Hypomagnesemia Is Associated with the Acute Kidney Injury in Traumatic Brain Injury Patients: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of TBI Patients Grouped by Serum Magnesium Level
3.2. Distribution of Magnesium Group Classified by the TBI Severity
3.3. Risk Factors of AKI in TBI Discovered by Logistic Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Astarabadi, M.M.; Khurrum, M.; Asmar, S.; Bible, L.; Chehab, M.; Castanon, L.; Ditillo, M.D.; Douglas, M.; Joseph, B. The impact of non-neurological organ dysfunction on outcomes in severe isolated traumatic brain injury. J. Trauma Acute Care Surg. 2020, 89, 405–410. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Temkin, N.; Barber, J.; Foreman, B.; Komisarow, J.; Korley, F.K.; Laskowitz, D.T.; Mathew, J.P.; Hernandez, A.; Sampson, J.; et al. Association of Early Multiple Organ Dysfunction with Clinical and Functional Outcomes over the Year Following Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. Crit. Care Med. 2021, 49, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Zygun, D.A.; Kortbeek, J.B.; Fick, G.H.; Laupland, K.B.; Doig, C.J. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit. Care Med. 2005, 33, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Zygun, D.; Berthiaume, L.; Laupland, K.; Kortbeek, J.; Doig, C. SOFA is superior to MOD score for the determination of non-neurologic organ dysfunction in patients with severe traumatic brain injury: A cohort study. Crit. Care 2006, 10, R115. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.M.; Bellomo, R.; Nichol, A.; Harley, N.; Macisaac, C.; Cooper, D.J. The incidence of acute kidney injury in patients with traumatic brain injury. Ren. Fail. 2010, 32, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhao, W.G.; Xu, F.L.; Zhang, W.F.; Gu, W.T. Neutrophil gelatinase-associated lipocalin as an early marker of acute kidney injury in patients with traumatic brain injury. J. Nephrol. 2013, 26, 1083–1088. [Google Scholar] [CrossRef]
- Ahmed, M.; Sriganesh, K.; Vinay, B.; Umamaheswara Rao, G.S. Acute kidney injury in survivors of surgery for severe traumatic brain injury: Incidence, risk factors, and outcome from a tertiary neuroscience center in India. Br. J. Neurosurg. 2015, 29, 544–548. [Google Scholar] [CrossRef]
- Li, N.; Zhao, W.G.; Zhang, W.F. Acute kidney injury in patients with severe traumatic brain injury: Implementation of the acute kidney injury network stage system. Neurocrit. Care 2011, 14, 377–381. [Google Scholar] [CrossRef]
- Skrifvars, M.B.; Moore, E.; Mårtensson, J.; Bailey, M.; French, C.; Presneill, J.; Nichol, A.; Little, L.; Duranteau, J.; Huet, O.; et al. Erythropoietin in traumatic brain injury associated acute kidney injury: A randomized controlled trial. Acta Anaesthesiol. Scand. 2019, 63, 200–207. [Google Scholar] [CrossRef]
- Corral, L.; Javierre, C.F.; Ventura, J.L.; Marcos, P.; Herrero, J.I.; Manez, R. Impact of non-neurological complications in severe traumatic brain injury outcome. Crit. Care 2012, 16, R44. [Google Scholar] [CrossRef]
- An, S.; Luo, H.; Wang, J.; Gong, Z.; Tian, Y.; Liu, X.; Ma, J.; Jiang, R. An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles. Ann. Transl. Med. 2020, 8, 194. [Google Scholar] [CrossRef]
- Zygun, D. Non-neurological organ dysfunction in neurocritical care: Impact on outcome and etiological considerations. Curr. Opin. Crit. Care 2005, 11, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.B.; Smith, M. Systemic complications after head injury: A clinical review. Anaesthesia 2007, 62, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Sadan, O.; Singbartl, K.; Kraft, J.; Plancher, J.M.; Greven, A.C.M.; Kandiah, P.; Pimentel, C.; Hall, C.L.; Papangelou, A.; Asbury, W.H.; et al. Low-chloride- versus high-chloride-containing hypertonic solution for the treatment of subarachnoid hemorrhage-related complications: The ACETatE (A low ChloriE hyperTonic solution for brain Edema) randomized trial. J. Intensive Care 2020, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Büttner, S.; Stadler, A.; Mayer, C.; Patyna, S.; Betz, C.; Senft, C.; Geiger, H.; Jung, O.; Finkelmeier, F. Incidence, Risk Factors, and Outcome of Acute Kidney Injury in Neurocritical Care. J. Intensive Care Med. 2020, 35, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yuan, J.; Chi, R.; Ye, H.; Zhou, D.; Wang, S.; Mai, C.; Nie, Z.; Wang, L.; Zhai, Y.; et al. The Incidence, Risk Factors and Outcomes of Postoperative Acute Kidney Injury in Neurosurgical Critically Ill Patients. Sci. Rep. 2017, 7, 4245. [Google Scholar] [CrossRef] [PubMed]
- Altura, B.M. Basic biochemistry and physiology of magnesium: A brief review. Magnes. Trace Elem. 1991, 10, 167–171. [Google Scholar]
- Volpe, S.L. Magnesium in disease prevention and overall health. Adv. Nutr. 2013, 4, 378s–383s. [Google Scholar] [CrossRef]
- Koh, H.B.; Jung, C.-Y.; Kim, H.W.; Kwon, J.Y.; Kim, N.H.; Kim, H.J.; Jhee, J.H.; Han, S.H.; Yoo, T.-H.; Kang, S.-W.; et al. Preoperative Ionized Magnesium Levels and Risk of Acute Kidney Injury After Cardiac Surgery. Am. J. KidneyDis. Off. J. Natl. Kidney Found. 2022, 80, 629–637.e1. [Google Scholar] [CrossRef]
- Yu, X.-Q.; Deng, H.-B.; Liu, Y.; Qu, C.; Duan, Z.-H.; Tong, Z.-H.; Liu, Y.-X.; Li, W.-Q. Serum magnesium level as a predictor of acute kidney injury in patients with acute pancreatitis. World J. Clin. Cases 2021, 9, 10899–10908. [Google Scholar] [CrossRef]
- Morooka, H.; Tanaka, A.; Kasugai, D.; Ozaki, M.; Numaguchi, A.; Maruyama, S. Abnormal magnesium levels and their impact on death and acute kidney injury in critically ill children. Pediatr. Nephrol. 2022, 37, 1157–1165. [Google Scholar] [CrossRef]
- Shen, D.; Wang, Y.; Xu, J.; Li, Y.; Chen, X.; Guo, M.; Geng, X.; Ding, X.; Xu, X. The Effect of Admission Serum Magnesium on the Acute Kidney Injury Among Patients with Malignancy. Cancer Manag. Res. 2020, 12, 7199–7207. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Shi, N.; Wan, Y.; Mei, F.; Qiu, B.; Bao, Y.; Zhang, Y.; Hao, J.; He, J.; Peng, X. Risk Factors of Acute Gastrointestinal Failure in Critically Ill Patients with Traumatic Brain Injury. J. Craniofacial Surg. 2020, 31, e176–e179. [Google Scholar] [CrossRef]
- Iftikhar, P.M.; Anwar, A.; Saleem, S.; Nasir, S.; Inayat, A. Traumatic brain injury causing intestinal dysfunction: A review. J. Clin.Neurosci. Off. J. Neurosurg. Soc. Australas. 2020, 79, 237–240. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Zhu, Y.; Wei, A.; Du, J.; Wang, Y.; Zheng, P.; Tu, M.; Wang, H.; Wen, L.; Yang, X. Traumatic Brain Injury Induces Gastrointestinal Dysfunction and Dysbiosis of Gut Microbiota Accompanied by Alterations of Bile Acid Profile. J. Neurotrauma 2022, 39, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Cheungpasitporn, W.; Thongprayoon, C.; Erickson, S.B. Admission hypomagnesemia and hypermagnesemia increase the risk of acute kidney injury. Ren. Fail. 2015, 37, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Kostov, K.; Halacheva, L. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int. J. Mol. Sci. 2018, 19, 1724. [Google Scholar] [CrossRef] [PubMed]
- Agus, Z.S. Hypomagnesemia. J. Am. Soc.Nephrol. JASN 1999, 10, 1616–1622. [Google Scholar] [CrossRef]
- Nadler, J.L.; Goodson, S.; Rude, R.K. Evidence that prostacyclin mediates the vascular action of magnesium in humans. Hypertension 1987, 9, 379–383. [Google Scholar] [CrossRef]
- Altura, B.M.; Altura, B.T. New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. II. Experimental aspects. Magnesium 1985, 4, 245–271. [Google Scholar] [PubMed]
- Seguro, A.C.; de Araujo, M.; Seguro, F.S.; Rienzo, M.; Magaldi, A.J.; Campos, S.B. Effects of hypokalemia and hypomagnesemia on zidovudine (AZT) and didanosine (ddI) nephrotoxicity in rats. Clin. Nephrol. 2003, 59, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Tejero-Taldo, M.I.; Kramer, J.H.; Mak Iu, T.; Komarov, A.M.; Weglicki, W.B. The nerve-heart connection in the pro-oxidant response to Mg-deficiency. Heart Fail. Rev. 2006, 11, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Shahi, A.; Aslani, S.; Ataollahi, M.; Mahmoudi, M. The role of magnesium in different inflammatory diseases. Inflammopharmacology 2019, 27, 649–661. [Google Scholar] [CrossRef]
- Tam, M.; Gómez, S.; González-Gross, M.; Marcos, A. Possible roles of magnesium on the immune system. Eur. J. Clin. Nutr. 2003, 57, 1193–1197. [Google Scholar] [CrossRef]
- Ferrè, S.; Baldoli, E.; Leidi, M.; Maier, J.A. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim. Biophys. Acta 2010, 1802, 952–958. [Google Scholar] [CrossRef]
Variables | Overall Patients (n = 2470) | Group 1: Magnesium < 1.5 mg/dL (n = 330, 13.4%) | Group 2: Magnesium 1.5–2.2 mg/dL (n = 1999, 80.9%) | Group 3: Magnesium > 2.2 mg/dL (n = 141, 5.7%) | p |
---|---|---|---|---|---|
Age (year) | 62.0 (41.3–80.3) | 50.6 (30.9–69.2) | 62.9 (41.9–80.6) | 78.5 (57.7–86.1) | <0.001 |
Gender (Male, %) | 1519 (61.5%) | 173 (52.4%) | 1258 (62.9%) | 88 (62.4%) | 0.001 |
Comorbidities | |||||
Diabetes (%) | 352 (14.3%) | 44 (13.3%) | 273 (13.7%) | 35 (24.8%) | 0.001 |
Hypertension (%) | 872 (35.3%) | 86 (26.1%) | 737 (36.9%) | 49 (34.8%) | 0.001 |
Cerebral vascular disease (%) | 44 (1.8%) | 3 (0.9%) | 41 (2.1%) | 0 | 0.090 |
Coronary heart disease (%) | 297 (12.0%) | 12 (3.6%) | 257 (12.9%) | 28 (19.9%) | <0.001 |
Chronic renal disease (%) | 145 (5.9%) | 10 (3.0%) | 101 (5.1%) | 34 (24.1%) | <0.001 |
Vital signs on admission | |||||
Systolic blood pressure (mmHg) | 132 (117–147) | 127 (108–141) | 132 (118–147) | 132 (118–147) | <0.001 |
Diastolic blood pressure (mmHg) | 67 (56–77) | 65 (54–75) | 67 (57–78) | 65 (54–77) | 0.008 |
Heart rate (s−1) | 84 (72–96) | 90 (77–103) | 83 (72–95) | 82 (71–91) | <0.001 |
Respiratory rate (s−1) | 18 (15–20) | 18 (15–20) | 18 (15–20) | 17 (15–20) | 0.614 |
GCS | 11 (6–15) | 8 (3–12) | 13 (7–15) | 14 (8–15) | <0.001 |
TBI severity | <0.001 | ||||
Mild (%) | 1197 (48.5%) | 80 (24.2%) | 1035 (51.8%) | 82 (58.2%) | |
Moderate (%) | 338 (13.7%) | 61 (18.5%) | 260 (13.0%) | 17 (12.1%) | |
Severe (%) | 935 (37.9%) | 189 (57.3%) | 704 (35.2%) | 42 (29.8%) | |
ISS | 16 (16–25) | 20 (16–29) | 16 (16–24) | 16 (16–18) | <0.001 |
Intracranial injury type | |||||
Epidural hematoma (%) | 547 (22.1%) | 84 (25.5%) | 445 (22.3%) | 18 (12.8%) | 0.010 |
Subdural hematoma (%) | 1316 (53.3%) | 159 (48.2%) | 1067 (53.4%) | 90 (63.8%) | 0.008 |
Subarachnoid hemorrhage (%) | 957 (38.7%) | 132 (40.0%) | 782 (39.1%) | 43 (30.5%) | 0.112 |
Intraparenchymal hemorrhage (%) | 445 (18.0%) | 55 (16.7%) | 371 (18.6%) | 19 (13.5%) | 0.250 |
Laboratory tests | |||||
White blood cell (109/L) | 11.80 (8.60–15.90) | 13.45 (8.80–18.17) | 11.60 (8.60–15.60) | 10.40 (7.50–15.70) | <0.001 |
Platelet (109/L) | 233 (185–288) | 219.50 (170–287) | 235 (189–288) | 234 (177–285) | 0.033 |
Red blood cell (109/L) | 4.16 (3.69–4.60) | 3.81 (3.39–4.31) | 4.20 (3.75–4.63) | 4.18 (3.74–4.53) | <0.001 |
Hemoglobin (g/dL) | 12.9 (11.5–14.2) | 11.9 (10.6–13.4) | 13.0 (11.7–14.3) | 12.7 (11.1–14.1) | <0.001 |
Blood urea nitrogen (mg/dL) | 16 (12–22) | 14 (10–19) | 16 (12–22) | 24 (15–45) | <0.001 |
Serum creatinine (mg/dL) | 0.9 (0.7–1.1) | 0.8 (0.7–1.1) | 0.9 (0.8–1.1) | 1.1 (0.9–1.7) | <0.001 |
Sodium (mmol/L) | 139 (137–141) | 140 (137–142) | 139 (137–141) | 139 (136–141) | 0.624 |
Potassium (mmol/L) | 4.0 (3.7–4.3) | 3.8 (3.5–4.1) | 4.0 (3.7–4.3) | 4.3 (3.9–4.7) | <0.001 |
Chloride (mmol/L) | 104 (101–107) | 106 (102–110) | 104 (101–107) | 102 (99–106) | <0.001 |
Medical interventions | |||||
RBC transfusion (%) | 202 (8.2%) | 59 (17.9%) | 137 (6.9%) | 6 (4.3%) | <0.001 |
Platelet transfusion (%) | 222 (9.0%) | 46 (13.9%) | 167 (8.4%) | 9 (6.4%) | 0.002 |
Vasopressor use (%) | 151 (6.1%) | 44 (13.3%) | 96 (4.8%) | 11 (7.8%) | <0.001 |
Mechanical ventilation (%) | 1137 (46.0%) | 222 (67.3%) | 872 (43.6%) | 43 (30.5%) | <0.001 |
Neurosurgical operation (%) | 580 (23.5%) | 98 (29.7%) | 447 (22.4%) | 35 (24.8%) | 0.013 |
AKI stage (%) | 0.002 | ||||
None | 1951 (79.0%) | 237 (71.8%) | 1612 (80.6%) | 102 (72.3%) | |
1 | 412 (16.7%) | 69 (20.9%) | 310 (15.5%) | 33 (23.4%) | |
2 | 78 (3.2%) | 16 (4.8%) | 58 (2.9%) | 4 (2.8%) | |
3 | 29 (1.2%) | 8 (2.4%) | 19 (1.0%) | 2 (1.4%) | |
30-day mortality (%) | 406 (16.4%) | 64 (19.4%) | 306 (15.3%) | 36 (25.5%) | 0.002 |
Length of ICU stay (day) | 2.3 (1.2–5.5) | 3.7 (1.8–9.9) | 2.1 (1.2–5.0) | 2.3 (1.6–4.5) | <0.001 |
Length of hospital stay (day) | 6.4 (3.6–12.2) | 9.7 (4.7–17.7) | 5.9 (3.5–11.5) | 6.5 (3.7–10.6) | <0.001 |
Overall Patients (n = 2470) | Mild TBI (n = 1197, 48.5%) | Moderate TBI (n = 338, 13.7%) | Severe TBI (n = 935, 37.9%) | p | |
---|---|---|---|---|---|
Magnesium group | <0.001 | ||||
Group 1: Magnesium <1.5 mg/dL | 330 (13.4%) | 80 (6.7%) | 61 (18.0%) | 189 (20.2%) | |
Group 2: Magnesium 1.5–2.2 mg/dL | 1999 (80.9%) | 1035 (86.5%) | 260 (76.9%) | 704 (75.3%) | |
Group 3: Magnesium >2.2 mg/dL | 141 (5.7%) | 82 (6.9%) | 17 (5.0%) | 42 (4.5%) | |
Serum magnesium level (mg/dL) | 1.8 (1.6–2.0) | 1.9 (1.7–2.1) | 1.7 (1.5–2.0) | 1.7 (1.5–1.9) | <0.001 |
Variables | Univariate Logistic Regression Analysis | Multivariate Logistic Regression Analysis | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | ||
Age | 1.014 | 1.009–1.018 | <0.001 | 1.015 | 1.009–1.021 | <0.001 | |
Male gender | 0.939 | 0.770–1.144 | 0.531 | ||||
Comorbidities | |||||||
Diabetes | 1.899 | 1.479–2.438 | <0.001 | 1.163 | 0.870–1.556 | 0.308 | |
Hypertension | 1.052 | 0.860–1.287 | 0.622 | ||||
Cerebral vascular disease | 1.259 | 0.632–2.508 | 0.513 | ||||
Coronary heart disease | 1.801 | 1.377–2.356 | <0.001 | 1.252 | 0.920–1.704 | 0.153 | |
Chronic renal disease | 4.272 | 3.036–6.010 | <0.001 | 1.795 | 1.149–2.805 | 0.010 | |
Vital signs on admission | |||||||
Systolic blood pressure | 1.000 | 0.996–1.004 | 0.928 | ||||
Diastolic blood pressure | 0.995 | 0.989–1.001 | 0.082 | ||||
Heart rate | 1.003 | 0.997–1.008 | 0.317 | ||||
Respiratory rate | 1.012 | 0.995–1.030 | 0.156 | ||||
GCS | 0.942 | 0.922–0.962 | <0.001 | 1.009 | 0.977–1.042 | 0.590 | |
ISS | 1.027 | 1.016–1.038 | <0.001 | 1.024 | 1.012–1.037 | <0.001 | |
Intracranial injury type | |||||||
Epidural hematoma | 0.905 | 0.714–1.147 | 0.409 | ||||
Subdural hematoma | 0.985 | 0.812–1.196 | 0.880 | ||||
Subarachnoid hemorrhage | 0.939 | 0.769–1.147 | 0.537 | ||||
Intraparenchymal hemorrhage | 0.896 | 0.693–1.159 | 0.403 | ||||
Laboratory tests | |||||||
White blood cell | 1.001 | 0.998–1.005 | 0.457 | ||||
Platelet | 0.998 | 0.997–0.999 | 0.004 | 1.000 | 0.999–1.001 | 0.938 | |
Red blood cell | 0.613 | 0.534–0.705 | <0.001 | 0.887 | 0.636–1.236 | 0.479 | |
Hemoglobin | 0.843 | 0.805–0.884 | <0.001 | 0.989 | 0.884–1.107 | 0.850 | |
Blood urea nitrogen | 1.035 | 1.027–1.044 | <0.001 | 1.006 | 0.995–1.018 | 0.288 | |
Serum creatinine | 2.132 | 1.772–2.566 | <0.001 | 1.534 | 1.237–1.903 | <0.001 | |
Sodium | 0.996 | 0.978–1.014 | 0.657 | ||||
Potassium | 1.169 | 1.022–1.339 | 0.023 | 1.018 | 0.871–1.189 | 0.822 | |
Chloride | 0.998 | 0.982–1.014 | 0.787 | ||||
Magnesium | |||||||
1.5–2.2 | 1.000 | Reference | 1.000 | Reference | |||
<1.5 | 1.635 | 1.255–2.129 | <0.001 | 1.446 | 1.074–1.949 | 0.015 | |
>2.2 | 1.593 | 1.083–2.341 | 0.018 | 0.972 | 0.610–1.548 | 0.905 | |
Medical interventions | |||||||
RBC transfusion | 1.299 | 0.931–1.813 | 0.124 | ||||
Platelet transfusion | 1.845 | 1.365–2.494 | <0.001 | 1.238 | 0.882–1.736 | 0.217 | |
Vasopressor | 2.754 | 1.959–3.872 | <0.001 | 1.769 | 1.212–2.581 | 0.003 | |
Mechanical ventilation | 2.302 | 1.887–2.809 | <0.001 | 2.520 | 1.885–3.368 | <0.001 | |
Neurosurgery | 1.190 | 0.952–1.487 | 0.126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, R.; He, M.; Kang, Y. Hypomagnesemia Is Associated with the Acute Kidney Injury in Traumatic Brain Injury Patients: A Pilot Study. Brain Sci. 2023, 13, 593. https://doi.org/10.3390/brainsci13040593
Liu Z, Wang R, He M, Kang Y. Hypomagnesemia Is Associated with the Acute Kidney Injury in Traumatic Brain Injury Patients: A Pilot Study. Brain Sciences. 2023; 13(4):593. https://doi.org/10.3390/brainsci13040593
Chicago/Turabian StyleLiu, Zhenjun, Ruoran Wang, Min He, and Yan Kang. 2023. "Hypomagnesemia Is Associated with the Acute Kidney Injury in Traumatic Brain Injury Patients: A Pilot Study" Brain Sciences 13, no. 4: 593. https://doi.org/10.3390/brainsci13040593
APA StyleLiu, Z., Wang, R., He, M., & Kang, Y. (2023). Hypomagnesemia Is Associated with the Acute Kidney Injury in Traumatic Brain Injury Patients: A Pilot Study. Brain Sciences, 13(4), 593. https://doi.org/10.3390/brainsci13040593