapy. Brain Sciences. 2024; 14(8):822. https://doi.org/10.3390/brainsci14080822
Chicago/Turabian StyleRuiz-Chow, Ángel A., Carlos J. López-Cruz, Daniel Crail-Meléndez, Jesús Ramírez-Bermúdez, José Santos-Zambrano, and Laura A. Luz-Escamilla. 2024. "Neurological Damage Measured by S-100b and Neuron-Specific Enolase in Patients Treated with Electroconvulsive Therapy" Brain Sciences 14, no. 8: 822. https://doi.org/10.3390/brainsci14080822
APA StyleRuiz-Chow, Á. A., López-Cruz, C. J., Crail-Meléndez, D., Ramírez-Bermúdez, J., Santos-Zambrano, J., & Luz-Escamilla, L. A. (2024). Neurological Damage Measured by S-100b and Neuron-Specific Enolase in Patients Treated with Electroconvulsive Therapy. Brain Sciences, 14(8), 822. https://doi.org/10.3390/brainsci14080822