Electroencephalogram Features of Perioperative Neurocognitive Disorders in Elderly Patients: A Narrative Review of the Clinical Literature
Abstract
:1. Introduction
2. Intraoperative EEG Features and PND
2.1. Processed Electroencephalography Indices
2.2. EEG Spectral Analysis
2.2.1. Alpha Band Activity
2.2.2. Alpha Power and Preoperative Cognitive Decline
2.2.3. Alpha Power and Postoperative Cognitive Decline
2.3. Burst Suppression (BS)
2.3.1. Burst Suppression Is Detrimental for POD
2.3.2. Burst Suppression Is Protective or Has No Effect on POD
2.3.3. Burst Suppression and Alpha Band Activity
2.4. EEG Connectivity
2.5. EEG-Based Complexity
3. Postoperative EEG Features and PND
3.1. EEG Spectral Analysis
3.2. EEG Emergence Trajectory
3.3. EEG Connectivity
3.4. EEG-Based Complexity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Daiello, L.A.; Racine, A.M.; Yun Gou, R.; Marcantonio, E.R.; Xie, Z.; Kunze, L.J.; Vlassakov, K.V.; Inouye, S.K.; Jones, R.N. Postoperative Delirium and Postoperative Cognitive Dysfunction. Anesthesiology 2019, 131, 477–491. [Google Scholar] [CrossRef]
- Marcantonio, E.R. Postoperative delirium: A 76-year-old woman with delirium following surgery. JAMA 2012, 308, 73–81. [Google Scholar] [CrossRef]
- Evered, L.; Atkins, K.; Silbert, B.; Scott, D.A. Acute peri-operative neurocognitive disorders: A narrative review. Anaesthesia 2022, 77 (Suppl. S1), 34–42. [Google Scholar] [CrossRef]
- Chung, C.K.E.; Poon, C.C.M.; Irwin, M.G. Peri-operative neurological monitoring with electroencephalography and cerebral oximetry: A narrative review. Anaesthesia 2022, 77 (Suppl. S1), 113–122. [Google Scholar] [CrossRef]
- Evered, L.; Silbert, B.; Knopman, D.S.; Scott, D.A.; DeKosky, S.T.; Rasmussen, L.S.; Oh, E.S.; Crosby, G.; Berger, M.; Eckenhoff, R.G.; et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Anesthesiology 2018, 121, 1005–1012. [Google Scholar]
- Koch, S.; Spies, C. Neuromonitoring in the elderly. Curr. Opin. Anaesthesiol. 2019, 32, 101–107. [Google Scholar] [CrossRef]
- Bonatti, G.; Iannuzzi, F.; Amodio, S.; Mandelli, M.; Nogas, S.; Sottano, M.; Brunetti, I.; Battaglini, D.; Pelosi, P.; Robba, C. Neuromonitoring during general anesthesia in non-neurologic surgery. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 255–266. [Google Scholar] [CrossRef]
- Shafi, M.M.; Santarnecchi, E.; Fong, T.G.; Jones, R.N.; Marcantonio, E.R.; Pascual-Leone, A.; Inouye, S.K. Advancing the Neurophysiological Understanding of Delirium. J. Am. Geriatr. Soc. 2017, 65, 1114–1118. [Google Scholar] [CrossRef]
- Chan, M.T.; Cheng, B.C.; Lee, T.M.; Gin, T.; CODA Trial Group. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J. Neurosurg. Anesthesiol. 2013, 25, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Evered, L.A.; Chan, M.T.; Han, R.; Chu, M.H.; Cheng, B.P.; Scott, D.A.; Pryor, K.O.; Sessler, D.I.; Veselis, R.; Frampton, C.; et al. Anaesthetic depth and delirium after major surgery: A randomised clinical trial. Br. J. Anaesth. 2021, 127, 704–712. [Google Scholar] [CrossRef]
- Wildes, T.S.; Mickle, A.M.; Abdallah, A.B.; Maybrier, H.R.; Oberhaus, J.; Budelier, T.P.; Kronzer, A.; McKinnon, S.L.; Park, D.; Torres, B.A.; et al. Effect of Electroencephalography-Guided Anesthetic Administration on Postoperative Delirium Among Older Adults Undergoing Major Surgery. JAMA 2019, 321, 473. [Google Scholar] [CrossRef] [PubMed]
- Cartailler, J.; Touchard, C.; Parutto, P.; Gayat, E.; Paquet, C.; Vallee, F. Brain fragility among middle-aged and elderly patients from electroencephalogram during induction of anaesthesia. Eur. J. Anaesthesiol. 2021, 38, 1304–1306. [Google Scholar] [CrossRef]
- Giattino, C.M.; Gardner, J.E.; Sbahi, F.M.; Roberts, K.C.; Cooter, M.; Moretti, E.; Browndyke, J.N.; Mathew, J.P.; Woldorff, M.G.; Berger, M.; et al. Intraoperative Frontal Alpha-Band Power Correlates with Preoperative Neurocognitive Function in Older Adults. Front. Syst. Neurosci. 2017, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.G.; Egaña, J.I.; Maldonado, F.A.; Sáez, I.A.; Reyes, F.I.; Soulat, H.; Purdon, P.L.; Penna, A. Association Between Lower Preoperative Cognition with Intraoperative Electroencephalographic Features Consistent with Deep States of Anesthesia in Older Patients: An Observational Cohort Study. Anesth. Analg. 2021, 133, 205–214. [Google Scholar] [CrossRef]
- Touchard, C.; Cartailler, J.; Levé, C.; Serrano, J.; Sabbagh, D.; Manquat, E.; Joachim, J.; Mateo, J.; Gayat, E.; Engemann, D.; et al. Propofol Requirement and EEG Alpha Band Power During General Anesthesia Provide Complementary Views on Preoperative Cognitive Decline. Front. Aging Neurosci. 2020, 12, 593320. [Google Scholar] [CrossRef]
- Koch, S.; Feinkohl, I.; Chakravarty, S.; Windmann, V.; Lichtner, G.; Pischon, T.; Brown, E.N.; Spies, C.; BioCog Study Group. Cognitive Impairment Is Associated with Absolute Intraoperative Frontal α-Band Power but Not with Baseline α-Band Power: A Pilot Study. Dement. Geriatr. Cogn. Disord. 2019, 48, 83–92. [Google Scholar] [CrossRef]
- Scally, B.; Burke, M.R.; Bunce, D.; Delvenne, J.F. Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol. Aging 2018, 71, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Fritz, B.A.; Kalarickal, P.L.; Maybrier, H.R.; Muench, M.R.; Dearth, D.; Chen, Y.; Escallier, K.E.; Abdallah, A.B.; Lin, N.; Avidan, M.S. Intraoperative Electroencephalogram Suppression Predicts Postoperative Delirium. Anesth. Analg. 2016, 122, 234–242. [Google Scholar] [CrossRef]
- Momeni, M.; Meyer, S.; Docquier, M.A.; Lemaire, G.; Kahn, D.; Khalifa, C.; Rosal Martins, M.; Van Dyck, M.; Jacquet, L.M.; Peeters, A.; et al. Predicting postoperative delirium and postoperative cognitive decline with combined intraoperative electroencephalogram monitoring and cerebral near-infrared spectroscopy in patients undergoing cardiac interventions. J. Clin. Monit. Comput. 2019, 33, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Soehle, M.; Dittmann, A.; Ellerkmann, R.K.; Baumgarten, G.; Putensen, C.; Guenther, U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: A prospective, observational study. BMC Anesthesiol. 2015, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Pedemonte, J.C.; Plummer, G.S.; Chamadia, S.; Locascio, J.J.; Hahm, E.; Ethridge, B.; Gitlin, J.; Ibala, R.; Mekonnen, J.; Colon, K.M.; et al. Electroencephalogram Burst-suppression during Cardiopulmonary Bypass in Elderly Patients Mediates Postoperative Delirium. Anesthesiology 2020, 133, 280–292. [Google Scholar] [CrossRef]
- Lele, A.V.; Furman, M.; Myers, J.; Kinney, G.; Sharma, D.; Hecker, J. Inadvertent Burst Suppression During Total Intravenous Anesthesia in 112 Consecutive Patients Undergoing Spinal Instrumentation Surgery. J. Neurosurg. Anesth. 2021. ahead of print. [Google Scholar]
- Fritz, B.A.; Maybrier, H.R.; Avidan, M.S. Intraoperative electroencephalogram suppression at lower volatile anaesthetic concentrations predicts postoperative delirium occurring in the intensive care unit. Br. J. Anaesth. 2018, 121, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.J.; Jin, Z.; Sands, L.P.; Pleasants, D.; Tabatabai, S.; Hong, Y.; Leung, J.M. ADAPT-2: A Randomized Clinical Trial to Reduce Intraoperative EEG Suppression in Older Surgical Patients Undergoing Major Noncardiac Surgery. Anesth. Analg. 2020, 131, 1228–1236. [Google Scholar] [CrossRef]
- Deiner, S.; Luo, X.; Silverstein, J.H.; Sano, M. Can Intraoperative Processed EEG Predict Postoperative Cognitive Dysfunction in the Elderly? Clin. Ther. 2015, 37, 2700–2705. [Google Scholar] [CrossRef]
- Shao, Y.R.; Kahali, P.; Houle, T.T.; Deng, H.; Colvin, C.; Dickerson, B.C.; Brown, E.N.; Purdon, P.L. Low Frontal Alpha Power Is Associated with the Propensity for Burst Suppression: An Electroencephalogram Phenotype for a “Vulnerable Brain”. Anesth. Analg. 2020, 131, 1529–1539. [Google Scholar] [CrossRef]
- PlPlummer, G.S.; Ibala, R.; Hahm, E.; An, J.; Gitlin, J.; Deng, H.; Shelton, K.T.; Solt, K.; Qu, J.Z.; Akeju, O. Electroencephalogram dynamics during general anesthesia predict the later incidence and duration of burst-suppression during cardiopulmonary bypass. Clin. Neurophysiol. 2019, 130, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Acker, L.; Ha, C.; Zhou, J.; Manor, B.; Giattino, C.M.; Roberts, K.; Berger, M.; Wright, M.C.; Colon-Emeric, C.; Devinney, M.; et al. Electroencephalogram-Based Complexity Measures as Predictors of Post-operative Neurocognitive Dysfunction. Front. Syst. Neurosci. 2021, 15, 126. [Google Scholar] [CrossRef]
- Evans, J.L.; Nadler, J.W.; Preud’homme, X.A.; Fang, E.; Daughtry, R.L.; Chapman, J.B.; Attarian, D.; Wellman, S.; Krystal, A.D. Pilot prospective study of post-surgery sleep and EEG predictors of post-operative delirium. Clin. Neurophysiol. 2017, 128, 1421–1425. [Google Scholar] [CrossRef] [PubMed]
- Numan, T.; van den Boogaard, M.; Kamper, A.M.; Rood, P.J.T.; Peelen, L.M.; Slooter, A.J.C.; Abawi, M.; van den Boogaard, M.; Claassen, J.A.; Coesmans, M.; et al. Delirium detection using relative delta power based on 1-minute single-channel EEG: A multicentre study. Br. J. Anaesth. 2019, 122, 60–68. [Google Scholar] [CrossRef]
- Plaschke, K.; Fichtenkamm, P.; Schramm, C.; Hauth, S.; Martin, E.; Verch, M.; Karck, M.; Kopitz, J. Early postoperative delirium after open-heart cardiac surgery is associated with decreased bispectral EEG and increased cortisol and interleukin-6. Intensiv. Care Med. 2010, 36, 2081–2089. [Google Scholar] [CrossRef]
- Plaschke, K.; Hill, H.; Engelhardt, R.; Thomas, C.; Von Haken, R.; Scholz, M.; Kopitz, J.; Bardenheuer, H.J.; Weisbrod, M.; Weigand, M.A. EEG changes and serum anticholinergic activity measured in patients with delirium in the intensive care unit. Anaesthesia 2007, 62, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Hesse, S.; Kreuzer, M.; Hight, D.; Gaskell, A.; Devari, P.; Singh, D.; Taylor, N.B.; Whalin, M.K.; Lee, S.; Sleigh, J.W.; et al. Association of electroencephalogram trajectories during emergence from anaesthesia with delirium in the postanaesthesia care unit: An early sign of postoperative complications. Br. J. Anaesth. 2019, 122, 622–634. [Google Scholar] [CrossRef]
- Kreuzer, M.; Whalin, M.K.; Hesse, S.D.; Riso, M.A.; García, P.S. Anesthetic Management of a Patient with Multiple Previous Episodes of Postanesthesia Care Unit Delirium. A A Case Rep. 2017, 8, 311–315. [Google Scholar] [CrossRef]
- Whalin, M.K.; Kreuzer, M.; Halenda, K.M.; García, P.S. Missed Opportunities for Intervention in a Patient with Prolonged Postoperative Delirium. Clin. Ther. 2015, 37, 2706–2710. [Google Scholar] [CrossRef]
- Numan, T.; Slooter, A.; van der Kooi, A.W.; Hoekman, A.; Suyker, W.; Stam, C.J.; van Dellen, E. Functional connectivity and network analysis during hypoactive delirium and recovery from anesthesia. Clin. Neurophysiol. 2017, 128, 914–924. [Google Scholar] [CrossRef]
- van Dellen, E.; van der Kooi, A.W.; Numan, T.; Koek, H.L.; Klijn, F.A.; Buijsrogge, M.P.; Stam, C.J.; Slooter, A.J. Decreased functional connectivity and disturbed directionality of information flow in the electroencephalography of intensive care unit patients with delirium after cardiac surgery. Anesthesiology 2014, 121, 328–335. [Google Scholar] [CrossRef]
- Tanabe, S.; Mohanty, R.; Lindroth, H.; Casey, C.; Ballweg, T.; Farahbakhsh, Z.; Krause, B.; Prabhakaran, V.; Banks, M.I.; Sanders, R.D. Cohort study into the neural correlates of postoperative delirium: The role of connectivity and slow-wave activity. Br. J. Anaesth. 2020, 125, 55–66. [Google Scholar] [CrossRef]
- Tanabe, S.; Parker, M.; Lennertz, R.; Pearce, R.A.; Banks, M.I.; Sanders, R. D Reduced Electroencephalogram Complexity in Postoperative Delirium. J. Gerontol. Ser. A 2022, 77, 502–506. [Google Scholar] [CrossRef]
- MacKenzie, K.K.; Britt-Spells, A.M.; Sands, L.P.; Leung, J.M. Processed Electroencephalogram Monitoring and Postoperative Delirium. Anesthesiology 2018, 129, 417–427. [Google Scholar] [CrossRef]
- Punjasawadwong, Y.; Chau-in, W.; Laopaiboon, M.; Punjasawadwong, S.; Pin-on, P. Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database Syst. Rev. 2018, 5, D11283. [Google Scholar] [CrossRef] [PubMed]
- Radtke, F.M.; Franck, M.; Lendner, J.; Krüger, S.; Wernecke, K.D.; Spies, C.D. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br. J. Anaesth. 2013, 110, i98–i105. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, F.; Wang, J.; Ai, P.; Wei, C.; Wu, A.; Xie, W. Electroencephalography-Guided Anesthetic Delivery for Preventing Postoperative Delirium in Adults: An Updated Meta-analysis. Anesth. Analg. 2020, 131, 712–719. [Google Scholar] [CrossRef]
- Ni, K.; Cooter, M.; Gupta, D.K.; Thomas, J.; Hopkins, T.J.; Miller, T.E.; James, M.L.; Kertai, M.D.; Berger, M. Paradox of age: Older patients receive higher age-adjusted minimum alveolar concentration fractions of volatile anaesthetics yet display higher bispectral index values. Br. J. Anaesth. 2019, 123, 288–297. [Google Scholar] [CrossRef]
- Hans, P.; Dewandre, P.Y.; Brichant, J.F.; Bonhomme, V. Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br. J. Anaesth. 2005, 94, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.L.; Liley, D.T. Nitrous Oxide Paradoxically Modulates Slow Electroencephalogram Oscillations. Anesth. Analg. 2011, 113, 758–765. [Google Scholar] [CrossRef]
- Chan, M.T.; Hedrick, T.L.; Egan, T.D.; García, P.S.; Koch, S.; Purdon, P.L.; Ramsay, M.A.; Miller, T.E.; McEvoy, M.D.; Gan, T.J. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on the Role of Neuromonitoring in Perioperative Outcomes. Anesth. Analg. 2020, 130, 1278–1291. [Google Scholar] [CrossRef]
- Saadeh, W.; Khan, F.H.; Altaf, M.A.B. Design and Implementation of a Machine Learning Based EEG Processor for Accurate Estimation of Depth of Anesthesia. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 658–669. [Google Scholar] [CrossRef]
- Purdon, P.L.; Pavone, K.J.; Akeju, O.; Smith, A.C.; Sampson, A.L.; Lee, J.; Zhou, D.W.; Solt, K.; Brown, E.N. The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br. J. Anaesth. 2015, 115, i46–i57. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.H.; Baxter, M.G. The ageing cortical synapse: Hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 2012, 13, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Peters, A. Structural changes that occur during normal aging of primate cerebral hemispheres. Neurosci. Biobehav. Rev. 2002, 26, 733–741. [Google Scholar] [CrossRef]
- Bollimunta, A.; Mo, J.; Schroeder, C.E.; Ding, M. Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations. J. Neurosci. 2011, 31, 4935–4943. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, R.; Egaña, J.I.; Saez, I.; Reyes, F.; Briceño, C.; Venegas, M.; Lavado, I.; Penna, A. Intraoperative Low Alpha Power in the Electroencephalogram Is Associated with Postoperative Subsyndromal Delirium. Front. Syst. Neurosci. 2019, 13, 56. [Google Scholar] [CrossRef]
- Vijayan, S.; Ching, S.; Purdon, P.L.; Brown, E.N.; Kopell, N.J. Thalamocortical Mechanisms for the Anteriorization of Alpha Rhythms during Propofol-Induced Unconsciousness. J. Neurosci. 2013, 33, 11070–11075. [Google Scholar] [CrossRef]
- Lee, K.H.; Egan, T.D.; Johnson, K.B. Raw and processed electroencephalography in modern anesthesia practice: A brief primer on select clinical applications. Korean J. Anesthesiol. 2021, 74, 465–477. [Google Scholar] [CrossRef]
- Gaskell, A.; Pullon, R.; Hight, D.; Termaat, J.; Mans, G.; Voss, L.; Kreuzer, M.; Schmid, S.; Kratzer, S.; Rodriguez, A.; et al. Modulation of frontal EEG alpha oscillations during maintenance and emergence phases of general anaesthesia to improve early neurocognitive recovery in older patients: Protocol for a randomised controlled trial. Trials 2019, 20, 146. [Google Scholar] [CrossRef] [PubMed]
- Barreto Chang, O.L.; Pawar, N. Burst Suppression During General Anesthesia and Postoperative Outcomes: Mini Review. Front. Syst. Neurosci. 2022, 15, 166. [Google Scholar]
- Ackland, G.L.; Pryor, K.O. Electroencephalography-guided anaesthetic administration does not impact postoperative delirium among older adults undergoing major surgery: An independent discussion of the ENGAGES trial. Br. J. Anaesth. 2019, 123, 112–117. [Google Scholar] [CrossRef]
- Lobo, F.A.; Vacas, S.; Rossetti, A.O.; Robba, C.; Taccone, F.S. Does electroencephalographic burst suppression still play a role in the perioperative setting? Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Valchanov, K.; Falter, F. Methylene Blue for CPB. Anesth. Analg. 2007, 104, 1296. [Google Scholar] [CrossRef]
- Shortal, B.P.; Hickman, L.B.; Mak-McCully, R.A.; Wang, W.; Brennan, C.; Ung, H.; Litt, B.; Tarnal, V.; Janke, E.; Picton, P.; et al. Duration of EEG suppression does not predict recovery time or degree of cognitive impairment after general anaesthesia in human volunteers. Br. J. Anaesth. 2019, 123, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Muhlhofer, W.G.; Zak, R.; Kamal, T.; Rizvi, B.; Sands, L.P.; Yuan, M.; Zhang, X.; Leung, J.M. Burst-suppression ratio underestimates absolute duration of electroencephalogram suppression compared with visual analysis of intraoperative electroencephalogram. Br. J. Anaesth. 2017, 118, 755–761. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, G.C.; Tewarie, P.; Vidaurre, D.; Liuzzi, L.; Woolrich, M.W.; Brookes, M.J. Dynamics of large-scale electrophysiological networks: A technical review. Neuroimage 2018, 180 Pt B, 559–576. [Google Scholar] [CrossRef]
- Ku, S.W.; Lee, U.; Noh, G.J.; Jun, I.G.; Mashour, G.A. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS ONE 2011, 6, e25155. [Google Scholar] [CrossRef]
- Lee, H.; Noh, G.J.; Joo, P.; Choi, B.M.; Silverstein, B.H.; Kim, M.; Wang, J.; Jung, W.S.; Kim, S. Diversity of functional connectivity patterns is reduced in propofol-induced unconsciousness. Hum. Brain Mapp. 2017, 38, 4980–4995. [Google Scholar] [CrossRef]
- Stam, C.J.; van Straaten, E.C.W. The organization of physiological brain networks. Clin. Neurophysiol. 2012, 123, 1067–1087. [Google Scholar] [CrossRef]
- Wayne, P.M.; Gow, B.J.; Costa, M.D.; Peng, C.K.; Lipsitz, L.A.; Hausdorff, J.M.; Davis, R.B.; Walsh, J.N.; Lough, M.; Novak, V.; et al. Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies. PLoS ONE 2014, 9, e114731. [Google Scholar]
- Manor, B.; Costa, M.D.; Hu, K.; Newton, E.; Starobinets, O.; Kang, H.G.; Peng, C.K.; Novak, V.; Lipsitz, L.A. Physiological complexity and system adaptability: Evidence from postural control dynamics of older adults. J. Appl. Physiol. 2010, 109, 1786–1791. [Google Scholar] [CrossRef]
- van der Kooi, A.W.; Zaal, I.J.; Klijn, F.A.; Koek, H.L.; Meijer, R.C.; Leijten, F.S.; Slooter, A.J. Delirium Detection Using EEG. Chest 2015, 147, 94–101. [Google Scholar] [CrossRef]
- Compston, A. The Berger rhythm: Potential changes from the occipital lobes in man, by E.D. Adrian and B.H.C. Matthews (From the Physiological Laboratory, Cambridge). Brain 1934: 57; 355–385. Brain 2010, 133, 3–6. [Google Scholar] [CrossRef]
- Labonte, A.K.; Kafashan, M.; Huels, E.R.; Blain-Moraes, S.; Basner, M.; Kelz, M.B.; Mashour, G.A.; Avidan, M.S.; Palanca, B.J.A.; Muench, M.; et al. The posterior dominant rhythm: An electroencephalographic biomarker for cognitive recovery after general anaesthesia. Br. J. Anaesth. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Bimonte, S.; Di Napoli, R. Delayed Emergence from Anesthesia: What We Know and How We Act. Local Reg. Anesth. 2020, 13, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Hight, D.F.; Dadok, V.M.; Szeri, A.J.; García, P.S.; Voss, L.; Sleigh, J.W. Emergence from general anesthesia and the sleep-manifold. Front. Syst. Neurosci. 2014, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Mahanna-Gabrielli, E.; Schenning, K.J.; Eriksson, L.I.; Browndyke, J.N.; Wright, C.B.; Evered, L.; Scott, D.A.; Wang, N.Y.; Brown IV, C.H.; Oh, E.; et al. State of the clinical science of perioperative brain health: Report from the American Society of Anesthesiologists Brain Health Initiative Summit 2018. Br. J. Anaesth. 2019, 123, 464–478. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Sample Characteristics | Surgery | Primary Anesthetic Maintenance Drug | Cognitive Function Tool | EEG Set-Up | Summary Finding |
---|---|---|---|---|---|---|---|
Chan et al. [9] | RCT | n = 921 BIS guided anesthesia n = 462 Routine care anesthesia n = 459 Age ≥60 | Elective major surgery | Propofol | At 3 months after surgery A neuropsychology battery of tests | Intra. BIS | Without BIS-guided anesthesia |
Evered et al. [10] | RCT | n = 515 BIS 50 n = 253 BIS 35 n = 262 Age ≥60 | Major surgery | Volatile anesthetic | Post. 3D-CAM/CAM-ICU | Intra. BIS | Deep anesthesia |
Wildes et al. [11] | RCT | n = 1213 Delirium n = 297 Non-delirium n = 916 Age ≥60 | Major surgery | Volatile anesthetics | Post. CAM/CAM-ICU/chart review | Intra. BIS | n.s. processed EEG indices |
Cartailler et al. [12] | POS | n = 38 Cognitive decline n = 18 No cognitive decline n = 20 Age = 69 (10.6) | Orthopedic surgery/neuroradiology intervention | Propofol | Pre. MoCA | During induction of general anesthesia, SedLine brain function monitor | ↑ TAD ↓ Alpha power |
Giattino et al. [13] | POS | n = 50 Age = 69 (5.5) | Non-cardiac, non-neurologic surgery | Propofol/isoflurane | Pre. neurocognitive test battery | Intra. 32-channel EEG/ BIS | ↓ Alpha power |
Gutiérrez et al. [14] | RS | n= 35 Low MoCA group n = 12 High MoCA group n = 23 Age ≥60 | Elective major abdominal surgery | Sevoflurane or desflurane | Pre. MoCA | Intra. 16-channels EEG | ↓ Alpha-beta power ↓ Alpha peak frequency ↓ Alpha band coherence ↑ PAC |
Touchard et al. [15] | POS | n = 42 CD n = 17 Non-CD n = 25 Age = 59.4 (18.8) | Interventional neuroradiology or orthopedic surgery | Propofol | Pre. MoCA | Intra. Sedline brain function monitor | ↓ Alpha power |
Koch et al. [16] | POS | n = 38 Lower cognitive n = 14 Normal cognitive n = 24 Age = 71.8 (4.6) | Elective surgery | Propofol/sevoflurane/desflurane | Pre. 6 neuropsychological tests | Intra. SedLine Root Monitor | ↓ Alpha power ↓ Alpha -peak power |
Gutierrez et al. [17] | POS | n = 30 PD/PSSD n = 13 Normal CAM n = 17 Age = 72.1 (7.0) | Elective major abdominal surgery | Sevoflurane/desflurane | Post. CAM | Intra. 16-channel EEG | ↓ Alpha power |
Fritz et al. [18] | POS | n = 619 Delirium n = 162 Non-delirium n = 457 Age = 62 (14) | Non-neurologic surgery | Propofol, sevoflurane, desflurane, or a combination of these agents, with or without nitrous oxide | Post. CAM-ICU | Intra. 1-channel BIS | ↑ Time in burst suppression |
Momeni et al. [19] | POS | n = 1515 POD n = 303 Non-POD n = 1201 POCD n = 270 Non-POCD n = 1080 Age = 68 (range 58–77) | First or redo cardiac surgery/TAVI | Sevoflurane | Post. chart review method and MMSE | Intra. 2 bilateral channels EEG | ↑ Time in burst suppression |
Soehle et al. [20] | POS | n = 81 Delirium n = 26 Non-delirium n = 55 Age = 72.9 (6.2) | Cardiac surgery | Isoflurane | Post. CAM-ICU flowchart | Intra. 2-channel BIS | ↑ Time in burst suppression |
Pedemonte et al. [21] | RS | n = 141 Burst suppression n = 60 No burst suppression n = 81 Age ≥60 | Cardiac surgery | Isoflurane | Post. long version of the CAM | Intra. SedLine monitor | Experience of burst suppression |
Lele et al. [22] | RS | n = 112 Delirium n = 10 Non-delirium n = 102 Age = 59.8 (18.8) | Spine instrumentation surgery | Propofol | Post. CAM | Intra. 4-channel EEG | ↑ Time in burst suppression |
Fritz et al. [23] | RS | n = 618 Delirium n = 162 Non-delirium n = 456 Age = 62 (range 18–92) | Elective surgery | Volatile anesthetic | Post. CAM-ICU | Intra. 1-channel BIS | Experience of burst suppression at relatively lower concentrations of volatile anesthetic |
Wildes et al. [11] | RCT | n = 1213 Delirium n = 297 Non-delirium n = 916 Age ≥60 | Major surgery | Volatile anesthetic | Post. CAM/CAM-ICU/chart review | Intra. BIS | n.s. time in burst suppression |
Tang et al. [24] | RCT | n = 201 Delirium n = 37 Non-delirium n = 164 Age = 72 (5) | Major elective, non-cardiac surgery | Inhaled and intravenous agents | Post. CAM | Intra. SedLine Brain Function Monitor | n.s. time in burst suppression |
Deiner et al. [25] | RS | n = 77 POCD n = 21 Non-POCD n = 56 Age>68 | Major non-cardiac surgery | Propofol, sevoflurane | 3 months after surgery, a neuropsychological battery plus MMSE and CAM | Intra. BIS | ↓ Time in burst suppression |
Shao et al. [26] | RS | n = 155 Age = 48.69 (18.57) | Elective surgery | Propofol/sevoflurane | Intra. SedLine Brain Function Monitor | Lower frontal alpha power is strongly associated with a higher propensity for burst suppression | |
Plummer et al. [27] | RS | n = 138 Age = 69.1 (9.1) | Cardiac surgery with CPB | Isoflurane | Intra. 4-channel EEG | ↓ Intra-operative power within the alpha and beta range was linked to susceptibility to burst suppression | |
Acker et al. [28] | POS | n = 50 Decrease in attention score n = 18 No decrease in attention score n = 32 Age = 68.8 (5.4) | Non-cardiac, non-neurological surgery | Post. 3D-CAM | Intra. 32-channel EEG | ↓ Crossover point |
Study | Design | Sample Characteristics | Surgery | Primary Anesthetic Maintenance Drug | Cognitive Function Tool | EEG Set-Up | Summary Finding |
---|---|---|---|---|---|---|---|
Evans et al. [29] | POS | n = 12 Delirium n = 3 Non-delirium n = 9 Age = 66.8 (8.2) | Orthopedic surgery | Post. CAM-ICU | Post. PSG | ↑ Waking delta power ↓ Delta during non-REM sleep | |
Numan et al. [30] | POS | n = 159 Delirium n = 26 Non-delirium n = 104 Age = 76.9 (6.2) | Non-neurological, major surgery | Post. CAM-ICU | Post. 3-channel EEG | ↑ Delta power | |
Plaschke et al. [31] | POS | n = 37 Delirium n = 17 Non-delirium n = 20 Age = 63.6 (11.6) | Elective surgery | Post. CAM-ICU | Post. 16-channel EEG | ↑ Theta power ↓ Alpha power ↓ Beta power | |
Plaschke et al. [32] | POS | n = 114 Delirium n = 32 Non-delirium n = 82 Age = 69 (8.9) | Open-heart cardiac surgery | Post. CAM-ICU | Bilateral 4-channel EEG | ↑ Theta power ↓ Alpha power | |
Hesse et al. [33] | POS | n = 626 PACU delirium n = 125 Non-PACU delirium n = 501 Age = 57 (range 44–68) | Non-emergency non-cardiac surgery | Sevoflurane/isoflurane/propofol/desflurane | Post. CAM-ICU | Emergence period SedLine Brain Function Monitor | Lacking significant spindle power |
Kreuzer et al. [34] | Case report | Age = 37 Sex = female Repeatedly developed PACU delirium Pedestrian versus car accident | Required 22 surgeries | Sevoflurane/propofol | After 10 of her 22 surgeries CAM | Emergence period SedLine | Lacking alpha spindle oscillations containing trajectory |
Whalin et al. [35] | Case report | Age = 56 Sex = female With prolonged POD | A vascular bypass procedure | Sevoflurane | Post. CAM-ICU | Emergence Frontal EEG | Lacking alpha spindle activity |
Numan et al. [36] | POS | n = 58 Delirium n = 18 No delirium n = 20 recovering from anesthesia n = 20 Age = 75.3 (6.4) | Cardiac surgery | Sevoflurane, isoflurane | Post. DSM-Ⅳ-R, CAM-ICU | Post. 21-channel EEG | ↑ Delta power ↓ Alpha power ↓ Functional connectivity |
Van Dellen al. [37] | Cross-sectional | n = 49 Delirium n = 25 no Delirium n = 24 Age = 75.1 (7.6) | Cardiac surgery | Post. DSM-Ⅳ and CAM-ICU | Post. 21-channel EEG | Loss of alpha band functional connectivity ↑Delta band connectivity | |
Tanabe et al. [38] | POS | n = 70 Delirium n = 22 Non-delirium n = 48 Age > 65 | Major surgery | Post. CAM/CAM-ICU | Pre. 256-channel EEG | ↑ Alpha power ↑ Alpha band connectivity | |
Tanabe et al. [39] | POS | n = 89 Delirium n = 30 Non-delirium n = 59 Age > 65 | Major surgery | Post. CAM or CAM-ICU | Pre. and post. 256-channel EEG | ↓ Complexity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Zhang, X.; Dong, H.; Zhao, G. Electroencephalogram Features of Perioperative Neurocognitive Disorders in Elderly Patients: A Narrative Review of the Clinical Literature. Brain Sci. 2022, 12, 1073. https://doi.org/10.3390/brainsci12081073
Tang X, Zhang X, Dong H, Zhao G. Electroencephalogram Features of Perioperative Neurocognitive Disorders in Elderly Patients: A Narrative Review of the Clinical Literature. Brain Sciences. 2022; 12(8):1073. https://doi.org/10.3390/brainsci12081073
Chicago/Turabian StyleTang, Xuemiao, Xinxin Zhang, Hailong Dong, and Guangchao Zhao. 2022. "Electroencephalogram Features of Perioperative Neurocognitive Disorders in Elderly Patients: A Narrative Review of the Clinical Literature" Brain Sciences 12, no. 8: 1073. https://doi.org/10.3390/brainsci12081073