High-Sensitivity C-Reactive Protein, Its Change, and Cognitive Function: A National Population-Based Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Assessment of High-Sensitivity C-Reactive Protein
2.3. Assessment of Cognitive Function
2.4. Assessment of Covariates
2.5. Statistical Analyses
2.6. Data Availability
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.F.; Du, Y.F.; Chu, L.; Zhang, Z.J.; Li, F.Y.; Lyu, D.Y.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.S.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, E661–E671. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s, A. 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2018, 14, 367–425. [Google Scholar] [CrossRef]
- Biessels, G.J.; Strachan, M.W.J.; Visseren, F.L.J.; Kappelle, L.J.; Whitmer, R.A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions. Lancet Diabetes Endocrinol. 2014, 2, 246–255. [Google Scholar] [CrossRef]
- Jones, R.W. Inflammation and Alzheimer’s disease. Lancet 2001, 358, 436–437. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.M.; Manly, J.J.; Schupf, N.; Tang, M.X.; Mayeux, R.; Luchsinger, J.A. Association of C-Reactive Protein with Cognitive Impairment. Arch. Neurol. 2010, 67, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Boeve, B.F.; Christianson, T.J.H.; Pankratz, V.S.; Kullo, I.J.; Tangalos, E.G.; Ivnik, R.J.; Petersen, R.C. Association of C-reactive protein with mild cognitive impairment. Alzheimer’s Dement. 2009, 5, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, G.; Lutski, M.; Goldbourt, U.; Tanne, D. C-reactive protein is related to future cognitive impairment and decline in elderly individuals with cardiovascular disease. Arch. Gerontol. Geriatr. 2017, 69, 31–37. [Google Scholar] [CrossRef]
- Koyama, A.; O’Brien, J.; Weuve, J.; Blacker, D.; Metti, A.L.; Yaffe, K. The Role of Peripheral Inflammatory Markers in Dementia and Alzheimer’s Disease: A Meta-Analysis. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2013, 68, 433–440. [Google Scholar] [CrossRef]
- Lewis, N.A.; Knight, J.E. Longitudinal associations between C-reactive protein and cognitive performance in normative cognitive ageing and dementia. Age Ageing 2021, 50, 2199–2205. [Google Scholar] [CrossRef]
- Zheng, F.F.; Xie, W.X. High-sensitivity C-reactive protein and cognitive decline: The English Longitudinal Study of Ageing. Psychol. Med. 2018, 48, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Marioni, R.E.; Stewart, M.C.; Murray, G.D.; Deary, I.J.; Fowkes, F.G.R.; Lowe, G.D.O.; Rumley, A.; Price, J.F. Peripheral Levels of Fibrinogen, C-Reactive Protein, and Plasma Viscosity Predict Future Cognitive Decline in Individuals without Dementia. Psychosom. Med. 2009, 71, 901–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurin, D.; Curb, J.D.; Masaki, K.H.; White, L.R.; Launer, L.J. Midlife C-reactive protein and risk of cognitive decline: A 31-year follow-up. Neurobiol. Aging 2009, 30, 1724–1727. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.M.; Beeri, M.S.; Schmeidler, J.; Rosendorff, C.; Angelo, G.; Mavris, R.S.; Grossman, H.T.; Elder, G.A.; Carrion-Baralt, J.; West, R. C-reactive protein and memory function suggest antagonistic pleiotropy in very old nondemented subjects. Age Ageing 2009, 38, 237–241. [Google Scholar] [CrossRef] [Green Version]
- O’Bryant, S.E.; Johnson, L.; Edwards, M.; Soares, H.; Devous, M.D.; Ross, S.; Rohlfing, G.; Hall, J.; Texas Alzheimer’s, R.; Care, C. The Link Between C-Reactive Protein and Alzheimer’s Disease Among Mexican Americans. J. Alzheimer’s Dis. 2013, 34, 701–706. [Google Scholar] [CrossRef]
- Lima, T.A.S.; Adler, A.L.; Minett, T.; Matthews, F.E.; Brayne, C.; Marioni, R.E.; Med Res Council Cognitive, F. C-reactive protein, APOE genotype and longitudinal cognitive change in an older population. Age Ageing 2014, 43, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Alley, D.E.; Crimmins, E.M.; Karlamangla, A.; Hu, P.F.; Seeman, T.E. Inflammation and rate of cognitive change in high-functioning older adults. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2008, 63, 50–55. [Google Scholar] [CrossRef]
- Schram, M.T.; Euser, S.M.; de Craen, A.J.M.; Witteman, J.C.; Frolich, M.; Hofman, A.; Jolles, J.; Breteler, M.M.B.; Westendorp, R.G.J. Systemic markers of inflammation and cognitive decline in old age. J. Am. Geriatr. Soc. 2007, 55, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Renteria, M.A.; Gillett, S.R.; McClure, L.A.; Wadley, V.G.; Glasser, S.P.; Howard, V.J.; Kissela, B.M.; Unverzagt, F.W.; Jenny, N.S.; Manly, J.J.; et al. C-reactive protein and risk of cognitive decline: The REGARDS study. PLoS ONE 2020, 15, 15. [Google Scholar]
- Diaz-Venegas, C.; Downer, B.; Langa, K.M.; Wong, R. Racial and ethnic differences in cognitive function among older adults in the USA. Int. J. Geriatr. Psychiatr. 2016, 31, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Kelley-Hedgepeth, A.; Lloyd-Jones, D.M.; Colvin, A.; Matthews, K.A.; Johnston, J.; Sowers, M.R.; Sternfeld, B.; Pasternak, R.C.; Chae, C.U.; Investigators, S. Ethnic differences in C-reactive protein concentrations. Clin. Chem. 2008, 54, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Ness, R.B.; Haggerty, C.L.; Harger, G.; Ferrell, R. Differential distribution of allelic variants in cytokine genes among African Americans and white Americans. Am. J. Epidemiol. 2004, 160, 1033–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, A.X.; Zhao, X.Q. Relationship Among Inflammation, Overweight Status, and Cognitive Impairment in a Community-Based Population of Chinese Adults. Front. Neurol. 2020, 11, 9. [Google Scholar] [CrossRef]
- Chen, J.M.; Cui, G.H.; Jiang, G.X.; Xu, R.F.; Tang, H.D.; Wang, G.; Chen, S.D.; Cheng, Q. Cognitive Impairment Among Elderly Individuals in Shanghai Suburb, China: Association of C-Reactive Protein and its Interactions With Other Relevant Factors. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Hu, Y.S.; Smith, J.P.; Strauss, J.; Yang, G.H. Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graig, R.; Deverill, C.; Pickering, K. Quality control of blood saliva and urine analytes. In Health Survey for England 2004: Methodology and Documentation; Spronston, K., Mindell, J., Eds.; The Information Centre: London, UK, 2006; Volume 2. [Google Scholar]
- Qin, T.T.; Liu, W.H.; Yin, M.H.; Shu, C.; Yan, M.M.; Zhang, J.Y.; Yin, P. Body mass index moderates the relationship between C-reactive protein and depressive symptoms: Evidence from the China Health and Retirement Longitudinal Study. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.W.; Zhang, Z.M.; Li, L.D.; Liu, J.Y. Early life exposure to China’s 1959–61 famine and midlife cognition. Int. J. Epidemiol. 2018, 47, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.J.; Liang, L.R.; Zheng, F.F.; Shi, L.; Zhong, B.L.; Xie, W.X. Association Between Sleep Duration and Cognitive Decline. JAMA Netw. Open 2020, 3, 14. [Google Scholar] [CrossRef]
- Li, J.X.; Cacchione, P.Z.; Hodgson, N.; Riegel, B.; Keenan, B.T.; Scharf, M.T.; Richards, K.C.; Gooneratne, N.S. Afternoon Napping and Cognition in Chinese Older Adults: Findings from the China Health and Retirement Longitudinal Study Baseline Assessment. J. Am. Geriatr. Soc. 2017, 65, 373–380. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.Y.; Gu, N.N.; Yang, B.X.; Wang, J.J.; Li, C.B. A Prospective Study on the Association Between Grip Strength and Cognitive Function Among Middle-Aged and Elderly Chinese Participants. Front. Aging Neurosci. 2019, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.B.; Zhu, Y.; Li, D.; Wu, M.Y.; Tang, M.L.; Wang, J.B.; Chen, K. Association between visit-to-visit variability of HbA(1c) and cognitive decline: A pooled analysis of two prospective population-based cohorts. Diabetologia 2020, 63, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.S.; Lv, X.Z.; Shen, J.; Chen, H.; Ma, Y.; Jin, X.R.; Yang, J.X.; Cao, Y.Y.; Zong, G.; Wang, H.L.; et al. Association between body mass index, its change and cognitive impairment among Chinese older adults: A community-based, 9-year prospective cohort study. Eur. J. Epidemiol. 2021, 36, 1043–1054. [Google Scholar] [CrossRef]
- Wang, J.N.; Li, T.T.; Lv, Y.B.; Kraus, V.B.; Zhang, Y.; Mao, C.; Yin, Z.X.; Shi, W.Y.; Zhou, J.H.; Zheng, T.Z.; et al. Fine Particulate Matter and Poor Cognitive Function among Chinese Older Adults: Evidence from a Community -Based, 12-Year Prospective Cohort Study. Environ. Health Perspect. 2020, 128, 9. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Feng, Q.S.; Hesketh, T.; Christensen, K.; Vaupel, J.W. Survival, disabilities in activities of daily living, and physical and cognitive functioning among the oldest-old in China: A cohort study. Lancet 2017, 389, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.T.; Chan, A.C.M. The Center for Epidemiologic Studies Depression Scale in older Chinese: Thresholds for long and short forms. Int. J. Geriatr. Psychiatr. 2005, 20, 465–470. [Google Scholar] [CrossRef]
- Zheng, F.F.; Yan, L.; Yang, Z.C.; Zhong, B.L.; Xie, W.X. HbA(1c), diabetes and cognitive decline: The English Longitudinal Study of Ageing. Diabetologia 2018, 61, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.Y.; Katzman, R.; Salmon, D.; Jin, H.; Cai, G.J.; Wang, Z.Y.; Qu, G.Y.; Grant, I.; Yu, E.; Levy, P.; et al. The Prevalence of Dementia and Alzheimers-Disease in Shanghai, China—Impact of Age, Gender, and Education. Ann. Neurol. 1990, 27, 428–437. [Google Scholar] [CrossRef]
- Wu, J.; Song, X.Y.; Chen, G.C.; Neelakantan, N.; van Dam, R.M.; Feng, L.; Yuan, J.M.; Pan, A.; Koh, W.P. Dietary pattern in midlife and cognitive impairment in late life: A prospective study in Chinese adults. Am. J. Clin. Nutr. 2019, 110, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Simone, M.J.; Tan, Z.S. The Role of Inflammation in the Pathogenesis of Delirium and Dementia in Older Adults: A Review. CNS Neurosci. Ther. 2011, 17, 506–513. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Mechanisms of disease: Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Forget, M.F.; Del Degan, S.; Leblanc, J.; Tannous, R.; Desjardins, M.; Durand, M.; Vu, T.T.M.; Nguyen, Q.D.; Desmarais, P. Delirium and Inflammation in Older Adults Hospitalized for COVID-19: A Cohort Study. Clin. Interv. Aging 2021, 16, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Aloisi, G.; Marengoni, A.; Morandi, A.; Zucchelli, A.; Cherubini, A.; Mossello, E.; Bo, M.; Di Santo, S.G.; Mazzone, A.; Trabucchi, M.; et al. Drug Prescription and Delirium in Older Inpatients: Results from the Nationwide Multicenter Italian Delirium Day 2015–2016. J. Clin. Psychiatry 2019, 80, 20. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.C.; Haroon, E.; Patel, T.A.; Goldsmith, D.R.; Wommack, E.C.; Woolwine, B.J.; Le, N.A.; Feinberg, R.; Tansey, M.G.; Miller, A.H. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry 2020, 25, 1301–1311. [Google Scholar] [CrossRef]
- Hsuchou, H.; Kastin, A.J.; Mishra, P.K.; Pan, W.H. C-Reactive Protein Increases BBB Permeability: Implications for Obesity and Neuroinflammation. Cell. Physiol. Biochem. 2012, 30, 1109–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jefferson, A.L.; Massaro, J.M.; Wolf, P.A.; Seshadri, S.; Au, R.; Vasan, R.S.; Larson, M.G.; Meigs, J.B.; Keaney, J.F.; Lipinska, I.; et al. Inflammatory biomarkers are associated with total brain volume—The Framingham Heart Study. Neurology 2007, 68, 1032–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satizabal, C.L.; Zhu, Y.C.; Mazoyer, B.; Dufouil, C.; Tzourio, C. Circulating IL-6 and CRP are associated with MRI findings in the elderly The 3C-Dijon Study. Neurology 2012, 78, 720–727. [Google Scholar] [CrossRef]
- Aquilani, R.; Costa, A.; Maestri, R.; Ramusino, M.C.; Pierobon, A.; Dossena, M.; Solerte, S.B.; Condino, A.M.; Torlaschi, V.; Bini, P.; et al. Mini Nutritional Assessment May Identify a Dual Pattern of Perturbed Plasma Amino Acids in Patients with Alzheimer’s Disease: A Window to Metabolic and Physical Rehabilitation? Nutrients 2020, 12, 18. [Google Scholar] [CrossRef]
- Dickerson, F.; Stallings, C.; Origoni, A.; Vaughan, C.; Khushalani, S.; Yang, S.J.; Yolken, R. C-reactive protein is elevated in schizophrenia. Schizophr. Res. 2013, 143, 198–202. [Google Scholar] [CrossRef]
- Zacho, J.; Tybjaerg-Hansen, A.; Jensen, J.S.; Grande, P.; Sillesen, H.; Nordestgaard, B.G. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med. 2008, 359, 1897–1908. [Google Scholar] [CrossRef]
- Akhter, S.; Das, S.N.; Sutradhar, S.R.; Basher, M.S.; Khan, M.K. Level of Serum C-reactive Protein among Patients with Stroke. Mymensingh Med. J. MMJ 2018, 27, 461–466. [Google Scholar]
Total (n = 7385) | Quartile 1 (n = 1829) | Quartile 2 (n = 1873) | Quartile 3 (n = 1836) | Quartile 4 (n = 1847) | |
---|---|---|---|---|---|
Age (years) | 59.08 ± 8.86 | 57.20 ± 8.57 | 58.91 ± 8.87 | 59.72 ± 8.57 | 60.48 ± 9.08 |
Sex | |||||
Male | 3643 (49.33%) | 844 (46.15%) | 907 (48.42%) | 931 (50.60%) | 961 (52.14%) |
Female | 3742 (50.67%) | 985 (53.85%) | 966 (51.58%) | 909 (49.40%) | 882 (47.86%) |
Education | |||||
Illiterate | 1507 (20.41%) | 379 (20.72%) | 378 (20.18%) | 354 (19.24%) | 396 (21.49%) |
Primary school | 3314 (44.87%) | 815 (44.56%) | 850 (45.38%) | 835 (45.38%) | 814 (44.17%) |
Middle school and above | 2564 (34.72%) | 635 (34.72%) | 645 (34.44%) | 651 (35.38%) | 633 (34.35%) |
Marital status | |||||
Married | 6653 (90.09%) | 1668 (91.20%) | 1694 (90.44%) | 1666 (90.54%) | 1625 (88.17%) |
Not married | 732 (9.91%) | 161 (8.80%) | 179 (9.56%) | 174 (9.46%) | 218 (11.83%) |
Smoking status | |||||
Never smoking | 4371 (59.19%) | 1141 (62.38%) | 1135 (60.60%) | 1078 (58.59%) | 1017 (55.18%) |
Current smoking | 2333 (31.59%) | 561 (30.67%) | 578 (30.86%) | 568 (30.87%) | 626 (33.97%) |
Former smoking | 681 (9.22%) | 127 (6.94%) | 160 (8.54%) | 194 (10.54%) | 200 (10.85%) |
Drinking status | |||||
Never drinking | 4810 (65.13%) | 1174 (64.19%) | 1194 (63.75%) | 1216 (66.09%) | 1226 (66.52%) |
Current drinking | 1969 (26.66%) | 494 (27.01%) | 518 (27.66%) | 464 (25.22%) | 493 (26.75%) |
Former drinking | 606 (8.21%) | 161 (8.80%) | 161 (8.60%) | 160 (8.70%) | 124 (6.73%) |
Depressive symptoms | |||||
Yes | 2630 (35.61%) | 661 (36.14%) | 681 (36.36%) | 618 (33.59%) | 670 (36.35%) |
No | 4755 (64.39%) | 1168 (63.86%) | 1192 (63.64%) | 1222 (66.41%) | 1173 (63.65%) |
Chronic diseases scores | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–2) | 1 (0–2) |
BMI (kg/m2) | 23.73 ± 3.93 | 22.57 ± 3.33 | 23.49 ± 3.72 | 24.32 ± 3.88 | 24.53 ± 4.42 |
SBP (mmHg) | 130.71 ± 28.79 | 126.4 ± 27.42 | 129.55 ± 27.11 | 132.23 ± 27.05 | 134.63 ± 32.56 |
Sleep duration (h) | 6.40 ± 1.81 | 6.41 ± 1.82 | 6.42 ± 1.77 | 6.46 ± 1.82 | 6.30 ± 1.84 |
Hs-CRP (mg/L) | 1.01 (0.55–2.11) | 0.38 (0.30–0.46) | 0.74 (0.64–0.85) | 1.40 (1.19–1.71) | 3.85 (2.73–6.68) |
Global cognitive scores (2011) | 15.16 ± 4.73 | 14.98 ± 4.88 | 15.12 ± 4.80 | 14.92 ± 4.84 | 15.61 ± 4.35 |
Global cognitive scores (2013) | 13.56 ± 6.75 | 13.28 ± 6.63 | 13.41 ± 6.83 | 13.24 ± 6.85 | 14.29 ± 6.64 |
Global cognitive scores (2015) | 12.30 ± 5.99 | 12.20 ± 6.07 | 12.18 ± 6.13 | 12.04 ± 6.07 | 12.78 ± 5.65 |
Global cognitive scores (2018) | 10.76 ± 8.54 | 10.38 ± 8.56 | 10.46 ± 8.42 | 10.36 ± 8.53 | 11.84 ± 8.57 |
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||||
---|---|---|---|---|---|---|---|---|
β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | |
Model 1 | 0 (ref) | −0.0036 (0.0021) | 0.090 | 0.0018 (0.0021) | 0.404 | −0.0055 (0.0022) | 0.011 | |
Model 2 | 0 (ref) | −0.0034 (0.0022) | 0.114 | 0.0020 (0.0021) | 0.344 | −0.0052 (0.0023) | 0.026 | |
Model 3 | 0 (ref) | −0.0033 (0.0018) | 0.065 | 0.0015 (0.0018) | 0.395 | −0.0053(0.0019) | 0.006 |
Reduced Group | Stable Group | Elevated Group | ||||
---|---|---|---|---|---|---|
β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | |
Model 1 | −0.0001 (0.0025) | 0.955 | 0 (ref) | −0.0098 (0.0031) | 0.002 | |
Model 2 | −0.0004 (0.0025) | 0.880 | 0 (ref) | −0.0099 (0.0035) | 0.004 | |
Model 3 | −0.0003 (0.0021) | 0.990 | 0 (ref) | −0.0070 (0.0029) | 0.016 |
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 1 (ref) | 1.0387 (0.9646–1.1185) | 0.315 | 0.9937 (0.9220–1.0710) | 0.869 | 1.0860 (1.0085–1.1695) | 0.029 | |
Model 2 | 1 (ref) | 1.0391 (0.9645–1.1194) | 0.313 | 0.9929 (0.9198–1.0718) | 0.855 | 1.0826 (1.0032–1.1684) | 0.041 | |
Model 3 | 1 (ref) | 1.0389 (0.9643–1.1192) | 0.315 | 0.9920 (0.9191–1.0708) | 0.838 | 1.0814 (1.0020–1.1671) | 0.044 |
Reduced Group | Stable Group | Elevated Group | ||||
---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 0.9463 (0.8083–1.1078) | 0.492 | 1 (ref) | 0.8959 (0.7063–1.1364) | 0.365 | |
Model 2 | 0.9452 (0.8071–1.1068) | 0.484 | 1 (ref) | 0.8937 (0.7045–1.1338) | 0.355 | |
Model 3 | 0.9487 (0.8101–1.1111) | 0.514 | 1 (ref) | 0.8925 (0.7035–1.1323) | 0.349 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fu, J.; Liang, F.; Oniffrey, T.M.; Ding, K.; Zeng, J.; Moore, J.B.; Luo, X.; Li, R. High-Sensitivity C-Reactive Protein, Its Change, and Cognitive Function: A National Population-Based Cohort Study. Brain Sci. 2023, 13, 658. https://doi.org/10.3390/brainsci13040658
Wang Y, Fu J, Liang F, Oniffrey TM, Ding K, Zeng J, Moore JB, Luo X, Li R. High-Sensitivity C-Reactive Protein, Its Change, and Cognitive Function: A National Population-Based Cohort Study. Brain Sciences. 2023; 13(4):658. https://doi.org/10.3390/brainsci13040658
Chicago/Turabian StyleWang, Yechuang, Jialin Fu, Fang Liang, Theresa M. Oniffrey, Kai Ding, Jing Zeng, Justin B. Moore, Xianwu Luo, and Rui Li. 2023. "High-Sensitivity C-Reactive Protein, Its Change, and Cognitive Function: A National Population-Based Cohort Study" Brain Sciences 13, no. 4: 658. https://doi.org/10.3390/brainsci13040658
APA StyleWang, Y., Fu, J., Liang, F., Oniffrey, T. M., Ding, K., Zeng, J., Moore, J. B., Luo, X., & Li, R. (2023). High-Sensitivity C-Reactive Protein, Its Change, and Cognitive Function: A National Population-Based Cohort Study. Brain Sciences, 13(4), 658. https://doi.org/10.3390/brainsci13040658