Relationship between Neutrophil-to-Lymphocyte Ratio and Inflammatory Markers in Sickle Cell Anaemia Patients with Proteinuria
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethical Consideration
2.2. Sample Collection and Preparation
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Emokpae, M.A.; Uadia, P.O. Association of Oxidative Stress Markers with Atherogenic Index of Plasma in Adult Sickle Cell Nephropathy. Anaemia 2012, 2012, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Emokpae, M.A.; Abdu, A.; Gwaram, B.A. Neutrophil-to-lymphocyte, platelet-to-lymphocyte ratios and their association with atherogenic index of plasma in sickle cell nephropathy. J. Appl. Hematol. 2016, 7, 24–29. [Google Scholar] [CrossRef]
- Rees, D.C.; Williams, T.N.; Gladwin, M.T. Sickle cell disease. Lancet 2010, 376, 2018–2013. [Google Scholar] [CrossRef]
- Ballas, S.K. Sickle cell anaemia: Progress in pathogenesis and treatment. Drug 2002, 62, 1143–1172. [Google Scholar] [CrossRef]
- Pham, P.T.; Pham, P.C.; Wilkinson, A.H.; Lew, S.Q. Renal abnormalities in sickle cell disease. Kidney Int. 2000, 57, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Damanhouri, G.A.; Jarullah, J.; Marouf, S.; Hindawi, S.I.; Mushtaq, G.; Kamal, M.A. Clinical biomarkers in sickle cell disease. Saudi J. Biol. Sci. 2015, 22, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Belcher, J.D.; Marker, P.H.; Weber, J.P.; Hebbel, R.P.; Vercellotti, G.M. Activated monocytes in sickle cell disease: Potential role in the activation of vascular endothelium and vaso-occlusion. Blood 2000, 96, 2451–2459. [Google Scholar] [PubMed]
- Alhwiesh, A. An update on sickle cell nephropathy. Saudi J. Kidney Dis. Transpl. 2014, 25, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Vinchi, F.; Tolosano, E. Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: Scavenging free heme to preserve vasculaculature homeostasis. Oxid. Med. Cell. Longev. 2013. [Google Scholar] [CrossRef] [PubMed]
- Schaer, D.J.; Vinchi, F.; Ingoglia, G.; Tolosano, E.; Beuhler, P.W. Haptoglobin, hemopexin and related defense pathways- basic science, clinical perspectives and drug development. Front. Physiol. 2014, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lum, A.F.H.; Wun, T.; Staunton, D.; Simon, S.I. Inflammatory potential of Neutrophil detected in sickle cell disease. Am. J. Haematol. 2004, 76, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Bargoma, E.M.; Mitsuyoshi, J.K.; Larkin, S.K.; Styles, L.A.; Kuypers, F.A.; Test, S.T. Serum C-reactive protein parallels secretory phospholipase A2 in sickle cell disease patients with vaso-occlusive crisis or acute chest syndrome. Blood 2005, 105, 3384–3385. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Setty, Y.; Betal, S.G.; Vijender, V.; Rao, K.; Dampier, C. Increased levels of the inflammatory biomarker C-reactive protein at baseline are associated with childhood sickle cell vaso-occlusive crises. Br. J. Haematol. 2010, 148, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Aneke, J.C.; Adegoke, O.A.; Okocha, C.E.; Onah, E.C.; Ibeh, C.N.; Durosinmi, A.M. Neutrophil to lymphocyte ratio in sickle cell anaemia patients with nephropathy. Brit. J. Med. Med. Res. 2015, 10, 1–6. [Google Scholar]
- Deng, Q.; He, B.; Liu, X.; Yue, J.; Ying, H.; Pan, Y.; Sun, H.; Chen, J.; Wang, F.; Gao, T.; et al. Prognostic value of pre-operative inflammatory response biomarkers in gastric cancer patients and the construction of a predictive models. J. Translat. Med. 2015, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Le Tulzo, Y.; Pangault, C.; Gacouin, A.; Guilloux, V.; Tribut, O.; Amiot, L.; Tattevin, P.; Thomas, R.; Fauchet, R.; Drénou, B. Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome. Shock 2002, 18, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; Gualt, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Lou, P.; Tang, R.; Peng, Y.; Yu, S.; Huang, W. Relationship between neutrophil-to-lymphocyte ratio and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. BMC Endocr. Disord. 2015, 15, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Azad, B.; Camacho-Rivera, M.; Taioli, E. Average values and racial differences of neutrophil-lymphocyte ratio among a nationally representative sample of United States subjects. PLoS ONE 2014, 9, 1–6. [Google Scholar]
- Salciciolli, J.D.; Marshall, D.C.; Pimentel, M.A.F.; Santos, M.D.; Pollaed, T.; Celi, L.A.; Shalhoub, J. The association between the neutrophil-to-lymphocyte ratio and mortality in critical illness: an observational cohort study. Crit. Care 2015, 19, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.W.; Kang, H.J.; Park, C.; Yoon, D.H.; Kim, S.; Suh, C.; Kim, J.E.; Kim, C.W.; Huh, J. Prognostic significance of the ratio of absolute neutrophil count to absolute lymphocyte count in classic Hodgkin lymphoma. Am. J. Clin. Pathol. 2012, 138, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Heffeman, D.S.; Monaghan, S.F.; Thakkar, R.K.; Machan, J.T.; Cioffi, W.G.; Ayala, A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit. Care 2012, 16, R12. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Hebbel, R.P.; Steinberg, M.H.; Gladwin, M.T. Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine and new research directions. Am. J. Haematol. 2009, 89, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Emokpae, M.A.; Uadia, P.O.; Gadzama, A.A. Correlation of oxidative stress and inflammatory markers with the severity of sickle cell nephropathy. Ann. Afr. Med. 2010, 9, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Platt, O.S. Sickle cell anaemia as an inflammatory disease. J. Clin. Invest. 2000, 106, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Kaul, D.K.; Hebbel, R.P. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J. Clin. Invest. 2000, 106, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Vinchi, F.; da Silva, M.C.; Ingoglia, G.; Petrillo, S.; Brinkman, N.; Zuercher, A.; Cerwenka, A.; Tolosano, E.; Muckenthaler, M. Hemopexin therapy reverts heme-induced pro-inflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood 2016, 127, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.M.; Canalli, A.A.; Traina, F.; Franco-Penteado, C.F.; Gambero, S.; Saad, S.T.; Conran, N.; Costa, F.F. Altered red cell and platelet adhesion in hemolytic diseases: Hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria and sickle cell disease. Clin. Biochem. 2013, 46, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Abhulimen-Iyoha, B.I.; Okoeguale, M.I.; Egberue, G.O. Microalbuminuria in children with sickle cell anaemia. Saudi J. Kidney Dis. Transpl. 2011, 22, 733–738. [Google Scholar]
- Abdu, A.; Emokpae, M.A.; Uadia, P.O.; Kuliya-Gwarzo, A. Proteinuria among adult sickle cell anaemia patients in Nigeria. Ann. Afr. Med. 2011, 10, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Hirase, T.; Node, K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. 2012, 302, H499–H505. [Google Scholar] [CrossRef] [PubMed]
- Belcher, J.D.; Mahaseth, H.; Welch, T.E.; Otterbein, R.P.; Hebbel, P.; Vercellotti, G.M. Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am. J. Physiol. 2005, 288, H2715–H2725. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, I.; Eroglu, E.; Unal, A.; Sipahioglu, M.H.; Tokgoz, B.; Oymak, O.; Utas, C. Role of neutrophil/lymphocyte ratio in prediction of disease progression in patients with stage-4 chronic kidney disease. J. Nephrol. 2013, 26, 358–365. [Google Scholar] [CrossRef] [PubMed]
Parameters | Hb AA Controls (Group A) n = 50 | SCA Patients without Macroalbuminuria (Group B) n = 86 | SCA Patients with Macroalbuminuria (Group C) n = 17 | SCA Patients with Impaired Renal Function (Group D) n = 15 |
---|---|---|---|---|
Age | 26.86 ± 3.0 b | 21.86 ± 3.0 a | 20.9 ± 4.0 a | 32.7 ± 3.2 b |
Haematocrit (%) | 38.30 ± 4.9 b | 20.3 ± 4.9 a | 19.8 ± 2.9 a | 18.8 ± 1.2 b |
Haemoglobin (g/dL) | 12.10 ± 1.8 b | 7.10 ± 1.8 c | 6.4 ± 0.8 a | 6.2 ± 0.4 a |
Total leukocyte count (×109/L) | 6.40 ± 0.4 b | 2.47 ± 0.4 b | 2.12 ± 0.8 c | 2.06 ± 0.1 a |
Platelet count (×109/L) | 308 ± 98 a | 370 ± 98 c | 347 ± 82 c | 430 ± 120.1 b |
Absolute lymphocyte count (×109/L) | 3.40 ± 0.2 a | 4.0 ± 1.2 b | 3.0 ± 0.4 | 2.7 ± 0.2 b |
Absolute neutrophil count (×109/L) | 4.11 ± 1.3 a | 5.3 ± 1.2 c | 6.1 ± 0.8 b | 6.5 ± 0.4 b |
NLR | 1.21 ± 0.07 a | 1.25 ± 0.06 a | 2.0 ± 0.02 c | 2.33 ± 0.03 b |
PLR | 90.6 ± 8.8 a | 92.5 ± 4.2 a | 115.7 ± 5.8 c | 159.2 ± 5.9 b |
Parameters | Hb AA Controls (Group A) n = 50 | SCA Patients without Macroalbuminuria (Group B) n = 86 | SCA Patients with Macroalbuminuria (Group C) n = 16 | SCA Patients with Impaired Renal Function (Group D) n = 16 |
---|---|---|---|---|
NLR | 1.21 ± 0.07 a | 1.25 ± 0.06 a | 2.0 ± 0.02 c | 2.33 ± 0.03 b |
PLR | 90.6 ± 8.8 a | 92.5 ± 4.2 a | 115.7 ± 5.8 c | 159.2 ± 5.9 b |
CRP (μg/mL) | 0.81 ± 0.92 a | 1.12 ± 0.02 b | 1.21 ± 0.4 c | 1.81 ± 0.05 c |
Fibrinogen (mg/dL) | 290 ± 30.5 a | 297 ± 15.2 a | 303 ± 6.8 a | 317 ± 4.1 c |
Proteinuria (g/dL) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.08 ± 0.02c | 0.17 ± 0.01 b |
Parameters | Hb AA Controls | SCA Patients without Macroalbuminuria | SCA Patients with Macroalbuminuria | SCA Patients with Impaired Renal Function |
---|---|---|---|---|
CRP (μg/mL) | R = −0.014, p = 0.92 | R = 0.900, p < 0.0001 | R = 0.978, p < 0.0001 | R = 0.515, p = 0.04 |
Fibrinogen (mg/dL) | R = 0.988, p < 0.0001 | R = 0.900, p < 0.0001 | R = 0.978, p < 0.0001 | R = 0.524, p = 0.04 |
Proteinuria (g/dL) | - | - | R= 0.483, p < 0.05 | R= 0.575, p < 0.02 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emokpae, M.A.; Aruomaren, A.; Osime, E. Relationship between Neutrophil-to-Lymphocyte Ratio and Inflammatory Markers in Sickle Cell Anaemia Patients with Proteinuria. Med. Sci. 2016, 4, 11. https://doi.org/10.3390/medsci4030011
Emokpae MA, Aruomaren A, Osime E. Relationship between Neutrophil-to-Lymphocyte Ratio and Inflammatory Markers in Sickle Cell Anaemia Patients with Proteinuria. Medical Sciences. 2016; 4(3):11. https://doi.org/10.3390/medsci4030011
Chicago/Turabian StyleEmokpae, Mathias Abiodun, Austin Aruomaren, and Evarista Osime. 2016. "Relationship between Neutrophil-to-Lymphocyte Ratio and Inflammatory Markers in Sickle Cell Anaemia Patients with Proteinuria" Medical Sciences 4, no. 3: 11. https://doi.org/10.3390/medsci4030011
APA StyleEmokpae, M. A., Aruomaren, A., & Osime, E. (2016). Relationship between Neutrophil-to-Lymphocyte Ratio and Inflammatory Markers in Sickle Cell Anaemia Patients with Proteinuria. Medical Sciences, 4(3), 11. https://doi.org/10.3390/medsci4030011