Neuropsychological Sequelae, Quality of Life and Adaptive Behavior in Children and Adolescents with Anti-NMDAR Encephalitis: A Narrative Review
Abstract
:1. Introduction
1.1. Aims
1.2. Hypothesis
2. Methods
3. Results
3.1. General Intelligence
3.2. Language
3.3. Attention and Executive Functions
3.4. Memory
3.5. Visuo-Perceptive and Visual-Motor Integration
3.6. Quality of Life and Adaptive Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Dalmau, J.; Tüzün, E.; Wu, H.-Y.; Masjuan, J.; Ba, J.E.R.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 2007, 61, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Titulaer, M.G.; McCracken, L.; Gabilondo, I.; Armangue, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol. 2013, 12, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Dalmau, J.; Armangue, T.; Planagumà, J.; Radosevic, M.; Mannara, F.; Leypoldt, F.; Geis, C.; Lancaster, E.; Titulaer, M.J.; Rosenfeld, M.R.; et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: Mechanisms and models. Lancet Neurol. 2019, 18, 1045–1057. [Google Scholar] [CrossRef]
- Young, D. The NMDA Receptor Antibody Paradox: A Possible Approach to Developing Immunotherapies Targeting the NMDA Receptor. Front. Neurol. 2020, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Vitaliani, R.; Mason, W.; Ances, B.; Zwerdling, T.; Jiang, Z.; Dalmau, J. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol. 2005, 58, 594–604. [Google Scholar] [CrossRef]
- Sansing, L.H.; Tüzün, E.; Ko, M.W.; Baccon, J.; Lynch, D.R.; Dalmau, J. A patient with encephalitis associated with NMDA receptor antibodies. Nat. Clin. Pr. Neurol. 2007, 3, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Lancaster, E.; Martinez-Hernandez, E.; Rosenfeld, M.R.; Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011, 10, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, W.; Yin, J.; Lu, Q.; Yin, F.; He, F.; Peng, J. Anti-N-methyl-d-aspartate receptor encephalitis in children of Central South China: Clinical features, treatment, influencing factors, and outcomes. J. Neuroimmunol. 2017, 312, 59–65. [Google Scholar] [CrossRef]
- Armangue, T.; Titulaer, M.J.; Malag, I.; Bataller, L.; Gabilondo, I.; Graus, F.; Dalmau, J. Spanish Anti-N-methyl-D-Aspartate Receptor (NMDAR) Encephalitis Work Group. Pediatric anti- N-methyl-D-aspartate receptor encephalitis clinical analysis and novel findings in a series of 20 patients. J. Pediatr. 2013, 162, 850–856. [Google Scholar] [CrossRef] [Green Version]
- Granerod, J.; Ambrose, H.E.; Davies, N.W.; Clewley, J.P.; Walsh, A.L.; Morgan, D.; Cunningham, R.; Zuckerman, M.; Mutton, K.J.; Solomon, T.; et al. Causes of encephalitis and differences in their clinical presentations in England: A multicentre, population-based prospective study. Lancet Infect Dis. 2010, 10, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Florance, N.R.; Davis, R.L.; Lam, C.; Szperka, C.; Zhou, L.; Ahmad, S.; Campen, C.J.; Moss, H.; Peter, N.; Gleichman, A.J.; et al. Anti–N-Methyl-D-Aspartate Receptor (NMDAR) Encephalitis in Children and Adolescents. Ann. Neurol. 2009, 66, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenton, J.B.; Goodkin, H.P. Antibody-Mediated Autoimmune Encephalitis in Childhood. Pediatr. Neurol. 2016, 60, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ursitti, F.; Roberto, D.; Papetti, L.; Moavero, R.; Ferilli, M.A.N.; Fusco, L.; Vigevano, F.; Curatolo, P.; Valeriani, M. Diagnosis of pediatric anti-NMDAR encephalitis at the onset: A clinical challenge. Eur. J. Paediatr. Neurol. 2021, 30, 9–16. [Google Scholar] [CrossRef]
- Schieveld, J.N.M.; Strik, J.J.M.H.; van Kraaij, S.; Nicolai, J. Psychiatric manifestations and psychopharmacology of autoimmune encephalitis: A multidisciplinary approach. Handb. Clin. Neurol. 2019, 165, 285–307. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Sartori, S.; Nosadini, M.; Cesaroni, E.; Falsaperla, R.; Capovilla, G.; Beccaria, F.; Mancardi, M.M.; Santangelo, G.; Giunta, L.; Boniver, C.; et al. Paediatric anti-N-methyl-D-aspartate receptor encephalitis: The first Italian multicenter case series. Eur. J. Paediatr. Neurol. 2015, 19, 453–463. [Google Scholar] [CrossRef]
- Salvucci, A.; Devine, I.M.; Hammond, D.; Sheth, R.D. Pediatric anti-NMDA (N-methyl D-aspartate) receptor encephalitis. Pediatr. Neurol. 2014, 50, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Irani, S.R.; Bera, K.; Waters, P.; Zuliani, L.; Maxwell, S.; Zandi, M.S.; Friese, M.A.; Galea, I.; Kullmann, D.M.; Beeson, D.; et al. N-methyl-D-aspartate antibody encephalitis: Temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010, 133, 1655–1667. [Google Scholar] [CrossRef]
- Hommorat, J.; Plizat, L.O. Autoimmune encephalitis and psychiatric disorders. Rev. Neurol. 2018, 174, 228–236. [Google Scholar] [CrossRef]
- Kayser, M.S.; Dalmau, J. Anti-NMDA Receptor Encephalitis in Psychiatry. Curr. Psychiatry Rev. 2011, 7, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Poloni, C.; Korff, C.M.; Ricotti, V.; King, M.D.; Perez, E.R.; Mayor-Dubois, C.; Haenggeli, C.A.; Deonna, T. Severe childhood encephalopathy with dyskinesia and prolonged cognitive disturbances: Evidence for anti-N-methyl-D-aspartate receptor encephalitis. Dev. Med. Child Neurol. 2010, 52, e78–e82. [Google Scholar] [CrossRef]
- Moura, M.; Silva-Dos-Santos, A.; Afonso, J.; Talina, M. First-episode psychosis in a 15 year-old female with clinical presentation of anti-NMDA receptor encephalitis: A case report and review of the literature. BMC Res. Notes 2016, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Nguyen Thi Hoang, M.; Hoan, P.N.; Le Van, T.; McBride, A.; Trung, N.H.D.; Tan, T.T.; Thu, H.N.T.; Heemskerk, D.; Day, J.; Vincent, A.; et al. First reported cases of anti-NMDA receptor encephalitis in Vietnamese adolescents and adults. J. Neurol. Sci. 2017, 373, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, W.; Zhou, S.; Zhou, Y.; Yang, H.; Yu, L.; Wang, J.; Wang, Y.; Zhang, L. Clinical Features, Treatment, and Outcomes Among Chinese Children With Anti-methyl-D-aspartate Receptor (Anti-NMDAR) Encephalitis. Front. Neurol. 2019, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Leypoldt, F.; Wandinger, K.P. Paraneoplastic neurological syndromes. Clin. Exp. Immunol. 2014, 175, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Scheer, S.; John, R.M. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in Children and Adolescents. J. Pediatr. Health Care 2016, 30, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Houtrow, A.J.; Bhandal, M.; Pratini, N.R.; Davidson, L.; Neufeld, J.A. The rehabilitation of children with anti-N-methyl-D-aspartate-receptor encephalitis: A case series. Am. J. Phys. Med. Rehabil. 2012, 91, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, D.C.M.; Moses, J.L. A Systematic Review of the Neuropsychological Sequelae of People Diagnosed with Anti N-Methyl-D-Aspartate Receptor Encephalitis in the Acute and Chronic Phases. Arch. Clin. Neuropsychol. Actions 2018, 33, 964–983. [Google Scholar] [CrossRef]
- Finke, C.; Kopp, U.A.; Scheel, M.; Pech, L.-M.; Soemmer, C.; Schlichting, J.; Leypoldt, F.; Brandt, A.U.; Wuerfel, J.; Probst, C.; et al. Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann. Neurol. 2013, 74, 284–296. [Google Scholar] [CrossRef]
- McKeon, G.L.; Scott, J.G.; Spooner, D.M.; Ryan, A.E.; Blum, S.; Gillis, D.; Langguth, D.; Robinson, G.A. Cognitive and Social Functioning Deficits after Anti-N-Methyl-DAspartate Receptor Encephalitis: An Exploratory Case Series. J. Int. Neuropsychol. Soc. 2016, 22, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Matricardi, S.; Patrini, M.; Freri, E.; Ragona, F.; Zibordi, F.; Andreetta, F.; Nardocci, N.; Granata, T. Cognitive and neuropsychological evolution in children with anti-NMDAR encephalitis. J. Neurol. 2016, 263, 765–771. [Google Scholar] [CrossRef]
- Cainelli, E.; Nosadini, M.; Sartori, S.; Suppiej, A. Neuropsychological And Psychopathological Profile Of Anti-Nmdar Encephalitis: A Possible Pathophysiological Model For Pediatric Neuropsychiatric Disorders. Arch. Clin. Neuropsychol. 2019, 34, 1309–1319. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV); The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Cornoldi, C.; Giofrè, D.; Belacchi, C. Procedure di somministrazione e scoring dei subtest. In Leiter-3 Leiter International Scale, 3rd ed.; Italiano, A., Roid, G.H., Miller, L.J., Pomplun, M., Koch, C., Giunti, O.S., Eds.; Organizzazioni Speciali s.r.l. Adattamento Italiano: Firenze, Italy, 2016; pp. 23–85. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV); Italian Version; Orsini, A., Pezzuti, L., Picone, L., Giunti, O.S., Eds.; Psychometrics: Firenze, Italy, 2012. [Google Scholar]
- Raven, J.; Court, J.H.; Raven, J.C. Raven Manual, Section 1 (General Overview) and Section 2 (Coloured Progressive Matrices); Oxford Psychologist Press: Oxford, UK, 1998. [Google Scholar]
- Iadisernia, E.; Battaglia, F.M.; Vanadia, E.; Trapolino, E.; Vincent, A.; Biancher, R. Anti-N-methyl-D-aspartate-receptor encephalitis: Cognitive profile in two children. Eur. J. Paediatr. Neurol. 2012, 16, 79–82. [Google Scholar] [CrossRef]
- Scott, O.; Richer, L.; Forbes, K.; Sonnenberg, L.; Currie, A.; Eliyashevska, M.; Goez, H.R. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: An unusual cause of autistic regression in a toddler. Child Neurol. 2014, 29, 691–694. [Google Scholar] [CrossRef]
- Griffiths, R. The Griffiths Mental Development Scales: From Birth to 2 Years; Huntley, M., Ed.; The Test Agency: Oxford, UK, 1996. [Google Scholar]
- De Bruijn, M.A.A.M.; Aarsen, F.K.; van Oosterhout, M.P.; van der Knoop, M.M.; Catsman-Berrevoets, C.E.; Schreurs, M.W.J.; Bastiaansen, D.E.M.; Smitt, P.E.A.S.; Neuteboom, R.F.; Titulaer, M.J.; et al. Long-term neuropsychological outcome following pediatric anti-NMDAR encephalitis. Neurology 2018, 90, e1997–e2005. [Google Scholar] [CrossRef] [Green Version]
- Deiva, K.; Pera, M.C.; Maurey, H.; Chrétien, P.; Archambaud, F.; Bouilleret, V.; Tardieu, M. Sudden and isolated Broca’s aphasia: A new clinical phenotype of anti NMDA receptor antibodies encephalitis in children. Eur. J. Paediatr. Neurol. 2014, 18, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Gataullina, S.; Plouin, P.; Vincent, A.; Scalais, E.; Nuttin, C.; Dulac, O. Paroxysmal EEG pattern in a child with N-methyl-D-aspartate receptor antibody encephalitis. Dev. Med. Child Neurol. 2011, 53, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Moscato, E.H.; Jain, A.; Peng, X.; Hughes, E.G.; Dalmau, J.; Balice-Gordon, R.G. Mechanisms underlying autoimmune synaptic encephalitis leading to disorders of memory, behavior and cognition: Insights from molecular, cellular and synaptic studies. Eur. J. Neurosci. 2010, 32, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisiacchi, P.S.; Cendron, M.; Gugliotta, M.; Tressoldi, P.; Vio, C. Batteria di Valutazione Neuropsicologica per l’Età Evolutiva; Erickson: Trento, Italy, 2005. [Google Scholar]
- Di Simoni, F.; McGhee, R.; Ehrler, D. The Token Test for Children, 2nd ed.; PRO-ED: Austin, TX, USA, 2007. [Google Scholar]
- Bishop, D. The Test for Reception of Grammar-Version 2; Psychological Corporation: London, UK, 2003. [Google Scholar]
- Hinkle, C.D.; Porter, J.N.; Waldron, E.J.; Klein, H.; Tranel, D.; Heffelfinger, A. Neuropsychological characterization of three adolescent females with anti-NMDA receptor encephalitis in the acute, post-acute, and chronic phases: An inter-institutional case series. Clin. Neuropsychol. 2016, 31, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.; Goodglass, H.; Weintraub, S. Boston Naming Test; Lea & Febiger: Philadelphia, PA, USA, 1983. [Google Scholar]
- Martín-Monzón, I.; Trujillo-Pozo, I.; Romero, R.R. Functional recovery after neuropsychological rehabilitation in a case of Anti-N-methyl-D-apartate receptor encephalitis: Successful results suggest neural plasticity. Adv. Res. Sci. Areas 2012, 3, 2153–2157. [Google Scholar]
- Loughan, A.R.; Allen, A.; Perna, R.; Malkin, M.G. Anti-N-methyl-D-aspartate receptor encephalitis: A review and neuropsychological case study. Clin. Neuropsychol. 2016, 30, 150–163. [Google Scholar] [CrossRef]
- Finke, C.; Kopp, U.A.; Prüss, H.; Dalmau, J.; Wandinger, K.P.; Ploner, C.J. Cognitive deficits following anti-NMDA receptor encephalitis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Stoppa, E.; Biancardi, A. Il test delle Campanelle modificato: Una proposta per lo studio dell’attenzione in età evolutiva. Psichiatr. Dell’infanzia E Dell’Adolescenza 1997, 64, 73–84. [Google Scholar]
- Marcos-Arribas, L.; Almonacid, J.; Dolado, A. Neuropsychological profile of anti-NMDA receptor encephalitis. Psychology 2013, 4, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson-Smith, A.; Blackwell, L.S.; Howarth, R.A. Neuropsychological outcomes in children and adolescents following anti-NMDA receptor encephalitis. Child Neuropsychol. 2021, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Beery, K.E.; Beery, N.A. The Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) with Supplemental Developmental Tests of Visual Perception and Motor Coordination and Stepping Stones Age Norms: Administration, Scoring and Teaching Manual, 6th ed.; NCS Pearson: Minneapolis, MN, USA, 2010. [Google Scholar]
- Li, A.; Gong, X.; Guo, K.; Lin, J.; Zhou, D.; Hong, Z. Direct economic burden of patients with autoimmune encephalitis in western China. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e891. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, A.R.; Blum, R.A.; Jetté, N.; Kwon, C.S.; Easton, A.; Yeshokumar, A.K. Assessment of care transitions and caregiver burden in anti-NMDA receptor encephalitis. Epilepsy Behav. 2020, 108, 107066. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.L.; Marotta, C.A. Outcomes validity and reliability of the modified Rankin scale: Implications for stroke clinical trials: A literature review and synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Ramanuj, P.P.; Granerød, J.; Davies, N.W.S.; Conti, S.; Brown, D.W.G.; Crowcroft, N.S. Quality of life and associated socio-clinical factors after encephalitis in children and adults in England: A population-based, prospective cohort study. PLoS ONE 2014, 9, e103496. [Google Scholar] [CrossRef]
- Stansfield, S.A.; Roberts, R.; Foot, S.P. Assessing the validity of the SF-36 General Health Survey. Qual. Life Res. 1997, 6, 217–224. [Google Scholar] [CrossRef]
- Jennett, B.; Snoek, J.; Bond, M.R.; Brooks, N. Disability after severe head injury: Observations on the use of the Glasgow Outcome Scale. J. Neurol. Neurosurg. Psychiatry 1981, 44, 285–293. [Google Scholar] [CrossRef]
- Zeng, W.; Cao, L.; Zheng, J.; Lu, Y. Clinical characteristics and long-term prognosis of relapsing anti-N-methyl-D-aspartate receptor encephalitis: A retrospective, multicenter, self-controlled study. Neurol Sci. 2021, 42, 199–207. [Google Scholar] [CrossRef]
- Gordon-Lipkin, E.; Yeshokumar, A.K.; Saylor, D.; Arenivas, A.; Probasco, J.C. Comparative Outcomes in Children and Adults With Anti- N-Methyl-D-Aspartate (anti-NMDA) Receptor Encephalitis. J. Child Neurol. 2017, 32, 930–935. [Google Scholar] [CrossRef]
- Monaghan, D.T.; Yao, D.; Cotman, C.W. L-[3H]Glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: An autoradiographic analysis. Brain Res. 1985, 340, 378–383. [Google Scholar] [CrossRef]
- Waxman, E.A.; David, R. N-methyl-D-aspartate Receptor Subtypes: Multiple Roles in Excitotoxicity and Neurological Disease. Neuroscientist 2005, 11, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.G.; Zukin, R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 2007, 8, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Xie, Y.; Hu, Z.; Tang, X. Anti-N-methyl-D-aspartate receptor encephalitis: A review of pathogenic mechanisms, treatment, prognosis. Brain Res. 2020, 1727, 146549. [Google Scholar] [CrossRef] [PubMed]
- McKeon, G.L.; Robinson, G.A.; Ryan, A.E.; Blum, S.; Gillis, D.; Finke, C.; Scott, J.G. Cognitive outcomes following anti-N-methyl-D-aspartate receptor encephalitis: A systematic review. J. Clin. Exp. Neuropsychol. 2018, 40, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, Z.; Wu, D.; Ding, Q.; Zheng, X.; Wang, J.; Ji, C.; Luo, B. Early second-line therapy is associated with improved episodic memory in anti-NMDA receptor encephalitis. Ann. Clin. Transl. Neurol. 2019, 6, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Aoe, S.; Kokudo, Y.; Takata, T.; Kobara, H.; Yamamoto, M.; Touge, T.; Deguchi, K.; Masaki, T. Repeated anti-N-methyl-D-aspartate receptor encephalitis coexisting with anti-myelin oligodendrocyte glycoprotein antibody-associated diseases: A case report. Mult. Scler. Relat. Disord. 2019, 35, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Q.; Wang, T.; Fan, L.; Gao, L.; Huang, Z.; Lin, Y.; Xue, Q.; Li, G.; Su, Y.; et al. Overlapping syndrome of anti-N-methyl-D-aspartate receptor encephalitis and anti-myelin oligodendrocyte glycoprotein inflammatory demyelinating diseases: A distinct clinical entity? Mult. Scler. Relat. Disord. 2021, 52, 103020. [Google Scholar] [CrossRef] [PubMed]
- Nan, D.; Zhang, Y.; Han, J.; Jin, T. Clinical features and management of coexisting anti-N-methyl-D-aspartate receptor encephalitis and myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis: A case report and review of the literature. Neurol. Sci. 2021, 42, 847–855. [Google Scholar] [CrossRef]
- Bassal, F.C.; Harwood, M.; Oh, A.; Lundberg, J.N.; Hoffman, J.; Cornejo, P.; Chapple, K.M.; Hughes, J.N.; Narayan, R. Anti-NMDA receptor encephalitis and brain atrophy in children and adults: A quantitative study. Clin. Imaging 2021, 78, 296–300. [Google Scholar] [CrossRef]
Author | Subjects Informations | Neuropsychological Domains Assessed (Tests Used) | Time of Assessment | Main Impaired Areas |
---|---|---|---|---|
[21] | 1 patient: 8 years old, F | General intelligence abilities (WISC IV) | First evaluation: 15 months after symptoms onset | General intelligence (IQ = 78) |
Second evaluation: not performed | / | |||
[31] | 10 prospectivelly recruited patients Age range 3–17 years (at symptoms onset) F: 5; M: 5 | -General intelligence abilities (GMDS 2–8; WPPSI III; WISC III and IV; WAIS-R; Leiter-R) -Receptive and expressive language: naming tests (BVN 5–11, BVN 12–18); verbal comprehension (Token Test for Children, 2nd edn; Test for Reception of Grammar); phonemic and semantic verbal fluency (BVN 5–11, BVN 12–18) -Selective and sustained attention (Barrage Task; Bell test and Coding—a Wechsler subtest) -Planning (Tower of London and Block Design—a Wechsler subtest) -Short-term verbal memory (Digit Span—a Wechsler subtest) and short-term visuo-spatial memory (Corsi’s Block Tapping Test Forward-BVN 5-11, BVN 12-18) -Visual-motor integration (Copying Form Test of Developmental Test of Visual-Motor Integration, and Rey–Osterrieth Complex Figure test) | First evaluation: a median of 3 months after symptoms onset (range 1–12 months) | General intelligence (IQ < 85 in 6 patients) Language: naming (4 patients); verbal comprehension (4 patient); Semantic verbal fluency (5 patients); Phonemic verbal fluency (4 patients) Attention: Sustained attention (3 children), selective attention (3 patients), conding (5 patients) Planning: below the normal range in 5 patients Memory: Short-term verbal memory (8 patients), Short-term visuo-spatial memory (2 patients) Visual-motor integration (5 patients) |
Second evaluation: a median of 27 months after symptoms onset (range 12–60 months) | Language: naming skills (1 patient), phonemic verbal fluency (2 patients) Attention: Sustained attention (2 children), selective attention (1 patient), conding (3 patients) Planning: below the normal range in 4 patients Memory: short-term verbal memory (1 patient), short-term visuo-spatial memory (1 patient) | |||
3 retrospectively recruited patients Age range: 7–13 years (at symptoms onset) F:3; M:0 | One evaluation: range 31-112 months after symptoms onset | General intelligence (IQ < 85 in 1 patient) Language: phonemic verbal fluency 1 patient) Attention: Sustained attention (1 children), conding (2 patients) Planning: difficulties in 2 patients Memory: short-term verbal (2) and visuo-spatial memory (1 patient) Visual-motor integration difficulties in 2 patients | ||
[37] | Patient 1: F Age at symptoms onset: 4 years Age of assessment: 4 years and 10 months Patient 2: M Age at symptoms onset: 3 years and 8 months Age of assessment: 5 years and 5 months | -General intelligence abilities (GMDS 2–8) -Receptive and expressive language (Test for Reception of Grammar—BVN 5–11; Peabody Picture Vocabulary Test; Naming Test—BVN 5–1; Fluency-5–11) -Selective and sustained attention (Bell Test) -Executive functions (Tower of London) -Visual and verbal memory (Corsi’s Block Tapping Test Forward; Digit Span Forward; Luria memory words test—BVN 5–11) -Visual-motor integration (Developmental Test of Visual-Motor Integration) | First evaluation Patients 1: 10 months after symptoms onset Patients 2: two years after symptoms onset | -IQ: 85 in patient 1 and 65 in patient 2 -Language: activation and integration of semantic information (significant deficit in the rapid naming test) -Attention: selective and prolonged -Problem-solving tasks and thinking flexibility -Verbal fluency (intrusions and perseverations at switching and clustering semantic tasks) -Spatial visuoconstructive abilities were impaired in patient 2 |
Second evaluation Patient 1: Twenty-two months after symtoms onset Patient 2: not performed (he was followed-up at the same hospital where he was first admitted | In patient 1, the authors described a normalization of the IQ (96) and improvements in problem-solving tasks and in the selective/prolonged attention, clustering semantic tasks and switching. | |||
[37] | Patient 1: 17 years old, F | -General intelligence abilities (WAIS-IV) -Language (Multilingual Aphasia Examination; Boston Naming Test; Delis–Kaplan Executive Function System verbal fluency) -Attention (Continuous Performance Test—II;) -Executive functions (Trail Making test; Tower of London; Delis–Kaplan Executive Function System- Trail making test; Delis–Kaplan Executive Function System—color–word interference; Symbol Digit Modalities—oral; stroop test; Rey–Osterrieth Complex Figure Test) -Memory (Boston naming test; California Verbal Learning Test—II; Wechsler Memory Scale—IV Logical Memory; WMS—IV Visual Reproduction; Peabody Picture Vocabulary Test; Hopkins Verbal Learning Test) -Motor/sensory (Grooved Pegboard) -Visual-spatial (Developmental Test of Visual Perception; Developmental Test of Visual-Motor Integration; Judgment of Line Orientation; clock drawing) | Three evaluations (4-24 months) Acute phase (4–6 weeks since symptoms onset) Post acute phase (2–6 months since symptoms onset) Outcome (6–24 months since symptoms onset) | Acute phase: attention; cognitive flexibility; visual-motor construction |
Post-acute phase: mild weaknesses in verbal memory and more substantial impairment in problem-solving and language (e.g., confrontational naming and comprehension of instructions) | ||||
Outcome: problem-solving, confrontational naming, comprehension of instructions, and verbal recognition, were still below average (borderline to impaired ranges). | ||||
Patient 2: 16 years old, F | Acute phase: she was very disoriented and appeared to be in a state of delirium | |||
Outcome: weaknesses in executive functioning, particularly inhibition and working memory, retrieval-based verbal memory, confrontational naming, and fine motor dexterity bilaterally (low average to borderline ranges). | ||||
Patient 3: 18 years old, F | Acute phase: widespread and significant cognitive deficits across all assessed domains (borderline to severely impaired ranges) | |||
Post-acute phase: impairments in many areas of speech (e.g., comprehension, word finding, fluency, and/or prosody, neologisms); attention and thought processes were grossly impaired | ||||
Outcome: weakness (low average to severely impaired ranges) in language skills (naming, repetition, fluency, and speeded reading) and mild but variable weakness with speeded responding | ||||
[31] | 6 patients Age range (at evaluation): 6,11–13,6 years F: 4; M:2 | -Mini mental state pediatric examination (acute phase, that precluded a full neuropsychological evaluation; before discharge) -General intelligence abilities/reasoning (Raven Colored Matrices; GMDS 2-8) -Language: naming and semantic fluency (BVN 5–11 and BVN 12–18) -Attention and speed: selective and sustained visual attention (Bell Test; Trial Making Test A) -Executive functions: phonemic fluency (BVN 5–11 and BVN 12–18); working memory (backward Digit Span Test—BVN 5–11 and BVN 12–18); frontal lobe functioning (Frontal Assessment Battery); shifting (Trial Making Test B) -Short-term verbal and visual-spatial memory memory (Digit Span Test and the Corsi’s Block Tapping Test—BVN 5–11 and BVN 12–18); verbal learning and long term verbal memory (word’s list and list recall—BVN 5–11 and BVN 12–18) -Visual motor integrations (Coding test of the WISC-IV; Rey–Osterrieth Complex Figure Test) | First evaluation: one month after discharge | Reasoning: below the normal range in 1 patient Attention (3/5 patients) Executive functions (5/5 children) Visual-motor abilities, implicating executive involvement (2/5 patients) |
Second evaluation: 35 months after discharge (range 24–48 months) | Attention (1/4 of the patients) Executive functions (2/4 patients) Visual-motor abilities in 2/4 children | |||
1 children: 15 months old, M | Four evaluations: from 1 month to 27 months after discharge | The child gradually deteriorated in all scales: Global score Locomotor Personal/social Eye/hand coordination Performance and, in particular Hearing/language | ||
[40] | 16 patients underwent a full neuropsychological evaluation Age range of disease onset: 3–17 years Age range at the assessment: 6–25 years F:15; M: 1 | -Language: words comprehension and word findings (Boston Naming Test; Token Test) -Attention: reaction time, sustained attention, speed (CANTAB; Dutch Dot Cancellation Test—Bourdon–Vos) -Executive functioning: Intra-Extra Dimensional Set Shift, Spatial Span, Stockings of Cambridge (all CANTAB); Word Generation (NEPSY); Behavior Rating Inventory of Executive Function (BRIEF—Self-Report and BRIEF—Adult Questionnaire) -Visual and verbal memory (Paired Associated Learning (CANTAB), Rey Auditory Verbal Learning Test) -Quality of life: Pediatric Quality of Life Inventory (PedsQL Self-Report and PedsQL Parent Proxy-Report) -Fatigue: PedsQL Multidimensional Fatigue Scale questionnaire (PedsQL-MFS Self-Report and PedsQL-MFS Parent Proxy-Report) | One evaluation: a median of 31 months after symptoms onset (interquartile range 15–49, range 5–91) | Attention: sustained attention; speed Memory: long-term verbal and visual memory Language: naming High fatigue and low QoL Correlation between fatigue and QoL. No correlations between QoL, fatigue, sustained attention and long-term verbal memory |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, S.; Averna, R.; Ruscitto, C.; Ursitti, F.; Ferilli, M.A.N.; Moavero, R.; Papetti, L.; Proietti Checchi, M.; Sforza, G.; Balestri, M.; et al. Neuropsychological Sequelae, Quality of Life and Adaptive Behavior in Children and Adolescents with Anti-NMDAR Encephalitis: A Narrative Review. Brain Sci. 2021, 11, 1387. https://doi.org/10.3390/brainsci11111387
Tarantino S, Averna R, Ruscitto C, Ursitti F, Ferilli MAN, Moavero R, Papetti L, Proietti Checchi M, Sforza G, Balestri M, et al. Neuropsychological Sequelae, Quality of Life and Adaptive Behavior in Children and Adolescents with Anti-NMDAR Encephalitis: A Narrative Review. Brain Sciences. 2021; 11(11):1387. https://doi.org/10.3390/brainsci11111387
Chicago/Turabian StyleTarantino, Samuela, Roberto Averna, Claudia Ruscitto, Fabiana Ursitti, Michela Ada Noris Ferilli, Romina Moavero, Laura Papetti, Martina Proietti Checchi, Giorgia Sforza, Martina Balestri, and et al. 2021. "Neuropsychological Sequelae, Quality of Life and Adaptive Behavior in Children and Adolescents with Anti-NMDAR Encephalitis: A Narrative Review" Brain Sciences 11, no. 11: 1387. https://doi.org/10.3390/brainsci11111387
APA StyleTarantino, S., Averna, R., Ruscitto, C., Ursitti, F., Ferilli, M. A. N., Moavero, R., Papetti, L., Proietti Checchi, M., Sforza, G., Balestri, M., Grimaldi Capitello, T., Vigevano, F., Vicari, S., & Valeriani, M. (2021). Neuropsychological Sequelae, Quality of Life and Adaptive Behavior in Children and Adolescents with Anti-NMDAR Encephalitis: A Narrative Review. Brain Sciences, 11(11), 1387. https://doi.org/10.3390/brainsci11111387