Role of Non-Coding RNAs in TGF-β Signalling in Glioma
Abstract
:1. Introduction
1.1. Gliomas
1.2. Transforming Growth Factor-β (TGF-β)
1.3. Non-Coding RNAs (ncRNAs)
1.3.1. miRNAs
1.3.2. LncRNAs
1.3.3. CircRNAs
2. miRNAs Involved in the TGF-β Pathway in GBM
2.1. Oncogenic miRNAs Involved in the TGF-β Pathway in Gliomas
2.1.1. miR-182
2.1.2. miR-15a
2.1.3. miR-193b
2.1.4. miR-210-3p
2.1.5. miR-148a
2.1.6. miR-10a/b
2.1.7. miR-10b
2.1.8. miR-92b
2.1.9. miR-503
2.2. Tumour Suppressor miRNAs Involved in the TGF-β Pathway in Gliomas
2.2.1. miR-127-3p
2.2.2. miR-564
3. LncRNAs Involved in the TGF-β Pathway in GBM
3.1. Oncogenic lncRNAs Involved in the TGF-β Pathway in Gliomas
3.1.1. LncRNA-ATB
3.1.2. LncRNA-UCA1
3.1.3. LINC00645
3.1.4. LINC00115
3.1.5. H19 and HOXD-AS2
3.1.6. MIR4435-2 Host Gene (MIR4435-2 HG)
3.1.7. LncRNA RPSAP52
3.1.8. LncRNA Plasmacytoma Variant Translocation-1 (PVT1)
3.1.9. LncRNA-MUF
3.1.10. LINC01711
3.2. Tumour Suppressor lncRNAs Involved in the TGF-β Pathway in Gliomas
3.2.1. LncRNA TCONS_00020456
3.2.2. LncRNA RP11-838N2.4
4. CircRNAs Involved in the TGF-β Pathway in GBM
4.1. Oncogenic circRNAs Involved in the TGF-β Pathway in Gliomas
CircARID1A
4.2. Tumour Suppressor circRNAs Involved in the TGF-β Pathway in Gliomas
CircCD44
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Stupp, R.; Brada, M.J.; van den Bent, M.; Tonn, J.-C.; Pentheroudakis, G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, iii93–iii101. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R.; et al. Glioma. Nat. Rev. Dis. Primers 2015, 1, 15017. [Google Scholar] [CrossRef] [PubMed]
- Raviram, R.; Raman, A.; Preissl, S.; Ning, J.; Wu, S.; Koga, T.; Zhang, K.; Brennan, C.W.; Zhu, C.; Luebeck, J.; et al. Integrated analysis of single-cell chromatin state and transcriptome identified common vulnerability despite glioblastoma heterogeneity. Proc. Natl. Acad. Sci. USA 2023, 120, e2210991120. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, M.Y.; Assem, M. Glioblastoma Genomics: A Very Complicated Story; Exon Publications: Brisbane, Australia, 2017; Chapter 1; pp. 3–25. [Google Scholar]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef]
- Gimple, R.C.; Bhargava, S.; Dixit, D.; Rich, J.N. Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019, 33, 591–609. [Google Scholar] [CrossRef]
- Damodharan, S.; Lara-Velazquez, M.; Williamsen, B.C.; Helgager, J.; Dey, M. Diffuse Intrinsic Pontine Glioma: Molecular Landscape, Evolving Treatment Strategies and Emerging Clinical Trials. J. Pers. Med. 2022, 12, 840. [Google Scholar] [CrossRef]
- Srikanthan, D.; Taccone, M.S.; Van Ommeren, R.; Ishida, J.; Krumholtz, S.L.; Rutka, J.T. Diffuse intrinsic pontine glioma: Current insights and future directions. Chin. Neurosurg. J. 2021, 7, 6. [Google Scholar] [CrossRef]
- Burster, T.; Traut, R.; Yermekkyzy, Z.; Mayer, K.; Westhoff, M.-A.; Bischof, J.; Knippschild, U. Critical View of Novel Treatment Strategies for Glioblastoma: Failure and Success of Resistance Mechanisms by Glioblastoma Cells. Front. Cell Dev. Biol. 2021, 9, 695325. [Google Scholar] [CrossRef]
- Aldape, K.; Brindle, K.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 2019, 16, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016, 3, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front. Oncol. 2020, 9, 1547. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Somasundaram, K. Glioblastoma vs temozolomide: Can the red queen race be won? Cancer Biol Ther. 2019, 20, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Maksoud, S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol. Neurobiol. 2022, 59, 5326–5365. [Google Scholar] [CrossRef]
- Kaminska, B.; Kocyk, M.; Kijewska, M. TGF Beta Signaling and Its Role in Glioma Pathogenesis. Adv. Exp. Med. Biol. 2013, 986, 171–187. [Google Scholar] [CrossRef]
- Han, J.; A Alvarez-Breckenridge, C.; Wang, Q.-E.; Yu, J. TGF-β signaling and its targeting for glioma treatment. Am. J. Cancer Res. 2015, 5, 945–955. [Google Scholar]
- Saghazadeh, A.; Rezaei, N. Central Inflammatory Cytokines in Tuberculous Meningitis: A Systematic Review and Meta-analysis. J. Interf. Cytokine Res. 2022, 42, 95–107. [Google Scholar] [CrossRef]
- Kubiczkova, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. TGF-β—An excellent servant but a bad master. J. Transl. Med. 2012, 10, 183. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- David, C.J.; Massagué, J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 2018, 19, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Pardoux, C.; Hall, M.C.; Lee, P.S.; Warburton, D.; Qing, J.; Smith, S.M.; Derynck, R. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007, 26, 3957–3967. [Google Scholar] [CrossRef] [PubMed]
- Seoane, J.; Gomis, R.R. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb. Perspect. Biol. 2017, 9, a022277. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.H.; Thomas, T.Z.; Masumori, N.; Bhowmick, N.A.; Gorska, A.E.; Shyr, Y.; Kasper, S.; Case, T.; Roberts, R.L.; Shappell, S.B.; et al. The Loss of TGF-β Signaling Promotes Prostate Cancer Metastasis. Neoplasia 2003, 5, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ling, L.; van Dam, H.; Zhou, F.; Zhang, L. TGF-β signaling in cancer metastasis. Acta Biochim. Biophys. Sin. 2018, 50, 121–132. [Google Scholar] [CrossRef]
- Frei, K.; Gramatzki, D.; Tritschler, I.; Schroeder, J.J.; Espinoza, L.; Rushing, E.J.; Weller, M. Transforming growth factor-β pathway activity in glioblastoma. Oncotarget 2015, 6, 5963–5977. [Google Scholar] [CrossRef]
- Roy, L.-O.; Poirier, M.-B.; Fortin, D. Transforming growth factor-beta and its implication in the malignancy of gliomas. Target. Oncol. 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Urbanavičiūtė, R.; Zabitaitė, R.; Kriščiukaitis, A.; Deltuva, V.P.; Skiriutė, D. Serum protein triplet TGF-β1, TIMP-1, and YKL-40 serve as diagnostic and prognostic profile for astrocytoma. Sci. Rep. 2021, 11, 13100. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, Z.; Xu, N.; Liu, B.; Fu, Z.; Lian, C.; Guo, H. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling. Cell Death Dis. 2017, 8, e2885. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, Y.; Ma, L. ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 2015, 14, 481–487. [Google Scholar] [CrossRef]
- Liang, H.; Chen, G.; Li, J.; Yang, F. Snail expression contributes to temozolomide resistance in glioblastoma. Am. J. Transl. Res. 2019, 11, 4277–4289. [Google Scholar]
- Nie, E.; Jin, X.; Miao, F.; Yu, T.; Zhi, T.; Shi, Z.; Wang, Y.; Zhang, J.; Xie, M.; You, Y. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro-Oncology 2020, 23, 435–446. [Google Scholar] [CrossRef]
- Bogdahn, U.; Hau, P.; Stockhammer, G.; Venkataramana, N.K.; Mahapatra, A.K.; Suri, A.A.; Balasubramaniam, A.; Nair, S.; Oliushine, V.; Parfenov, V.; et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neuro-Oncology 2011, 13, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Rodon, J.; Carducci, M.A.; Sepulveda-Sánchez, J.M.; Azaro, A.; Calvo, E.; Seoane, J.; Braña, I.; Sicart, E.; Gueorguieva, I.; Cleverly, A.L.; et al. First-in-Human Dose Study of the Novel Transforming Growth Factor-β Receptor I Kinase Inhibitor LY2157299 Monohydrate in Patients with Advanced Cancer and Glioma. Clin. Cancer Res. 2015, 21, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Hau, P.; Jachimczak, P.; Bogdahn, U. Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev. AnticancerTher. 2009, 9, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef]
- Dexheimer, P.J.; Cochella, L. MicroRNAs: From Mechanism to Organism. Front. Cell Dev. Biol. 2020, 8, 409. [Google Scholar] [CrossRef]
- Niaz, S.; Hussain, M.U. Role of GW182 protein in the cell. Int. J. Biochem. Cell Biol. 2018, 101, 29–38. [Google Scholar] [CrossRef]
- Fukaya, T.; Iwakawa, H.-O.; Tomari, Y. MicroRNAs Block Assembly of eIF4F Translation Initiation Complex in Drosophila. Mol. Cell 2014, 56, 67–78. [Google Scholar] [CrossRef] [PubMed]
- de la Mata, M.; Gaidatzis, D.; Vitanescu, M.; Stadler, M.B.; Wentzel, C.; Scheiffele, P.; Filipowicz, W.; Grosshans, H. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. 2015, 16, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Z.; Corey, D.R. The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Biochemistry 2018, 57, 5247–5256. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Medarova, Z.; Moore, A. Role of microRNAs in glioblastoma. Oncotarget 2021, 12, 1707–1723. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Chang, H.Y. Long Noncoding RNAs: Molecular Modalities to Organismal Functions. Annu. Rev. Biochem. 2020, 89, 283–308. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Shree, B.; Mohapatra, S.; Swati; Basu, A.; Sharma, V. The Expanding Regulatory Mechanisms and Cellular Functions of Long Non-coding RNAs (lncRNAs) in Neuroinflammation. Mol. Neurobiol. 2021, 58, 2916–2939. [Google Scholar] [CrossRef]
- Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-Coding RNA 2019, 5, 17. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Shree, B.; Sharma, V. Linc‘ing’ RNA to DNA Repair. Proc. Indian Natn. Sci. Acad. 2018, 84, 521–529. [Google Scholar]
- Swati; Sharma, V. The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology. Mol. Biol. Rep. 2022, 49, 10825–10847. [Google Scholar] [CrossRef] [PubMed]
- Shree, B.; Das, K.; Sharma, V. Emerging role of transforming growth factor-β-regulated long non-coding RNAs in prostate cancer pathogenesis. Cancer Pathog. Ther. 2023, 1, 195–204. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Fang, S.; Kang, Y.; Wu, W.; Hao, Y.; Li, Z.; Bu, D.; Sun, N.; Zhang, M.Q.; et al. NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2015, 44, D203–D208. [Google Scholar] [CrossRef]
- Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021, 220, e202009045. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, O.; Tamizkar, K.H.; Sharifi, G.; Taheri, M.; Ghafouri-Fard, S. Emerging Role of Long Non-Coding RNAs in the Pathobiology of Glioblastoma. Front. Oncol. 2021, 10, 625884. [Google Scholar] [CrossRef]
- Wu, X.; Yang, L.; Wang, J.; Hao, Y.; Wang, C.; Lu, Z. The Involvement of Long Non-Coding RNAs in Glioma: From Early Detection to Immunotherapy. Front. Immunol. 2022, 13, 897754. [Google Scholar] [CrossRef]
- Stackhouse, C.T.; Gillespie, G.Y.; Willey, C.D. Exploring the Roles of lncRNAs in GBM Pathophysiology and Their Therapeutic Potential. Cells 2020, 9, 2369. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H.; Zhang, J.; Liu, Y.; Feng, C.; Han, F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol. 2020, 18, e3000582. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.-L.; Wang, Y.; et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer 2020, 6, 319–336. [Google Scholar] [CrossRef]
- Rajappa, A.; Banerjee, S.; Sharma, V.; Khandelia, P. Circular RNAs: Emerging Role in Cancer Diagnostics and Therapeutics. Front. Mol. Biosci. 2020, 7, 577938. [Google Scholar] [CrossRef]
- Conn, V.M.; Hugouvieux, V.; Nayak, A.; Conos, S.A.; Capovilla, G.; Cildir, G.; Jourdain, A.; Tergaonkar, V.; Schmid, M.; Zubieta, C.; et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 2017, 3, 17053. [Google Scholar] [CrossRef] [PubMed]
- Salami, R.; Salami, M.; Mafi, A.; Vakili, O.; Asemi, Z. Circular RNAs and glioblastoma multiforme: Focus on molecular mechanisms. Cell Commun. Signal. 2022, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Piao, H. Research Progress of circRNAs in Glioblastoma. Front. Cell Dev. Biol. 2021, 9, 791892. [Google Scholar] [CrossRef] [PubMed]
- Mafi, A.; Rahmati, A.; Babaei Aghdam, Z.; Salami, R.; Salami, M.; Vakili, O.; Aghadavod, E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell. Mol. Biol. Lett. 2022, 27, 65. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef]
- Hu, F.; Peng, Y.; Fan, X.; Zhang, X.; Jin, Z. Circular RNAs: Implications of signaling pathways and bioinformatics in human cancer. Cancer Biol. Med. 2023, 20, 104–128. [Google Scholar] [CrossRef]
- Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, J.; Dong, Z.; Li, X. Cancer-related circular RNA: Diverse biological functions. Cancer Cell Int. 2021, 21, 11. [Google Scholar] [CrossRef]
- Qian, Y.; Shi, L.; Luo, Z. Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020, 7, 612393. [Google Scholar] [CrossRef] [PubMed]
- Nandwani, A.; Rathore, S.; Datta, M. LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Lett. 2021, 501, 162–171. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; et al. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci. 2020, 16, 2628–2647. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Xiao, Y.; Ma, J.; Tang, Y.; Tian, B.; Zhang, Y.; Li, X.; Wu, Z.; Yang, D.; Zhou, Y.; et al. Circular RNAs in Cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol. Cancer 2019, 18, 90. [Google Scholar] [CrossRef]
- Papoutsoglou, P.; Moustakas, A. Long non-coding RNAs and TGF-β signaling in cancer. Cancer Sci. 2020, 111, 2672–2681. [Google Scholar] [CrossRef]
- Janakiraman, H.; House, R.P.; Gangaraju, V.K.; Diehl, J.A.; Howe, P.H.; Palanisamy, V. The Long (lncRNA) and Short (miRNA) of It: TGFβ-Mediated Control of RNA-Binding Proteins and Noncoding RNAs. Mol. Cancer Res. 2018, 16, 567–579. [Google Scholar] [CrossRef]
- Song, L.; Liu, L.; Wu, Z.; Li, Y.; Ying, Z.; Lin, C.; Wu, J.; Hu, B.; Cheng, S.Y.; Li, M.; et al. TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J. Clin. Investig. 2012, 122, 3563–3578. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, X.; An, S.; Li, X.; Pan, L.; Liu, H.; Liu, J.; Gao, J.; Zhao, Z.; Li, G.; et al. Deletion of miR-15a inhibited glioma development via targeting Smad7 and inhibiting EMT pathway. Aging 2021, 13, 24339–24348. [Google Scholar] [CrossRef]
- Zhong, Q.; Wang, T.; Lu, P.; Zhang, R.; Zou, J.; Yuan, S. miR-193b promotes cell proliferation by targeting Smad3 in human glioma: miR-193b Promotes Cell Proliferation in Human Glioma. J. Neurosci. Res. 2014, 92, 619–626. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C.; Zeng, J.; Zhao, Z.; Hu, Q. MicroRNA-210-3p is transcriptionally upregulated by hypoxia induction and thus promoting EMT and chemoresistance in glioma cells. PLoS ONE 2021, 16, e0253522. [Google Scholar] [CrossRef]
- Wang, H.; Pan, J.Q.; Luo, L.; Ning, X.J.; Ye, Z.P.; Yu, Z.; Li, W.S. NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma. Mol. Cancer 2015, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, J.; Lan, Q. TGF-β-induced miR10a/b expression promotes human glioma cell migration by targeting PTEN. Mol. Med. Rep. 2013, 8, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wei, F.; Xia, H.; Liu, H.; Dong, X.; Zhang, Y.; Luo, Q.; Liu, Y.; Li, Y. MicroRNA-10b mediates TGF-β1-regulated glioblastoma proliferation, migration and epithelial-mesenchymal transition. Int. J. Oncol. 2017, 50, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.B.; Cai, L.; Lin, S.J.; Lu, J.L.; Yao, Y.; Zhou, L.F. The miR-92b functions as a potential oncogene by targeting on Smad3 in glioblastomas. Brain Res. 2013, 1529, 16–25. [Google Scholar] [CrossRef]
- Guo, P.; Yu, Y.; Li, H.; Zhang, D.; Gong, A.; Li, S.; Liu, W.; Cheng, L.; Qiu, Y.; Yao, W.; et al. TGF-β1-induced miR-503 controls cell growth and apoptosis by targeting PDCD4 in glioblastoma cells. Sci. Rep. 2017, 7, 11569. [Google Scholar] [CrossRef]
- Jiang, H.; Jin, C.; Liu, J.; Hua, D.; Zhou, F.; Lou, X.; Zhao, N.; Lan, Q.; Huang, Q.; Yoon, J.-G.; et al. Next Generation Sequencing Analysis of miRNAs: MiR-127-3p Inhibits Glioblastoma Proliferation and Activates TGF-β Signaling by Targeting SKI. OMICS A J. Integr. Biol. 2014, 18, 196–206. [Google Scholar] [CrossRef]
- Jiang, C.; Shen, F.; Du, J.; Hu, Z.; Li, X.; Su, J.; Wang, X.; Huang, X. MicroRNA-564 is downregulated in glioblastoma and inhibited proliferation and invasion of glioblastoma cells by targeting TGF-β1. Oncotarget 2016, 7, 56200–56208. [Google Scholar] [CrossRef]
- Ma, C.-C.; Xiong, Z.; Zhu, G.-N.; Wang, C.; Zong, G.; Wang, H.-L.; Bian, E.-B.; Zhao, B. Long non-coding RNA ATB promotes glioma malignancy by negatively regulating miR-200a. J. Exp. Clin. Cancer Res. 2016, 35, 90. [Google Scholar] [CrossRef]
- Tang, F.; Wang, H.; Chen, E.; Bian, E.; Xu, Y.; Ji, X.; Yang, Z.; Hua, X.; Zhang, Y.; Zhao, B. LncRNA-ATB promotes TGF-β-induced glioma cells invasion through NF-κB and P38/MAPK pathway. J. Cell. Physiol. 2019, 234, 23302–23314. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zhong, Q.; Wu, J.; Tang, Z. Lnc RNA UCA 1 is necessary for TGF -β-induced epithelial–mesenchymal transition and stemness via acting as a ce RNA for Slug in glioma cells. FEBS Open Bio 2018, 8, 1855–1865. [Google Scholar] [CrossRef]
- Li, C.; Zheng, H.; Hou, W.; Bao, H.; Xiong, J.; Che, W.; Gu, Y.; Sun, H.; Liang, P. Long non-coding RNA linc00645 promotes TGF-β-induced epithelial–mesenchymal transition by regulating miR-205-3p-ZEB1 axis in glioma. Cell Death Dis. 2019, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yu, B.; Li, Y.; Zhang, W.; Alvarez, A.A.; Hu, B.; Cheng, S.Y.; Feng, H. TGF-β-activated lncRNA LINC00115 is a critical regulator of glioma stem-like cell tumorigenicity. EMBO Rep. 2019, 20, e48170. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, M.; Xia, P.; Wang, L.; Lu, Z. Targeting long non-coding RNA PVT1/TGF-β/Smad by p53 prevents glioma progression. Cancer Biol. Ther. 2022, 23, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Shree, B.; Tripathi, S.; Sharma, V. Transforming Growth Factor-Beta-Regulated LncRNA-MUF Promotes Invasion by Modulating the miR-34a Snail1 Axis in Glioblastoma Multiforme. Front. Oncol. 2022, 11, 788755. [Google Scholar] [CrossRef] [PubMed]
- Shree, B.; Sengar, S.; Tripathi, S.; Sharma, V. LINC01711 promotes transforming growth factor-beta (TGF-β) induced invasion in glioblastoma multiforme (GBM) by acting as a competing endogenous RNA for miR-34a and promoting ZEB1 expression. Neurosci. Lett. 2023, 792, 136937. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Lv, W.; Li, Y.; Zhang, L.; Dong, C.; Zhang, J.; Cheng, G. LncRNA RPSAP52 Upregulates TGF-β1 to Increase Cancer Cell Stemness and Predict Postoperative Survival in Glioblastoma. Cancer Manag. Res. 2020, 12, 2541–2547. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, B.; Yang, Y.; Li, Z.; Zhao, P.; Wu, W.; Zhang, H.; Mao, J. LncRNA MIR4435-2HG potentiates the proliferation and invasion of glioblastoma cells via modulating miR-1224-5p/TGFBR2 axis. J. Cell. Mol. Med. 2020, 24, 6362–6372. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Wang, Y.; Zhang, L.; Wang, J.; Wang, W.; Han, X.; Mu, C.; Gao, D. Identification of novel LncRNA targeting Smad2/PKCα signal pathway to negatively regulate malignant progression of glioblastoma. J. Cell. Physiol. 2020, 235, 3835–3848. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, N.; Liu, B.; Huang, Y.; Zeng, H.; Yang, Z.; He, Z.; Guo, H. Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines. Oncotarget 2016, 7, 43835–43851. [Google Scholar] [CrossRef]
- Li, B.; Chen, J.; Wu, Y.; Luo, H.; Ke, Y. Decrease of circARID1A retards glioblastoma invasion by modulating miR-370-3p/ TGFBR2 pathway. Int. J. Biol. Sci. 2022, 18, 5123–5135. [Google Scholar] [CrossRef]
- Chen, Z.; Su, S.; Yang, M.; Wang, F.; Chen, M. Profiling and Bioinformatics Analyses of Differential Circular RNA Expression in Glioblastoma Multiforme Cells under Hypoxia. J. Mol. Neurosci. 2022, 72, 2451–2463. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Ren, X.; Fu, H.; Li, D.; Chen, X.; Zu, X.; Liu, Q.; Wu, M. LRRC4 mediates the formation of circular RNA CD44 to inhibit GBM cell proliferation. Mol. Ther.-Nucleic Acids 2021, 26, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.; Zhang, Y.Y.; Li, J.S.; Chan, M.K.; Chen, J.; Tang, Y.; Zhou, Y.; Zhang, D.; Leung, K.T.; To, K.F.; et al. LncRNA-Dependent Mechanisms of Transforming Growth Factor-β: From Tissue Fibrosis to Cancer Progression. ncRNA 2022, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Song, J.; Zhang, W.; Ran, L. Identification of MFI2-AS1, a Novel Pivotal lncRNA for Prognosis of Stage III/IV Colorectal Cancer. Dig. Dis. Sci. 2020, 65, 3538–3550. [Google Scholar] [CrossRef]
- Abdelmoety, A.A.; Elhassafy, M.Y.; Said, R.S.O.; Elsheaita, A.; Mahmoud, M.M. The role of UCA1 and WRAP53 in diagnosis of hepatocellular carcinoma: A single-center case-control study. Clin. Exp. Hepatol. 2023, 9, 129–137. [Google Scholar] [CrossRef]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics—Challenges and potential solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef]
- Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.-K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig. New Drugs 2016, 35, 180–188. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef]
- Bennett, C.F.; Krainer, A.R.; Cleveland, D.W. Antisense Oligonucleotide Therapies for Neurodegenerative Diseases. Annu. Rev. Neurosci. 2019, 42, 385–406. [Google Scholar] [CrossRef]
- Min, H.S.; Kim, H.J.; Naito, M.; Ogura, S.; Toh, K.; Hayashi, K.; Kim, B.S.; Fukushima, S.; Anraku, Y.; Miyata, K.; et al. Systemic Brain Delivery of Antisense Oligonucleotides across the Blood-Brain Barrier with a Glucose-Coated Polymeric Nanocarrier. Angew. Chem. Int. Ed. Engl. 2020, 59, 8173–8180. [Google Scholar] [CrossRef]
- Chen, S.; Deng, X.; Sheng, H.; Rong, Y.; Zheng, Y.; Zhang, Y.; Lin, J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. Mol. Ther. Nucleic Acids 2021, 26, 417–431. [Google Scholar] [CrossRef] [PubMed]
miRNA | Expression (up ↑ or down ↓) | Type of Regulation | Function | Mechanism of Action in GBM | Type of Model | Cell Lines | Biomarkers/ Therapeutic Target | Reference |
---|---|---|---|---|---|---|---|---|
Oncogenic miRNAs | ||||||||
miR-182 | ↑ | Regulator of TGF-β signalling | miR-182 promotes GBM cell growth, colony formation, invasion, and anchorage-independent growth | miR-182 promotes GBM pathogenesis by activating the NF-κB signalling by suppressing CYLD, a negative regulator of NF-κB | Human, in vitro, and in vivo | U373MG, LN229 | +/+ | [78] |
miR-15a | ↑ | Regulator of TGF-β signalling | miR-15a promotes GBM cell invasion and migration | miR-15a promotes GBM cell migration and invasion by inhibiting SMAD7 | Human, in vitro, and in vivo | SHG139 | −/− | [79] |
miR-193b | ↑ | Regulator of TGF-β signalling | miR-193b promotes GBM cell proliferation | miR-193b promotes GBM cell growth by directly targeting SMAD3 and restricting the tumour suppressive effects of SMAD3 through p21 down-regulation | Human and in vitro | U87, and U251 | −/+ | [80] |
miR-210-3p | ↑ | Regulator of TGF-β signalling | miR-210-3p promotes GBM cell proliferation, invasion, and TMZ resistance | miR-210-3p promotes hypoxia-mediated induction of TGF-β expression. It is induced in hypoxic conditions, and it promotes the transcriptional activity of NF-κB in GBM | In vitro | U87, A172, and HS683 GBM cells | −/− | [81] |
miR-148a | ↑ | Regulator of TGF-β signalling | miR-148a promotes migration and invasion of GBM cells | miR-148a promotes the expression of pSMAD3 by downregulating the expression of negative regulators of TGF-β signalling-QKI and SKI. It induces DNA binding activity of NF-κB; miR-148a establishes an essential link between NF-κB and TGF-β signalling in promoting GBM pathogenesis | Human, in vitro, and in vivo | LN18 and U-138MG cells | +/+ | [82] |
miR-10a/10b | ↑ | Effector of TGF-β signalling | miR-10a/10b promotes GBM cell proliferation, invasion | miR-10a/10b promotes GBM pathogenesis by inhibiting PTEN downstream of TGF-β | Human and in vitro | U251 and SHG-44 cells | −/− | [83] |
miR-10b | ↑ | Effector of TGF-β signalling | miR-10b promotes GBM cell proliferation, migration, and invasion | miR-10b promotes TGF-β-mediated GBM cell proliferation, migration, and invasion by suppressing E-cadherin, APAF1, and PTEN | In vitro and in vivo | U87 and U251 cells | −/+ | [84] |
miR-92b | ↑ | Regulator of TGF-β signalling | miR-92b promotes GBM cell proliferation | miR-92b Promotes GBM growth by attenuating the inhibitory effects of TGF-β by targeting SMAD3 and thereby downregulating p21 | Human, in vitro, and in vivo | U251 and SHG66 cells | −/+ | [85] |
miR-503 | ↑ | Effector of TGF-β signalling | miR-503 enhances the proliferation, invasion, migration, and drug resistance in GBM cells | TGF-β induces miR-503 expression. miR-503 further enhances the proliferation, invasion, migration, and drug resistance in GBM cells by directly targeting PDCD4 | Human, in vitro | U251, A172, LN-229, T98G, U87MG, and U-138MG GBM cells | −/− | [86] |
Tumour suppressor miRNAs | ||||||||
miR-127-3p | ↓ | Regulator of TGF-β signalling | miR-127-3p suppresses GBM proliferation | miR-127-3p suppressed GBM cell growth by inhibiting SKI oncogene and activating the tumour suppression effect of TGF-β signalling | Human, in vitro, and in vivo | T98G and LN229 cells | −/+ | [87] |
miR-564 | ↓ | Regulator of TGF-β signalling | miR-564 attenuates GBM cell proliferation, invasion, and migration | miR-564 downregulates TGF-β1 and SMAD4. It reduces phosphorylated SMAD2/3 levels in GBM cells | Human, in vitro, and in vivo | U87-MG | −/+ | [88] |
LncRNA | Expression (up ↑ or down ↓) | Type of Regulation | Function | Mechanism of Action in GBM | Type of Model | Cell Lines | Biomarkers/Therapeutic Target | Reference |
---|---|---|---|---|---|---|---|---|
Oncogenic lncRNAs | ||||||||
LncRNA-ATB | ↑ | Regulator of TGF-β signalling | LncRNA-ATB promotes cell proliferation, colony formation, and invasion of GBM cells | LncRNA-ATB is induced by TGF-β. It competitively binds miR-200a to stabilize TGF-β2 and promotes TGF-β2-mediated GBM cell proliferation and invasion | In vitro and in vivo mouse model | U251, and A172 | +/+ | [89] |
LncRNA-ATB | ↑ | Regulator of TGF-β signalling | LncRNA-ATB promotes GBM cell invasion | LncRNA-ATB is induced by TGF-β. It promotes TGF-β-mediated GBM cell invasion through the NF-κB and P38/MAPK pathways | Human—in vitro | LN18 and U251 | −/− | [90] |
LncRNA-UCA1 | ↑ | Effector of TGF-β signalling | LncRNA-UCA1 promotes invasion and stemness of glioma cells | LncRNA-UCA1 is induced by TGF-β. It Acts as a molecular sponge for miR-1 and miR-203a to promote Slug expression and Slug-mediated GBM cell stemness | in vitro | U87 and U251 | −/− | [91] |
LINC00645 | ↑ | Effector of TGF-β signalling | LINC00645 promotes glioma cell proliferation, invasion, migration, and stemness | LINC00645 is induced by TGF-β and acts as a molecular sponge for miR-205 to stabilize ZEB1 | Human, in vitro, and in vivo | T98G and U251 | +/+ | [92] |
LINC00115 | ↑ | Effector of TGF-β signalling | LINC00115 aids GSC’s self-renewal by acting as a ceRNA for transcription factors ZEB1 and ZNF596 by sponging miR-200. It also promotes GSC’s tumourigenicity through ZNF596/EZH2/ STAT3 signal axis | LINC00115 is induced by TGF-β. It Competitively binds to miR-200 and promotes stemness in GSCs by stabilizing ZEB1. It also binds to miR-200 to stabilize ZNF596, and promotes stemness in GSCs through the ZNF596/EZH2/STAT3 signal axis | Human, in vitro, and in vivo | U87, LN229, LN18, and T98G | −/+ | [93] |
H19, and HOXD-AS2 | ↑ | Effector of TGF-β signalling | H19 and HOXD-AS2 promote TMZ resistance in GBM cells | H19 and HOXD-AS2 are induced by TGF-β. They confer TMZ resistance by regulating the biogenesis of tumour suppressor miRNA, miR-198, by competing with KSRP | In vitro | D54, P-GBM2 cells | −/+ | [33] |
LncRNA-PVT1 | ↑ | Regulator of TGF-β signalling | LncRNA-PVT1 promotes GBM cell viability, proliferation, migration, invasion, and restricts apoptosis of GBM cells | LncRNA-PVT1 promotes phosphorylation of SMAD2/3 and GBM progression | In vitro and in vivo mouse model | HS683, T98G, U373, SHG44, A172, U251, and U87-MG | −/- | [94] |
LncRNA-MUF | ↑ | Positive feedback loop with TGF-β signalling | LncRNA-MUF promotes GBM cell proliferation, migration, invasion, and TMZ resistance and restricts apoptosis | LncRNA-MUF is induced by TGF-β and promotes GBM cell invasion by sponging miR-34a and by stabilizing SNAIL1. It also promotes phosphorylation of SMAD2/3 | In vitro | T98G, U87-MG, LN229, and LN18 | +/+ | [95] |
LINC01711 | ↑ | Regulator of TGF-β signalling | LINC01711 promotes GBM cell proliferation, migration, invasion, TMZ resistance and restricts apoptosis | LINC01711 is induced by TGF-β. It promotes GBM cell invasion by sponging miR-34a and by stabilizing ZEB1 | In vitro | T98G, U87-MG, LN229, and LN18 | +/+ | [96] |
LncRNA RPSAP52 | ↑ | Regulator of TGF-β signalling | LncRNA RPSAP52 promotes stemness in GBM cells | LncRNA RPSAP52 promotes stemness in GBM by promoting TGF-β1 expression | Human, in vitro | U373 | −/− | [97] |
MIR4435-2HG | ↑ | Regulator of TGF-β signalling | MIR4435-2HG promotes GBM cell proliferation, colony formation, migration, and invasion | MIR4435-2HG promotes GBM cell proliferation by sponging miR-1224-5p and by stabilizing the expression of TGFBR2 | In vitro, and in vivo | U251, and U87-MG | −/+ | [98] |
Tumour suppressor lncRNAs | ||||||||
LncRNA—TCONS_00020456 | ↓ | Regulator of TGF-β signalling | LncRNA—TCONS_00020456 promotes the expression of mesenchymal markers in GBM cells and promotes invasion and migration of GBM cells | LncRNA—TCONS_00020456 promotes invasion in GBM cells by phosphorylating SMAD2/3 | In vitro | U251 | +/− | [99] |
LncRNA RP11-838N2.4 | ↓ | Regulator of TGF-β signalling | LncRNA RP11-838N2.4 restricts GBM cell proliferation and mediates TMZ sensitivity | LncRNA RP11-838N2.4 downregulates expression of TGF-β1, TGFBR1, SMAD2, SMAD3, SMAD4 | In vitro and in vivo | TMZ-resistant GBM cells (U87TR, U251TR) | +/− | [100] |
Circular RNA | Expression (up ↑ or down ↓) | Type of Regulation | Function | Mechanism of Action in GBM | Type of Model | Cell Lines | Biomarkers/ Therapeutic Target | Reference |
---|---|---|---|---|---|---|---|---|
Oncogenic Circular RNA | ||||||||
CircARID1A | ↑ | Regulator of TGF-β signalling | CircARID1A promotes GBM cell migration and invasion | CircARID1A promotes GBM invasion by sponging tumour suppressor miR-370-3p to stabilize TGFBR2 | Human, in vitro, and in vivo | U87-MG, and U118 | +/− | [101] |
Tumour suppressor circular RNA | ||||||||
CircCD44 | ↓ | Regulator of TGF-β signalling | CircCD44 attenuates GBM cell proliferation, colony formation, and invasion | CircCD44 sponges miR-326 and miR-330-5p to stabilize SMAD6 | Human and in vitro | Primary GBM cell lines 1104, 1124c, and 1216 | +/− | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shree, B.; Sharma, V. Role of Non-Coding RNAs in TGF-β Signalling in Glioma. Brain Sci. 2023, 13, 1376. https://doi.org/10.3390/brainsci13101376
Shree B, Sharma V. Role of Non-Coding RNAs in TGF-β Signalling in Glioma. Brain Sciences. 2023; 13(10):1376. https://doi.org/10.3390/brainsci13101376
Chicago/Turabian StyleShree, Bakhya, and Vivek Sharma. 2023. "Role of Non-Coding RNAs in TGF-β Signalling in Glioma" Brain Sciences 13, no. 10: 1376. https://doi.org/10.3390/brainsci13101376
APA StyleShree, B., & Sharma, V. (2023). Role of Non-Coding RNAs in TGF-β Signalling in Glioma. Brain Sciences, 13(10), 1376. https://doi.org/10.3390/brainsci13101376