Overview of Ankle Arthropathy in Hereditary Hemochromatosis
Abstract
:1. Introduction
2. Epidemiology
3. Physiopathology
Authors; Year | Physiopathology | Clinical Manifestations |
---|---|---|
Kai et al. [22]; 2021 | Increased production of ROS, VEGF, NF-kB | Synovial inflammation and hyperplasia, subchondral bone sclerosis, cartilage damage, OA |
Camacho et al. [26]; 2016 | Increased iron accumulation in the knee synovial membrane | Cartilage and subchondral bone degradation, OA |
Heiland et al. [28]; 2010 | Increased hemosiderin, iron, and mononuclear cell infiltration in the synovial space | Formation of microvessels, synovial hyperplasia, cartilage degradation |
Kennish et al. [30]; 2014 | High ferritin levels in the synovial fluid | Articular damage and slower OA progression |
4. Clinical Presentation and Differential Diagnosis
5. Imaging
6. Treatment
6.1. Conservative Treatment
6.1.1. Pharmacological Treatments
- Iron chelators (ICs): although their use remains unclear, and there is no clinical data about the therapeutic effects in HH arthropathy, they are widely used. ICs bind circulating and intracellular iron and allow its elimination through urine or bile. In vitro studies demonstrated that ICs inhibit extracellular matrix (ECM) degradation and reduce iron-induced ROS production and apoptosis of chondrocytes [53,54].
- Regulators of iron metabolism: iron-metabolism-related proteins (IMRPs), such as divalent metal transporter 1, deferoxamine, lactoferrin, and ferritin, can affect the functions of chondrocytes, osteoblasts, and osteoclasts [22]. In a study on mice, inhibition of hepcidin (an IMRP) demonstrated increased iron absorption in bone and activity of osteoclasts, with a reduction in that of osteoblasts [22]; therefore, regulation of the metabolism of this protein can be useful in counteracting the effects on bone [55].
- Antioxidants: these have been shown in in vitro studies to protect osteoclasts and osteoblasts from oxidative-stress-induced abnormalities resulting from iron overload [53]; furthermore, reducing oxidative stress can prevent chondrocyte damage and cartilage degeneration [54]. For example, N-acetylcysteine (NAC) can protect chondrocytes from oxidative stress caused by Interleukin 1, which is also responsible for chondrocyte apoptosis [53,56].
- Non-steroidal anti-inflammatory drugs (NSAIDs): topical NSAIDs are generally recommended as first-line strategies, and they should be considered as an adjunct to non-pharmacological approaches [57,58]. They are an effective and safe option to control local pain, with results superior to placebos. As an alternative, topical Capsaicin has been shown to be effective [59]. Oral NSAIDs, including cyclo-oxygenase (COX)-2 inhibitors, are recommended at the lowest effective dose, such as 1000 mg/day, and for the shortest possible period. Patients should be carefully monitored, because these cause gastrointestinal, renal, and cardiovascular side effects [60,61].
- Opiods: evidence concerning opioid use (such as Tramadol, Morphine, Oxycodone) is weak and not supported by the literature. Currently, their use is contraindicated or accepted only as a third line of treatment [62].
- Additional pharmacological strategies that are not recommended for peripheral joint OA include chondroitin, vitamin D, tricyclic agents, glucosamine, and risedronate [59].
6.1.2. Intra-Articular Injections
- Hyaluronic acid (HA): one of the most-used substances. The mechanisms of action include anti-inflammatory and chondroprotection effects: HA reduces inflammatory cell migration, stimulates endogenous HA synthesis, and inhibits nociceptors and cartilage-degrading enzymes [51,64]. Sun et al., in their prospective case series of ankle OA followed up for 6 months, showed significant American Orthopaedic Foot and Ankle Society (AOFAS) scale score improvements using three HA intra-articular injections at 1-week intervals [65].
- Platelet-rich plasma (PRP): in the last few years, the application of PRP has become increasingly popular in orthopedic surgery [66,67]. PRP is used for acceleration of bone healing, prevention and treatment of soft-tissue and osseous infection, treatment of acute and chronic tendon or ligament injuries, and pain alleviation of osteoarthritic joints [68,69]. Recent studies have reported that platelet-rich plasma (PRP) therapy seems to be more effective than HA in reducing pain, improving range of motion, and delaying the indication for surgery [70,71,72].
- Corticosteroids (CSs): CSs have anti-inflammatory properties, but their use remains controversial. In fact, CSs also act to inhibit fibroblast proliferation and many protein expressions, causing damaging effects to the joint cartilage or to other structures, such as the plantar fascia [73]. Therefore, they should not be used, or they should be reserved for persistent pain in severe grades of OA, with a maximum of three or four injections a year [74].
6.1.3. Orthoses
6.1.4. Physical Therapy
- Strengthening of the musculature and a regular practice of stretching exercises: can be a beneficial adjunct to the conservative management of ankle arthropathy [79]. Muscle strengthening as well as ankle and foot joint mobilization can prevent stiffness and pain and reduce joint stress and solicitations [80].
- Electrotherapy: used to reduce pain and to increase muscle strength and function. In transcutaneous electrical nerve stimulation (TENS), an electrical current is transmitted through electrodes to a specific muscular site of interest to stimulate motor units [79]. TENS either transmits an electric current of high frequency with a low intensity for immediate pain relief or uses high-frequency burst impulses at a low intensity to relieve pain by stimulating pain-carrying fibers [81,82].
- Thermotherapy: used to provide short-term pain relief; it includes a cold or hot source or a contrast bath with cold and hot water [79,80,83]. Low-level laser therapy is another modality to treat pain and to improve function in patients with ankle arthropathy. The laser emits a single wavelength of pure light, which causes a photochemical reaction within the cell [84].
6.2. Surgical Treatment
- Arthroscopic technique: The arthroscopic approach is reserved for patients who do not respond to other treatments or have already developed early signs of OA [85]. It reduces pain and improves function in patients with clinical signs of anterior impingement and diffuse joint synovitis [51]. In addition, it has been used to associate debridement and synovectomy with arthroscopic bone-marrow-derived cell transplantation (BMDCT) to treat osteochondral lesions [86]. MBDCT includes the production and application of PRP to apply growth factors and a fibrin clot to improve biomaterial implantation and promote regeneration [87].
- Ankle arthrodesis (AA): AA is considered the most useful and successful treatment for end-stage OA (stages 3B and 4 in the Takakura–Tanaka Classification [88]) or after failure of conservative treatment for more than 6 months. It is preferred in young and active patients with high functional requirements. It can be performed either arthroscopically or through open access. Arthroscopic AA has several advantages compared to traditional techniques, including smaller skin incisions, less periosteal stripping, and less soft tissue damage. Two standard anterolateral and anteromedial portals are used, and there is a lower risk of infection [89,90]. Conventional open AA includes different approaches (lateral, anterior, and posterior) and different types of osteosynthesis [35]. The anterior method is performed through a dorsal incision between the tibialis anterior and extensor hallucis longus tendons. Despite being a less invasive approach, it allows good access to both the medial and lateral gutter, spares the fibula and, eventually, allows secondary conversion from AA into Total Ankle Arthroplasty (TAA) [35,37]. The lateral method also provides good surgical site visualization, but in this case, the fibula’s sacrifice is necessary. The posterior approach is the least utilized method; it can be useful in revision, particularly if anterior or lateral soft tissues are poor. The procedure is correctly performed when the ankle is fixed in neutral dorsiflexion, with 0–5° hindfoot valgus and 5–10° external rotation [37].
- Total ankle arthroplasty (TAA): This is an alternative solution to AA in selecting patients with severe OA. Current indications include patients with end-stage OA, sedentary lifestyles, the elderly (above 55 years at present), low functional requirements, and preserved joint mobility [93]. In the literature, there are only a few studies addressing TTA in HH-related ankle arthropathy.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barg, A.; Elsner, A.; Hefti, D.; Hintermann, B. Total Ankle Arthroplasty in Patients with Hereditary Hemochromatosis. Clin. Orthop. 2011, 469, 1427–1435. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Chen, J.; Kramer, M.; Tsukamoto, H.; Zhang, A.-S.; Enns, C.A. Interaction of the Hereditary Hemochromatosis Protein HFE with Transferrin Receptor 2 Is Required for Transferrin-Induced Hepcidin Expression. Cell Metab. 2009, 9, 217–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphree, C.R.; Nguyen, N.N.; Raghunathan, V.; Olson, S.R.; DeLoughery, T.; Shatzel, J.J. Diagnosis and Management of Hereditary Haemochromatosis. Vox Sang. 2020, 115, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, H.R. Hemochromatosis and arthritis. Arthritis Rheum. 1964, 7, 41–50. [Google Scholar] [CrossRef]
- Richardson, A.; Prideaux, A.; Kiely, P. Haemochromatosis: Unexplained Metacarpophalangeal or Ankle Arthropathy Should Prompt Diagnostic Tests: Findings from Two UK Observational Cohort Studies. Scand. J. Rheumatol. 2017, 46, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.C.; Kertesz, A.E.; Valberg, L.S. Clinical Presentation of Hemochromatosis: A Changing Scene. Am. J. Med. 1991, 90, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.J.; Gardner, A.B. Hemochromatosis of the Foot and Ankle. Report of Three Cases and Review of the Literature. Clin. Orthop. 1998, 349, 108–115. [Google Scholar] [CrossRef]
- Baker, N.D.; Jahss, M.H.; Leventhal, G.H. Unusual Involvement of the Feet in Hemochromatosis. Foot Ankle 1984, 4, 212–215. [Google Scholar] [CrossRef]
- Ajioka, R.S.; Kushner, J.P. Hereditary Hemochromatosis. Semin. Hematol. 2002, 39, 235–241. [Google Scholar] [CrossRef]
- Brissot, P.; Pietrangelo, A.; Adams, P.C.; de Graaff, B.; McLaren, C.E.; Loréal, O. Haemochromatosis. Nat. Rev. Dis. Primer 2018, 4, 18016. [Google Scholar] [CrossRef]
- Kowdley, K.V.; Brown, K.E.; Ahn, J.; Sundaram, V. ACG Clinical Guideline: Hereditary Hemochromatosis. Am. J. Gastroenterol. 2019, 114, 1202–1218. [Google Scholar] [CrossRef] [PubMed]
- Emocromatosi ereditaria. AIEOP (ASSOCIAZIONE ITALIANA EMATOLOGIA ONCOLOGIA PEDIATRICA). Available online: https://www.aieop.org/web/famiglie/schede-malattia/emocromatosi-ereditaria/ (accessed on 30 July 2023).
- Schumacher, H.R.; Straka, P.C.; Krikker, M.A.; Dudley, A.T. The Arthropathy of Hemochromatosis. Recent Studies. Ann. N. Y. Acad. Sci. 1988, 526, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.W.; Seckington, R.C.; Deugnier, Y. Haemochromatosis. Lancet 2016, 388, 706–716. [Google Scholar] [CrossRef]
- Sahinbegovic, E.; Dallos, T.; Aigner, E.; Axmann, R.; Manger, B.; Englbrecht, M.; Schöniger-Hekele, M.; Karonitsch, T.; Stamm, T.; Farkas, M.; et al. Musculoskeletal Disease Burden of Hereditary Hemochromatosis. Arthritis Rheum. 2010, 62, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Guggenbuhl, P.; Brissot, P.; Loréal, O. Miscellaneous Non-Inflammatory Musculoskeletal Conditions. Haemochromatosis: The Bone and the Joint. Best Pract. Res. Clin. Rheumatol. 2011, 25, 649–664. [Google Scholar] [CrossRef]
- Shimizu, I. Impact of Oestrogens on the Progression of Liver Disease. Liver Int. Off. J. Int. Assoc. Study Liver 2003, 23, 63–69. [Google Scholar] [CrossRef]
- Cade, J.E.; Moreton, J.A.; O’Hara, B.; Greenwood, D.C.; Moor, J.; Burley, V.J.; Kukalizch, K.; Bishop, D.T.; Worwood, M. Diet and Genetic Factors Associated with Iron Status in Middle-Aged Women. Am. J. Clin. Nutr. 2005, 82, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, E.; Williams, R.; Barlow, K.A.; Smith, P.M. The Arthropathy of Idiopathic Haemochromatosis. QJM 1968, 37, 171–182. [Google Scholar] [CrossRef]
- Carroll, G.J. Primary Osteoarthritis in the Ankle Joint Is Associated with Finger Metacarpophalangeal Osteoarthritis and the H63D Mutation in the HFE Gene: Evidence for a Hemochromatosis-like Polyarticular Osteoarthritis Phenotype. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2006, 12, 109–113. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Kang, R.; Tang, D. Interplay Between Lipid Metabolism and Autophagy. Front. Cell Dev. Biol. 2020, 8, 431. [Google Scholar] [CrossRef]
- Sun, K.; Guo, Z.; Hou, L.; Xu, J.; Du, T.; Xu, T.; Guo, F. Iron Homeostasis in Arthropathies: From Pathogenesis to Therapeutic Potential. Ageing Res. Rev. 2021, 72, 101481. [Google Scholar] [CrossRef] [PubMed]
- Jeney, V. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front. Pharmacol. 2017, 8, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinigaglia, L.; Fargion, S.; Fracanzani, A.L.; Binelli, L.; Battafarano, N.; Varenna, M.; Piperno, A.; Fiorelli, G. Bone and Joint Involvement in Genetic Hemochromatosis: Role of Cirrhosis and Iron Overload. J. Rheumatol. 1997, 24, 1809–1813. [Google Scholar]
- Sun, L.; Guo, W.; Yin, C.; Zhang, S.; Qu, G.; Hou, Y.; Rong, H.; Ji, H.; Liu, S. Hepcidin Deficiency Undermines Bone Load-Bearing Capacity through Inducing Iron Overload. Gene 2014, 543, 161–165. [Google Scholar] [CrossRef]
- Camacho, A.; Simão, M.; Ea, H.-K.; Cohen-Solal, M.; Richette, P.; Branco, J.; Cancela, M.L. Iron Overload in a Murine Model of Hereditary Hemochromatosis Is Associated with Accelerated Progression of Osteoarthritis under Mechanical Stress. Osteoarthr. Cartil. 2016, 24, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A Disease of the Joint as an Organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [Green Version]
- Heiland, G.R.; Aigner, E.; Dallos, T.; Sahinbegovic, E.; Krenn, V.; Thaler, C.; Weiss, G.; Distler, J.H.; Datz, C.; Schett, G.; et al. Synovial Immunopathology in Haemochromatosis Arthropathy. Ann. Rheum. Dis. 2010, 69, 1214–1219. [Google Scholar] [CrossRef]
- Pawlotsky, Y.; Le Dantec, P.; Moirand, R.; Guggenbuhl, P.; Jouanolle, A.M.; Catheline, M.; Meadeb, J.; Brissot, P.; Deugnier, Y.; Chalès, G. Elevated Parathyroid Hormone 44-68 and Osteoarticular Changes in Patients with Genetic Hemochromatosis. Arthritis Rheum. 1999, 42, 799–806. [Google Scholar] [CrossRef]
- Kennish, L.; Attur, M.; Oh, C.; Krasnokutsky, S.; Samuels, J.; Greenberg, J.D.; Huang, X.; Abramson, S.B. Age-Dependent Ferritin Elevations and HFE C282Y Mutation as Risk Factors for Symptomatic Knee Osteoarthritis in Males: A Longitudinal Cohort Study. BMC Musculoskelet. Disord. 2014, 15, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, H.; Struppler, C.; Braun, G.S.; Kellner, W.; Kellner, H. Ankle and Hindfoot Arthropathy in Hereditary Hemochromatosis. J. Rheumatol. 2003, 30, 196–199. [Google Scholar] [PubMed]
- Greco, T.; Cianni, L.; De Mauro, D.; Dughiero, G.; Bocchi, M.B.; Cazzato, G.; Ragonesi, G.; Liuzza, F.; Maccauro, G.; Perisano, C. Foot Metastasis: Current Knowledge. Orthop. Rev. 2020, 12, 8671. [Google Scholar] [CrossRef]
- Kiely, P.D.W.; Lloyd, M.E. Ankle Arthritis—An Important Signpost in Rheumatologic Practice. Rheumatology 2020, 60, 23–33. [Google Scholar] [CrossRef]
- Hum, R.M.; Ho, P. Hereditary Haemochromatosis Presenting to Rheumatology Clinic as Inflammatory Arthritis. BMJ Case Rep. 2022, 15, e246236. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Pérez, M.; Valderrabano, V.; Godoy-Santos, A.L.; Netto, C.d.C.; González-Martín, D.; Tejero, S. Ankle Osteoarthritis: Comprehensive Review and Treatment Algorithm Proposal. EFORT Open Rev. 2022, 7, 448–459. [Google Scholar] [CrossRef]
- Perisano, C.; Cannella, A.; Polichetti, C.; Mascio, A.; Comisi, C.; De Santis, V.; Caravelli, S.; Mosca, M.; Spedicato, G.A.; Maccauro, G.; et al. Tibiotalar and Tibiotalocalcaneal Arthrodesis with Paragon28 SilverbackTM Plating System in Patients with Severe Ankle and Hindfoot Deformity. Medicina 2023, 59, 344. [Google Scholar] [CrossRef]
- Greco, T.; Polichetti, C.; Cannella, A.; La Vergata, V.; Maccauro, G.; Perisano, C. Ankle Hemophilic Arthropathy: Literature Review. Am. J. Blood Res. 2021, 11, 206–216. [Google Scholar]
- Rujirachun, P.; Junyavoraluk, A.; Owattanapanich, W.; Suvannarerg, V.; Sirinvaravong, S. Leukemic Arthritis and Severe Hypercalcemia in a Man with Chronic Myeloid Leukemia: A Case Report and Review of the Literature. J. Med. Case Rep. 2018, 12, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, S.A.; du Preez, H.E.; Akhtar, M.R.; Cross, S.; Isenberg, D.A. Musculoskeletal Complications of Haematological Disease. Rheumatology 2016, 55, 968–981. [Google Scholar] [CrossRef] [Green Version]
- Abraham, S.; Cope, A. An Unusual Case of Ankle Arthropathy. Ann. Rheum. Dis. 2004, 63, 460–461. [Google Scholar] [CrossRef] [Green Version]
- Adamson, T.C.; Resnik, C.S.; Guerra, J.; Vint, V.C.; Weisman, M.H.; Resnick, D. Hand and Wrist Arthropathies of Hemochromatosis and Calcium Pyrophosphate Deposition Disease: Distinct Radiographic Features. Radiology 1983, 147, 377–381. [Google Scholar] [CrossRef]
- Huaux, J.P.; Geubel, A.; Koch, M.C.; Malghem, J.; Maldague, B.; Devogelaer, J.P.; De Deuxchaisnes, C.N. The Arthritis of Hemochromatosis. A Review of 25 Cases with Special Reference to Chondrocalcinosis, and a Comparison with Patients with Primary Hyperparathyroidism and Controls. Clin. Rheumatol. 1986, 5, 317–324. [Google Scholar] [CrossRef]
- Carroll, G.J.; Breidahl, W.H.; Olynyk, J.K. Characteristics of the Arthropathy Described in Hereditary Hemochromatosis. Arthritis Care Res. 2012, 64, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Doherty, M.; Bardin, T.; Barskova, V.; Guerne, P.-A.; Jansen, T.L.; Leeb, B.F.; Perez-Ruiz, F.; Pimentao, J.; Punzi, L.; et al. European League Against Rheumatism Recommendations for Calcium Pyrophosphate Deposition. Part I: Terminology and Diagnosis. Ann. Rheum. Dis. 2011, 70, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Dejaco, C.; Stadlmayr, A.; Duftner, C.; Trimmel, V.; Husic, R.; Krones, E.; Zandieh, S.; Husar-Memmer, E.; Zollner, G.; Hermann, J.; et al. Ultrasound Verified Inflammation and Structural Damage in Patients with Hereditary Haemochromatosis-Related Arthropathy. Arthritis Res. Ther. 2017, 19, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, M.M.; Mlynarik, V.; Zbýň, Š.; Szomolanyi, P.; Apprich, S.; Windhager, R.; Trattnig, S. New Technology in Imaging Cartilage of the Ankle. Cartilage 2017, 8, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Frenzen, K.; Schäfer, C.; Keyßer, G. Erosive and Inflammatory Joint Changes in Hereditary Hemochromatosis Arthropathy Detected by Low-Field Magnetic Resonance Imaging. Rheumatol. Int. 2013, 33, 2061–2067. [Google Scholar] [CrossRef]
- Wilkinson, V.H.; Rowbotham, E.L.; Grainger, A.J. Imaging in Foot and Ankle Arthritis. Semin. Musculoskelet. Radiol. 2016, 20, 167–174. [Google Scholar] [CrossRef]
- Lintz, F.; de Cesar Netto, C.; Barg, A.; Burssens, A.; Richter, M.; Weight Bearing CT International Study Group. Weight-Bearing Cone Beam CT Scans in the Foot and Ankle. EFORT Open Rev. 2018, 3, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Jandl, N.M.; Rolvien, T.; Schmidt, T.; Mussawy, H.; Nielsen, P.; Oheim, R.; Amling, M.; Barvencik, F. Impaired Bone Microarchitecture in Patients with Hereditary Hemochromatosis and Skeletal Complications. Calcif. Tissue Int. 2020, 106, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Bloch, B.; Srinivasan, S.; Mangwani, J. Current Concepts in the Management of Ankle Osteoarthritis: A Systematic Review. J. Foot Ankle Surg. Off. Publ. Am. Coll. Foot Ankle Surg. 2015, 54, 932–939. [Google Scholar] [CrossRef]
- Tejero, S.; Prada-Chamorro, E.; González-Martín, D.; García-Guirao, A.; Galhoum, A.; Valderrabano, V.; Herrera-Perez, M. Conservative Treatment of Ankle Osteoarthritis. J. Clin. Med. 2021, 10, 4561. [Google Scholar] [CrossRef] [PubMed]
- Yin, E.; Di, T.; Li, T.; Yang, X.; Wang, E.; Liu, X.; Jiang, Z.; Cui, X. The Detrimental Effect of Iron on OA Chondrocytes: Importance of pro-Inflammatory Cytokines Induced Iron Influx and Oxidative Stress. J. Cell. Mol. Med. 2021, 12, 5671–5680. [Google Scholar] [CrossRef]
- Jing, X.; Lin, J.; Du, T.; Jiang, Z.; Li, T.; Wang, G.; Liu, X.; Cui, X.; Sun, K. Iron Overload Is Associated With Accelerated Progression of Osteoarthritis: The Role of DMT1 Mediated Iron Homeostasis. Front. Cell Dev. Biol. 2021, 8, 594509. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, W.; Li, Y.; Ling, S.; Zhao, C.; Zhong, G.; Zhao, D.; Song, J.; Song, H.; Li, J.; et al. The Regulation of Iron Metabolism by Hepcidin Contributes to Unloading-Induced Bone Loss. Bone 2017, 94, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Greco, T.; Mascio, A.; Comisi, C.; Polichetti, C.; Caravelli, S.; Mosca, M.; Mondanelli, N.; Troiano, E.; Maccauro, G.; Perisano, C. RANKL-RANK-OPG Pathway in Charcot Diabetic Foot: Pathophysiology and Clinical-Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 3014. [Google Scholar] [CrossRef]
- Persson, M.S.M.; Stocks, J.; Walsh, D.A.; Doherty, M.; Zhang, W. The Relative Efficacy of Topical Non-Steroidal Anti-Inflammatory Drugs and Capsaicin in Osteoarthritis: A Network Meta-Analysis of Randomised Controlled Trials. Osteoarthr. Cartil. 2018, 26, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Wei, J.; Persson, M.S.M.; Sarmanova, A.; Doherty, M.; Xie, D.; Wang, Y.; Li, X.; Li, J.; Long, H.; et al. Relative Efficacy and Safety of Topical Non-Steroidal Anti-Inflammatory Drugs for Osteoarthritis: A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials and Observational Studies. Br. J. Sports Med. 2018, 52, 642–650. [Google Scholar] [CrossRef]
- Paterson, K.L.; Gates, L. Clinical Assessment and Management of Foot and Ankle Osteoarthritis: A Review of Current Evidence and Focus on Pharmacological Treatment. Drugs Aging 2019, 36, 203–211. [Google Scholar] [CrossRef]
- Jennings, M. Comparison of Piroxicam and Naproxen in Osteoarthritis of the Foot. J. Am. Podiatr. Med. Assoc. 1994, 84, 348–354. [Google Scholar] [CrossRef]
- da Costa, B.R.; Reichenbach, S.; Keller, N.; Nartey, L.; Wandel, S.; Jüni, P.; Trelle, S. Effectiveness of Non-Steroidal Anti-Inflammatory Drugs for the Treatment of Pain in Knee and Hip Osteoarthritis: A Network Meta-Analysis. Lancet 2017, 390, e21–e33. [Google Scholar] [CrossRef]
- National Clinical Guideline Centre (UK). Osteoarthritis: Care and Management in Adults; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- Migliore, A.; Giovannangeli, F.; Bizzi, E.; Massafra, U.; Alimonti, A.; Laganà, B.; Diamanti Picchianti, A.; Germano, V.; Granata, M.; Piscitelli, P. Viscosupplementation in the Management of Ankle Osteoarthritis: A Review. Arch. Orthop. Trauma Surg. 2011, 131, 139–147. [Google Scholar] [CrossRef]
- Schmid, T.; Krause, F.G. Conservative Treatment of Asymmetric Ankle Osteoarthritis. Foot Ankle Clin. 2013, 18, 437–448. [Google Scholar] [CrossRef]
- Sun, S.-F.; Hsu, C.-W.; Sun, H.-P.; Chou, Y.-J.; Li, H.-J.; Wang, J.-L. The Effect of Three Weekly Intra-Articular Injections of Hyaluronate on Pain, Function, and Balance in Patients with Unilateral Ankle Arthritis. J. Bone Jt. Surg. Am. 2011, 93, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
- Boswell, S.G.; Cole, B.J.; Sundman, E.A.; Karas, V.; Fortier, L.A. Platelet-Rich Plasma: A Milieu of Bioactive Factors. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Soomekh, D.J. Current Concepts for the Use of Platelet-Rich Plasma in the Foot and Ankle. Clin. Podiatr. Med. Surg. 2011, 28, 155–170. [Google Scholar] [CrossRef]
- Bibbo, C.; Hatfield, P.S. Platelet-Rich Plasma Concentrate to Augment Bone Fusion. Foot Ankle Clin. 2010, 15, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Peters, P.G.; Schon, L. The Use of Platelet-Rich Plasma in the Management of Foot and Ankle Conditions. Oper. Tech. Sports Med. 2011, 19, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Mei-Dan, O.; Kish, B.; Shabat, S.; Masarawa, S.; Shteren, A.; Mann, G.; Nyska, M. Treatment of Osteoarthritis of the Ankle by Intra-Articular Injections of Hyaluronic Acid: A Prospective Study. J. Am. Podiatr. Med. Assoc. 2010, 100, 93–100. [Google Scholar] [CrossRef]
- Repetto, I.; Biti, B.; Cerruti, P.; Trentini, R.; Felli, L. Conservative Treatment of Ankle Osteoarthritis: Can Platelet-Rich Plasma Effectively Postpone Surgery? J. Foot Ankle Surg. 2017, 56, 362–365. [Google Scholar] [CrossRef]
- Kon, E.; Mandelbaum, B.; Buda, R.; Filardo, G.; Delcogliano, M.; Timoncini, A.; Fornasari, P.M.; Giannini, S.; Marcacci, M. Platelet-Rich Plasma Intra-Articular Injection Versus Hyaluronic Acid Viscosupplementation as Treatments for Cartilage Pathology: From Early Degeneration to Osteoarthritis. Arthrosc. J. Arthrosc. Relat. Surg. 2011, 27, 1490–1501. [Google Scholar] [CrossRef]
- Latt, L.D.; Jaffe, D.E.; Tang, Y.; Taljanovic, M.S. Evaluation and Treatment of Chronic Plantar Fasciitis. Foot Ankle Orthop. 2020, 5, 2473011419896763. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.T.; Williams, P.L.; Purkayastha, S. Intra-Articular Corticosteroid Injections in the Foot and Ankle: A Prospective 1-Year Follow-up Investigation. J. Foot Ankle Surg. 2008, 47, 138–144. [Google Scholar] [CrossRef]
- John, S.; Bongiovanni, F. Brace Management for Ankle Arthritis. Clin. Podiatr. Med. Surg. 2009, 26, 193–197. [Google Scholar] [CrossRef]
- Tezcan, M.E.; Goker, B.; Lidtke, R.; Block, J.A. Long-term effects of lateral wedge orthotics on hip and ankle joint space widths. Gait Posture 2017, 51, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-L.; Rosenbaum, D.; Su, F.-C. The Effects of Rocker Sole and SACH Heel on Kinematics in Gait. Med. Eng. Phys. 2004, 26, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Outcome of Orthoses Intervention in the Rheumatoid Foot—Yasemin Kavlak, Fatma Uygur, Cengiz Korkmaz, Nilgün Bek. 2003. Available online: https://journals.sagepub.com/doi/10.1177/107110070302400608 (accessed on 30 July 2023).
- Vliet Vlieland, T.P.M.; Pattison, D. Non-Drug Therapies in Early Rheumatoid Arthritis. Best Pract. Res. Clin. Rheumatol. 2009, 23, 103–116. [Google Scholar] [CrossRef]
- Anain, J.M.; Bojrab, A.R.; Rhinehart, F.C. Conservative Treatments for Rheumatoid Arthritis in the Foot and Ankle. Clin. Podiatr. Med. Surg. 2010, 27, 193–207. [Google Scholar] [CrossRef]
- Brosseau, L.; Judd, M.G.; Marchand, S.; Robinson, V.A.; Tugwell, P.; Wells, G.; Yonge, K. Transcutaneous Electrical Nerve Stimulation (TENS) for the Treatment of Rheumatoid Arthritis in the Hand. Cochrane Database Syst. Rev. 2003, 2003, CD004377. [Google Scholar] [CrossRef]
- Imboden: Transcutaneous Electrical Nerve Stimulation—Google Scholar. Available online: https://scholar.google.com/scholar_lookup?title=Transcutaneous%20electrical%20nerve%20stimulation&author=J.%20Imboden&publication_year=2006 (accessed on 30 July 2023).
- Robinson, V.; Brosseau, L.; Casimiro, L.; Judd, M.; Shea, B.; Wells, G.; Tugwell, P. Thermotherapy for Treating Rheumatoid Arthritis. Cochrane Database Syst. Rev. 2002, 2002, CD002826. [Google Scholar] [CrossRef]
- Brosseau, L.; Welch, V.; Wells, G.A.; de Bie, R.; Gam, A.; Harman, K.; Morin, M.; Shea, B.; Tugwell, P. Low Level Laser Therapy (Classes I, II and III) for Treating Rheumatoid Arthritis. Cochrane Database Syst. Rev. 2005, 2005, CD002049. [Google Scholar] [CrossRef]
- Osti, L.; Del Buono, A.; Maffulli, N. Arthroscopic Debridement of the Ankle for Mild to Moderate Osteoarthritis: A Midterm Follow-up Study in Former Professional Soccer Players. J. Orthop. Surg. 2016, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Buda, R.; Cavallo, M.; Castagnini, F.; Cenacchi, A.; Natali, S.; Vannini, F.; Giannini, S. Treatment of Hemophilic Ankle Arthropathy with One-Step Arthroscopic Bone Marrow–Derived Cells Transplantation. Cartilage 2015, 6, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Woo, I.; Park, J.J.; Seok, H.-G. The Efficacy of Platelet-Rich Plasma Augmentation in Microfracture Surgery Osteochondral Lesions of the Talus: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4998. [Google Scholar] [CrossRef] [PubMed]
- Takakura, Y.; Aoki, T.; Sugimoto, K. The Treatment for Osteoarthritis of the Ankle Joint. Jpn. J. Jt. Dis. 1986, 5, 347–352. [Google Scholar] [CrossRef]
- Plaass, C.; Knupp, M.; Barg, A.; Hintermann, B. Anterior Double Plating for Rigid Fixation of Isolated Tibiotalar Arthrodesis. Foot Ankle Int. 2009, 30, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Townshend, D.; Di Silvestro, M.; Krause, F.; Penner, M.; Younger, A.; Glazebrook, M.; Wing, K. Arthroscopic versus Open Ankle Arthrodesis: A Multicenter Comparative Case Series. J. Bone Jt. Surg. Am. 2013, 95, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Jehan, S.; Shakeel, M.; Bing, A.J.F.; Hill, S.O. The Success of Tibiotalocalcaneal Arthrodesis with Intramedullary Nailing—A Systematic Review of the Literature. Acta Orthop. Belg. 2011, 77, 644–651. [Google Scholar]
- Tibio-Talo-Calcaneal Arthrodesis with Retrograde Compression Intramedullary Nail Fixation for Salvage of Failed Total Ankle Replacement: A Systematic Review. Available online: https://pubmed.ncbi.nlm.nih.gov/23465809/ (accessed on 30 July 2023).
- Rodrigues-Pinto, R.; Muras, J.; Martín Oliva, X.; Amado, P. Total Ankle Replacement in Patients under the Age of 50. Should the Indications Be Revised? J. Foot Ankle Surg. 2013, 19, 229–233. [Google Scholar] [CrossRef]
- Davies, M.B.; Saxby, T. Ankle Arthropathy of Hemochromatosis: A Case Series and Review of the Literature. Foot Ankle Int. 2006, 27, 902–906. [Google Scholar] [CrossRef]
Authors; Year | Age; Sex | Involvement; Duration of Symptoms (Years) | Treatment | Follow-Up (Years) | Outcomes |
---|---|---|---|---|---|
Davies and Saxby [94]; 2006 | 52; M | Bilateral; 5 | One-side TAA | 3 | Free of pain |
71; M | Bilateral; 10 | Two-stage bilateral TAA 1 year later | 3 | Free of pain | |
59; M | Bilateral; 10 | - Left ankle arthrodesis (6 years before) - One-side TAA | 4 | Free of pain | |
59; M | Bilateral; 3 | One-side TAA | 1 | Free of pain | |
Barg et al. [1] 2011 | 59.5 ± 10.5 (range, 44.4–80.9); 14M, 2F | / | 21 total TAA: - 11 unilateral; - 1 simultaneous bilateral; - 4 two-stage bilateral | 5.3 (range, 3.1–8.6) | - 4 of the 16 patients were completely pain free, and all patients experienced substantial pain relief. - AOFAS score (46 ± 15 (range, 22–67) preoperatively to 84 ± 6 (range, 74–94) postoperatively - ROM (29.6 ± 10.9 (range, 6–45) preoperatively to 39.3 ± 8.2 (range, 23–56) postoperatively - SF-36 PH 30.5 ± 6.2 to 77.7 ± 4.7 - SF-36 MH 56.4 ± 4.9 to 78.8 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calori, S.; Comisi, C.; Mascio, A.; Fulchignoni, C.; Pataia, E.; Maccauro, G.; Greco, T.; Perisano, C. Overview of Ankle Arthropathy in Hereditary Hemochromatosis. Med. Sci. 2023, 11, 51. https://doi.org/10.3390/medsci11030051
Calori S, Comisi C, Mascio A, Fulchignoni C, Pataia E, Maccauro G, Greco T, Perisano C. Overview of Ankle Arthropathy in Hereditary Hemochromatosis. Medical Sciences. 2023; 11(3):51. https://doi.org/10.3390/medsci11030051
Chicago/Turabian StyleCalori, Sara, Chiara Comisi, Antonio Mascio, Camillo Fulchignoni, Elisabetta Pataia, Giulio Maccauro, Tommaso Greco, and Carlo Perisano. 2023. "Overview of Ankle Arthropathy in Hereditary Hemochromatosis" Medical Sciences 11, no. 3: 51. https://doi.org/10.3390/medsci11030051