Personalizing Dual-Target Cortical Stimulation with Bayesian Parameter Optimization Successfully Treats Central Post-Stroke Pain: A Case Report
Abstract
:1. Introduction/Background
2. Case Presentation
2.1. Case History
2.2. Surgical Procedure: Placement of Subdural Electrodes and Externalization
2.3. Externalization Trialing
2.4. Effects of Stimulation on Electrophysiology
2.5. Final Treatment Plan
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keszler, M.; Gude, T.; Heckert, K. Chapter 19—Pain Syndromes Associated With Cerebrovascular Accidents. In Challenging Neuropathic Pain Syndromes; Freedman, M.K., Gehret, J.A., Young, G.W., Kamen, L.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 155–165. ISBN 978-0-323-48566-1. [Google Scholar]
- Klit, H.; Finnerup, N.B.; Jensen, T.S. Central Post-Stroke Pain: Clinical Characteristics, Pathophysiology, and Management. Lancet Neurol. 2009, 8, 857–868. [Google Scholar] [CrossRef]
- Fontaine, D.; Hamani, C.; Lozano, A. Efficacy and Safety of Motor Cortex Stimulation for Chronic Neuropathic Pain: Critical Review of the Literature. J. Neurosurg. 2009, 110, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Scangos, K.W.; Khambhati, A.N.; Daly, P.M.; Makhoul, G.S.; Sugrue, L.P.; Zamanian, H.; Liu, T.X.; Rao, V.R.; Sellers, K.K.; Dawes, H.E.; et al. Closed-Loop Neuromodulation in an Individual with Treatment-Resistant Depression. Nat. Med. 2021, 27, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Allawala, A.; Bijanki, K.R.; Goodman, W.; Cohn, J.F.; Viswanathan, A.; Yoshor, D.; Borton, D.A.; Pouratian, N.; Sheth, S.A. A Novel Framework for Network-Targeted Neuropsychiatric Deep Brain Stimulation. Neurosurgery 2021, 89, E116–E121. [Google Scholar] [CrossRef] [PubMed]
- Widge, A.S.; Malone, D.A.; Dougherty, D.D. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression. Front. Neurosci. 2018, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ahmadi, A.; Hoover, C.; Grado, L.; Peterson, N.; Wang, X.; Freeman, D.; Murray, T.; Lamperski, A.; Darrow, D.; et al. Optimization of Spinal Cord Stimulation Using Bayesian Preference Learning and Its Validation. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Seminowicz, D.A.; Moayedi, M. The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain. J. Pain 2017, 18, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Sampson, S.M.; Kung, S.; McAlpine, D.E.; Sandroni, P. The Use of Slow-Frequency Prefrontal Repetitive Transcranial Magnetic Stimulation in Refractory Neuropathic Pain. J. ECT 2011, 27, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; Höller, Y.; Langthaler, P.B.; Lochner, P.; Golaszewski, S.; Schwenker, K.; Brigo, F.; Trinka, E. RTMS of the Prefrontal Cortex Has Analgesic Effects on Neuropathic Pain in Subjects with Spinal Cord Injury. Spinal Cord 2017, 55, 20–25. [Google Scholar] [CrossRef]
- Nahas, Z.; Anderson, B.S.; Borckardt, J.; Arana, A.B.; George, M.S.; Reeves, S.T.; Takacs, I. Bilateral Epidural Prefrontal Cortical Stimulation for Treatment-Resistant Depression. Biol. Psychiatry 2010, 67, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, N.R.; Short, E.B.; Hopkins, T.; Bentzley, B.S.; Sahlem, G.L.; Pannu, J.; Schmidt, M.; Borckardt, J.J.; Korte, J.E.; George, M.S.; et al. Five-Year Follow-Up of Bilateral Epidural Prefrontal Cortical Stimulation for Treatment-Resistant Depression. Brain Stimul. 2016, 9, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Unified Segmentation. NeuroImage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Comput. Intell. Neurosci. 2011, 2011, 879716. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, W.K. Age Differences in Short-Term Retention of Rapidly Changing Information. J. Exp. Psychol. 1958, 55, 352. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, R.M.G. Disruption and Rescue of Interareal Theta Phase Coupling and Adaptive Behavior. Proc. Natl. Acad. Sci. USA 2017, 114, 11542–11547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, M.S.; Yeung, N.; Cohen Kadosh, R. The Roles of Cortical Oscillations in Sustained Attention. Trends Cogn. Sci. 2015, 19, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Lundqvist, M.; Bastos, A.M. Working Memory 2.0. Neuron 2018, 100, 463–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, R.A.A.; de Andrade, D.C.; Mendonça, M.; Barros, R.; Luvisoto, T.; Myczkowski, M.L.; Marcolin, M.A.; Teixeira, M.J. Repetitive Transcranial Magnetic Stimulation of the Left Premotor/Dorsolateral Prefrontal Cortex Does Not Have Analgesic Effect on Central Poststroke Pain. J. Pain 2014, 15, 1271–1281. [Google Scholar] [CrossRef]
- Sharma, V.D.; Safarpour, D.; Mehta, S.H.; Vanegas-Arroyave, N.; Weiss, D.; Cooney, J.W.; Mari, Z.; Fasano, A. Telemedicine and Deep Brain Stimulation—Current Practices and Recommendations. Parkinsonism Relat. Disord. 2021, 89, 199–205. [Google Scholar] [CrossRef] [PubMed]
Stim Target | Power Band | Recording Location | p-Value | Effect Size (μV2) |
---|---|---|---|---|
M1 | Theta | M1 | 0 | 23.8 |
M1 | Theta | dlPFC | 0 | 2.22 |
M1 | Beta | M1 | 1.21 × 10−12 | 3.30 |
M1 | Beta | dlPFC | 0.115 | −0.0667 |
dlPFC | Theta | M1 | 0 | 13.4 |
dlPFC | Theta | dlPFC | 0 | 3.87 |
dlPFC | Beta | M1 | 9.97 × 10−2 | 0.613 |
dlPFC | Beta | dlPFC | 0 | 0.471 |
M1/dlPFC | Theta | M1 | 5.84 × 10−3 | 2.69 |
M1/dlPFC | Theta | dlPFC | 0 | −1.17 |
M1/dlPFC | Beta | M1 | 0 | −4.89 |
M1/dlPFC | Beta | dlPFC | 7.59 × 10−8 | −0.170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dastin-van Rijn, E.M.; König, S.D.; Carlson, D.; Goel, V.; Grande, A.; Nixdorf, D.R.; Benish, S.; Widge, A.S.; Nahas, Z.; Park, M.C.; et al. Personalizing Dual-Target Cortical Stimulation with Bayesian Parameter Optimization Successfully Treats Central Post-Stroke Pain: A Case Report. Brain Sci. 2022, 12, 25. https://doi.org/10.3390/brainsci12010025
Dastin-van Rijn EM, König SD, Carlson D, Goel V, Grande A, Nixdorf DR, Benish S, Widge AS, Nahas Z, Park MC, et al. Personalizing Dual-Target Cortical Stimulation with Bayesian Parameter Optimization Successfully Treats Central Post-Stroke Pain: A Case Report. Brain Sciences. 2022; 12(1):25. https://doi.org/10.3390/brainsci12010025
Chicago/Turabian StyleDastin-van Rijn, Evan M., Seth D. König, Danielle Carlson, Vasudha Goel, Andrew Grande, Donald R. Nixdorf, Sarah Benish, Alik S. Widge, Ziad Nahas, Michael C. Park, and et al. 2022. "Personalizing Dual-Target Cortical Stimulation with Bayesian Parameter Optimization Successfully Treats Central Post-Stroke Pain: A Case Report" Brain Sciences 12, no. 1: 25. https://doi.org/10.3390/brainsci12010025