An Optimal Transport Based Transferable System for Detection of Erroneous Somato-Sensory Feedback from Neural Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Participants
2.3. Task Description and Visual Cue
2.4. Generation of Online Motor Imagery Commands for Feedback
2.5. Filtering and Processing of EEG Signals
2.6. Relabeling of Epochs to Correctness
2.7. Transfer Learning Using Regularized Discrete Optimal Theory
2.7.1. Background
2.7.2. Classification between Correct and Incorrect Trials
2.8. Classification Metrics
3. Results
3.1. Online Feedback Accuracy for FES and VIS Groups
3.2. Analysis of Event-Related Potentials for Correct and Incorrect Trials
3.3. Classification Results from Optimal Theory Based Transfer Learning
3.3.1. Comparison of Decoder Performance with and without Optimal Transport
3.3.2. Comparison of Decoder Performance between FES and VIS Feedback
3.3.3. Comparing Decoder Performance with Other Machine Learning Algorithms
- LDA: Solver=least square (‘lsqr’), shrinkage=automatic based on Ledoit-Wolf lemma.
- Logistic Regression: L2 regularization = (C = 1000), tolerance = , solver = ‘lbfgs’ (limited-memory Broyden-Fletcher-Goldfarb-Shannon algorithm), and maximum iteration for convergence = 100.
- SVM: Penalization norm = ‘l2’, loss function = ’hinge’, tolerance = , regularization parameter C = 1.0, and maximum iteration for convergence = 1000.
- Bagging: Base estimator = same as the LDA mentioned earlier, number of estimators = 100, and bootstrap = True.
- Adaboost: Base estimator = a decision tree classifier with a maximum depth of 1, number of estimators = 100, and learning rate = 1.0.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dornhege, G. Toward Brain-Computer Interfacing; A Bradford Book; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Zander, T.O.; Krol, L.R. Team PhyPA: Brain-Computer Interfacing for Everyday Human-Computer Interaction. Period. Polytech. Electr. Eng. Comput. Sci. 2017, 61, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Bell, C.J.; Shenoy, P.; Chalodhorn, R.; Rao, R.P.N. Control of a humanoid robot by a noninvasive brain—Computer interface in humans. J. Neural Eng. 2008, 5, 214. [Google Scholar] [CrossRef] [PubMed]
- Munyon, C.N. Neuroethics of Non-primary Brain Computer Interface: Focus on Potential Military Applications. Front. Neurosci. 2018, 12, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerous, B.; Skola, F.; Liarokapis, F. EEG-based BCI and video games: A progress report. Front. Neurosci. 2018, 22, 119–135. [Google Scholar] [CrossRef]
- Cinel, C.; Valeriani, D.; Poli, R. Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects. Front. Hum. Neurosci. 2019, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Kosmyna, N.; Lecuyer, A. A conceptual space for EEG-based brain-computer interfaces. PLoS ONE 2019, 14, e0210145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavarriaga, R.; Millan, J.d.R. Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Ferrez, P.W..; Millan, J.d.R. Error-Related EEG Potentials Generated During Simulated Brain—Computer Interaction. IEEE Trans. Biomed. Eng. 2008, 55, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Zeyl, T.; Yin, E.; Keightley, M.; Chau, T. Improving bit rate in an auditory BCI: Exploiting error-related potentials. Brain-Comput. Interfaces 2016, 3, 75–87. [Google Scholar] [CrossRef]
- Zeyl, T.; Yin, E.; Keightley, M.; Chau, T. Adding Real-Time Bayesian Ranks to Error-Related Potential Scores Improves Error Detection and Auto-Correction in a P300 Speller. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 46–56. [Google Scholar] [CrossRef]
- Falkenstein, M.; Hoormann, J.; Christ, S.; Hohnsbein, J. ERP components on reaction errors and their functional significance: A tutorial. Biol. Psychol. 2000, 51, 87–107. [Google Scholar] [CrossRef]
- Davies, P.L.; Segalowitz, S.J.; Gavin, W.J. Development of Response-Monitoring ERPs in 7- to 25-Year-Olds. Dev. Neuropsychol. 2004, 25, 355–376. [Google Scholar] [CrossRef]
- Fiehler, K.; Ullsperger, M.; Von Cramon, D.Y. Electrophysiological correlates of error correction. Psychophysiology 2005, 42, 72–82. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Konar, A.; Tibarewala, D.N. Motor imagery and error related potential induced position control of a robotic arm. IEEE/CAA J. Autom. Sin. 2017, 4, 639–650. [Google Scholar] [CrossRef]
- Cervera, M.; Soekadar, S.; Ushiba, J.; Millan, J.D.R.; Liu, M.; Birbaumer, N.; Gangadhar, G. Brain-computer interfaces for post-stroke motor rehabilitation: A meta-analysis. Ann. Clin. Transl. Neurol. 2018, 5, 651–663. [Google Scholar] [CrossRef]
- Seno, B.; Matteucci, M.; Mainardi, L. Online Detection of P300 and Error Potentials in a BCI Speller. Comput. Intell. Neurosci. 2010, 2010, 307254. [Google Scholar] [CrossRef]
- Schmidt, N.; Blankertz, B.; Treder, M. Online detection of error-related potentials boosts the performance of mental typewriters. BMC Neurosci. 2012, 13, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treder, M.S.; Schmidt, N.M.; Blankertz, B. Gaze-independent brain-computer interfaces based on covert attention and feature attention. J. Neural Eng. 2011, 8, 066003. [Google Scholar] [CrossRef] [PubMed]
- Spüler, M.; Bensch, M.; Kleih, S.; Rosenstiel, W.; Bogdan, M.; Kübler, A. Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI. Clin. Neurophysiol. 2012, 123, 1328–1337. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Perdikis, S.; Millán, J. On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations with a Pseudo-Online Brain-Controlled Speller. IEEE Open J. Eng. Med. Biol. 2020, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Margaux, P.; Sébastien, D.; Olivier, B.; Jérémie, M. Objective and Subjective Evaluation of Online Error Correction during P300-Based Spelling. Adv.-Hum.-Comput. Interact. 2012, 2012, 4. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Gomez, A.; DelPreto, J.; Gil, S.; Guenther, F.; Rus, D. Correcting robot mistakes in real time using EEG signals. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6570–6577. [Google Scholar] [CrossRef]
- Cruz, A.; Pires, G.; Nunes, U.J. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 26–36. [Google Scholar] [CrossRef]
- Kim, S.K.; Kirchner, E.A.; Stefes, A.; Kirchner, F. Intrinsic interactive reinforcement learning—Using error-related potentials for real world humanrobot interaction. Sci. Rep. 2017, 2017, 17562. [Google Scholar] [CrossRef] [Green Version]
- Chavarriaga, R.; Sobolewski, A.; Millan, J.d.R. Errare machinale est: The use of error-related potentials in brain-machine interfaces. Front. Neurosci. 2014, 8, 208. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gao, L.; Pirogova, E.; Fang, Q. A Review of Error-Related Potential-Based Brain—Computer Interfaces for Motor Impaired People. IEEE Access 2019, 7, 142451–142466. [Google Scholar] [CrossRef]
- Wu, D.; Lawhern, V.J.; Hairston, W.D.; Lance, B.J. Switching EEG Headsets Made Easy: Reducing Offline Calibration Effort Using Active Weighted Adaptation Regularization. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Bamdadian, A.; Guan, C.; Ang, K.K.; Xu, J. Improving session-to-session transfer performance of motor imagery-based BCI using adaptive extreme learning machine. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2188–2191. [Google Scholar]
- Chiang, K.J.; Wei, C.S.; Nakanishi, M.; Jung, T.P. Cross-Subject Transfer Learning Improves the Practicality of Real-World Applications of Brain-Computer Interfaces. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 424–427. [Google Scholar]
- Wu, D.; Parsons, T.D. Inductive Transfer Learning for Handling Individual Differences in Affective Computing. In Affective Computing and Intelligent Interaction; D’Mello, S., Graesser, A., Schuller, B., Martin, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 142–151. [Google Scholar]
- Devlaminck, D.; Wyns, B.; Grosse-Wentrup, M.; Otte, G.; Santens, P. Multisubject Learning for Common Spatial Patterns in Motor-imagery BCI. Comput. Intell. Neurosci. 2011, 2011, 8. [Google Scholar] [CrossRef] [PubMed]
- Azab, A.M.; Mihaylova, L.; Ang, K.K.; Arvaneh, M. Weighted Transfer Learning for Improving Motor Imagery-Based Brain–Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1352–1359. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Zhang, W. Deep Transfer Learning for EEG-Based Brain Computer Interface. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 916–920. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Sun, F.; Fang, B.; Kong, T.; Zhang, W. Autoencoder-based transfer learning in brain—Computer interface for rehabilitation robot. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419840860. [Google Scholar] [CrossRef]
- Özdenizci, O.; Wang, Y.; Koike-Akino, T.; Erdoğmuş, D. Transfer Learning in Brain-Computer Interfaces with Adversarial Variational Autoencoders. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 207–210. [Google Scholar] [CrossRef] [Green Version]
- Jayaram, V.; Alamgir, M.; Altun, Y.; Scholkopf, B.; Grosse-Wentrup, M. Transfer learning in brain-computer interfaces. IEEE Comput. Intell. Mag. 2016, 11, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, S.; Clerc, M.; Hayashibe, M. Augmenting Motor Imagery Learning for Brain—Computer Interfacing Using Electrical Stimulation as Feedback. IEEE Trans. Med Robot. Bionics 2019, 1, 247–255. [Google Scholar] [CrossRef]
- Popović, D.B. Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 2014, 24, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hayashibe, M.; Azevedo-Coste, C. Evoked Electromyography-Based Closed-Loop Torque Control in Functional Electrical Stimulation. IEEE Trans. Biomed. Eng. 2013, 60, 2299–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riener, R.; Ferrarin, M.; Pavan, E.E.; Frigo, C.A. Patient-driven control of FES-supported standing up and sitting down: Experimental results. IEEE Trans. Rehabil. Eng. 2000, 8, 523–529. [Google Scholar] [CrossRef]
- Kojović, J.; Djurić-Jovičić, M.; Došen, S.; Popović, M.B.; Popović, D.B. Sensor-driven four-channel stimulation of paretic leg: Functional electrical walking therapy. J. Neurosci. Methods 2009, 181, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Roset, S.A.; Gant, K.; Prasad, A.; Sanchez, J.C. An adaptive brain actuated system for augmenting rehabilitation. Front. Neurosci. 2014, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Courty, N.; Flamary, R.; Tuia, D.; Rakotomamonjy, A. Optimal Transport for Domain Adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Janati, H.; Bazeille, T.; Thirion, B.; Cuturi, M.; Gramfort, A. Group Level MEG/EEG Source Imaging via Optimal Transport: Minimum Wasserstein Estimates. In Information Processing in Medical Imaging; Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S., Eds.; Springer International Publishing: Cham, Swizerland, 2019; pp. 743–754. [Google Scholar]
- Nathalie, T.H.; Gayraud, A.R.; Clerc, M. Optimal Transport Applied to Transfer Learning For P300 Detection. In Proceedings of the BCI 2017—7th Graz Brain-Computer Interface Conference, Graz, Austria, 18–22 September 2017; p. 6. [Google Scholar]
- Chambon, S.; Galtier, M.N.; Gramfort, A. Domain adaptation with optimal transport improves EEG sleep stage classifiers. In Proceedings of the 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Singapore, 12–14 June 2018; pp. 1–4. [Google Scholar]
- Bhattacharyya, S.; Konar, A.; Tibarewala, D.N.; Hayashibe, M. A Generic Transferable EEG Decoder for Online Detection of Error Potential in Target Selection. Front. Neurosci. 2017, 11, 226. [Google Scholar] [CrossRef]
- Kesar, T.; Chou, L.W.; Binder-Macleod, S.A. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J. Electromyogr. Kinesiol. 2008, 18, 662–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, Y.; Lotte, F.; Gibert, G.; Congedo, M.; Maby, E.; Delannoy, V.; Bertrand, O.; Lécuyer, A. OpenViBE: An Open-Source Software Platform to Design, Test, and Use Brain-Computer Interfaces in Real and Virtual Environments. Presence 2010, 19, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alpaydin, E. Introduction to Machine Learning (Adaptive Computation and Machine Learning); The MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Valeriani, D.; Cinel, C.; Poli, R. Group Augmentation in Realistic Visual-Search Decisions via a Hybrid Brain-Computer Interface. Sci. Rep. 2017, 7, 7772. [Google Scholar] [CrossRef] [Green Version]
- Carvalhaes, C.; de Barros, J.A. The Surface Laplacian Technique in EEG: Theory and Methods. Int. J. Psychophysiol. 2015, 97, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Kantorovich, L. On the Translocation of Masses. J. Math. Sci. 2006, 133, 1381–1382. [Google Scholar] [CrossRef]
- Courty, N.; Flamary, R.; Tuia, D. Domain adaptation with regularized optimal transport. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Nancy, France, 15–19 September 2014. [Google Scholar]
- Knight, P. The Sinkhorn—Knopp Algorithm: Convergence and Applications. SIAM J. Matrix Anal. Appl. 2007, 30, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. Random Forests. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; pp. 587–604. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2018, 17, 168–192. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Comparing More than Two Unrelated Samples: The Kruskal—Wallis H-Test. In Nonparametric Statistics for Non-Statisticians; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Chapter 6; pp. 99–121. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Comparing Two Related Samples: The Wilcoxon Signed Ranks Test. In Nonparametric Statistics for Non-Statisticians; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Chapter 3; pp. 38–56. [Google Scholar] [CrossRef]
Precision | Recall | F1-Score | |
---|---|---|---|
FES01 | 96.98 | 96.67 | 96.71 |
FES02 | 93.33 | 93.33 | 93.33 |
FES03 | 94.98 | 95.00 | 94.96 |
FES04 | 84.98 | 85.42 | 85.15 |
FES05 | 88.72 | 87.50 | 87.93 |
FES06 | 100.00 | 100.00 | 100.00 |
FES07 | 93.08 | 91.67 | 91.97 |
FES08 | 92.57 | 91.67 | 91.26 |
Mean | 93.08 | 92.66 | 92.66 |
SD | 4.35 | 4.43 | 4.43 |
Precision | Recall | F1-Score | |
---|---|---|---|
VIS01 | 87.36 | 87.50 | 86.98 |
VIS02 | 86.65 | 85.94 | 85.74 |
VIS03 | 77.40 | 76.25 | 75.80 |
VIS04 | 95.25 | 95.31 | 95.25 |
VIS05 | 87.63 | 84.37 | 83.42 |
VIS06 | 76.24 | 76.04 | 76.13 |
VIS07 | 80.61 | 81.25 | 80.76 |
VIS08 | 80.54 | 81.25 | 80.73 |
Mean | 83.96 | 83.49 | 83.10 |
SD | 5.97 | 5.92 | 5.94 |
Precision | Recall | F1-Score | |
---|---|---|---|
FES01 | 46.69 | 68.33 | 55.48 |
FES02 | 78.53 | 68.33 | 57.05 |
FES03 | 49.00 | 70.00 | 57.64 |
FES04 | 65.33 | 75.00 | 68.51 |
FES05 | 73.14 | 79.17 | 73.96 |
FES06 | 89.08 | 87.50 | 82.56 |
FES07 | 57.63 | 75.00 | 65.18 |
FES08 | 45.83 | 62.50 | 52.88 |
Mean | 63.16 | 73.23 | 64.16 |
SD | 15.06 | 7.23 | 9.68 |
Precision | Recall | F1-Score | |
---|---|---|---|
VIS01 | 49.18 | 60.94 | 54.43 |
VIS02 | 48.38 | 51.56 | 46.25 |
VIS03 | 56.50 | 53.75 | 42.52 |
VIS04 | 77.49 | 79.69 | 77.96 |
VIS05 | 56.36 | 59.38 | 52.51 |
VIS06 | 51.08 | 61.46 | 53.58 |
VIS07 | 61.28 | 69.79 | 62.17 |
VIS08 | 62.50 | 70.83 | 63.54 |
Mean | 57.84 | 63.42 | 56.62 |
SD | 8.91 | 8.81 | 10.44 |
Average F1-Score | Average F1-Score | |
---|---|---|
FES | VIS | |
LDA | 85.66 | 79.43 |
Logistic Regression | 90.57 | 81.34 |
SVM | 90.60 | 81.22 |
Bagging | 85.91 | 80.15 |
Adaboost | 85.61 | 77.81 |
RF | 92.66 | 83.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharyya, S.; Hayashibe, M. An Optimal Transport Based Transferable System for Detection of Erroneous Somato-Sensory Feedback from Neural Signals. Brain Sci. 2021, 11, 1393. https://doi.org/10.3390/brainsci11111393
Bhattacharyya S, Hayashibe M. An Optimal Transport Based Transferable System for Detection of Erroneous Somato-Sensory Feedback from Neural Signals. Brain Sciences. 2021; 11(11):1393. https://doi.org/10.3390/brainsci11111393
Chicago/Turabian StyleBhattacharyya, Saugat, and Mitsuhiro Hayashibe. 2021. "An Optimal Transport Based Transferable System for Detection of Erroneous Somato-Sensory Feedback from Neural Signals" Brain Sciences 11, no. 11: 1393. https://doi.org/10.3390/brainsci11111393
APA StyleBhattacharyya, S., & Hayashibe, M. (2021). An Optimal Transport Based Transferable System for Detection of Erroneous Somato-Sensory Feedback from Neural Signals. Brain Sciences, 11(11), 1393. https://doi.org/10.3390/brainsci11111393