Insight into Heterogeneous Calcite Cementation of Turbidite Channel-Fills from UAV Photogrammetry
Abstract
:1. Introduction
Geological Setting
2. Materials and Methods
3. Results
3.1. Channel-Fill Geometry and Sedimentary Facies
Interpretation
3.2. Concretion Shapes
3.3. Concretion Spatial Distribution
3.4. Petrography
3.5. Diagenetic Features
3.6. Stable C and O Isotopes
3.7. Diagenesis Interpretation
4. Discussion
4.1. Likely Sedimentary Controls on Concretion Development
4.2. Prediction and Likely Impact on Reservoir Properties
5. Conclusions
- The channel-fill comprises a lower tightly cemented conglomeratic sandstone charged with large rip-ups eroded from the marlstone below, replaced up-section by amalgamated turbidite sandstone
- Turbidites are locally rich in marlstone rip-ups and become progressively finer grained, more laminated and less amalgamated up-section and off the channel axis
- Concretions show a range of equant to oblate shapes with their long axes laying in the bedding plane and volumes ranging from ca. 3*10−4 to 3 m3
- Equant concretions are ubiquitous and often associated with marlstone rip-ups
- Oblate concretions include highly elongated, strata-bound concretions and completely cemented beds developed above preserved mud caps or straddling surfaces of bed amalgamation
- Up-section and off the channel axis the proportion of elongated concretions increases
- Calcite cement precipitated near to maximum burial depth
- Carbon and oxygen stable isotope data suggest that the marlstone material eroded from the channel substrate and trapped within the channel-fill in different forms (rip-ups, matrix micrite and mud caps) represents the source of carbonate ions for calcite cementation
- The concretion pattern of the studied channel-fill is typified by a tightly cemented lower zone, an intermediate unevenly cemented zone where oblate concretions are dominant and homogenously dispersed, and an upper zone with highly elongated concretions whose lateral continuity can exceed the size of the outcrop
- The results of this contribution find application in prediction and geostatistical modelling of heterogeneous calcite cementation of analogue hydrocarbon reservoirs at a range of scales
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McBride, E.F.; Milliken, K.L.; Cavazza, W.; Cibin, U.; Fontana, D.; Picard, M.D.; Zuffa, G.G. Heterogeneous distribution of calcite cement at the outcrop Scale in Tertiary Sandstones, Northern Apennines, Italy. Am. Assoc. Pet. Geol. Bull. 1995, 79, 1044–1062. [Google Scholar] [CrossRef]
- Carvalho, M.V.; De Ros, L.F.; Gomes, N.S. Carbonate cementation patterns and diagenetic reservoir facies in the Campos Basin Cretaceous Turbidites, Offshore Eastern Brazil. Mar. Pet. Geol. 1995, 12, 741–758. [Google Scholar] [CrossRef]
- Morad, S. Carbonate cementation in sandstones: Distribution patterns and geochemical evolution. In Carbonate Cementation in Sandstones; Morad, S., Ed.; International Association of Sedimentologists Special Publication: Cambridge, UK, 1998; Volume 26, pp. 53–85. [Google Scholar] [CrossRef]
- Morad, S.; De Ros, L.F.; Nystuen, J.P.; Bergan, M. Carbonate diagenesis and porosity evolution in sheet-flood sandstones: Evidence from the Middle and Lower Lunde Members (Triassic) in the Snorre Field, Norwegian North Sea. In Carbonate Cementation in Sandstones; Morad, S., Ed.; International Association of Sedimentologists Special Publication: Cambridge, UK, 1998; Volume 26, pp. 53–86. [Google Scholar] [CrossRef]
- Worden, R.H.; Burley, S.D. Sandstone diagenesis: The evolution of sand to stone. In Sandstone Diagenesis: Recent and Ancient; Burley, S.D., Worden, R.H., Eds.; Reprint Series; International Association of Sedimentologists Special Publication: Oxford, UK, 2003; Volume 4, pp. 3–44. [Google Scholar] [CrossRef]
- Dutton, S.P.; Flanders, W.A. Evidence of Reservoir Compartmentalization by Calcite Cement Layers in Deepwater Sandstones; Bell Canyon Formation: Delaware Basin, TX, USA; Geological Society: London, UK, 2004; Volume 237, pp. 279–282. [Google Scholar] [CrossRef]
- Morad, S.; Al-Ramadan, K.; Ketzer, J.M.; De Ros, L.F. The Impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy. Am. Assoc. Pet. Geol. Bull. 2010, 94, 1267–1309. [Google Scholar] [CrossRef]
- Ajdukiewicz, J.M.; Lander, R.H. Sandstone reservoir quality prediction: The state of the art. Am. Assoc. Pet. Geol. Bull. 2010, 94, 1083–1091. [Google Scholar] [CrossRef]
- Hendry, J.P.; Trewin, N.H.; Fallick, A.E. Low-Mg calcite marine cement in Cretaceous turbidites: Origin, spatial distribution and relationship to seawater chemistry. Sedimentology 1996, 43, 877–900. [Google Scholar] [CrossRef]
- Mozley, P.S.; Davis, J.M. Relationship between oriented calcite concretions and permeability correlation structure in an alluvial aquifer, Sierra Ladrones Formation, New Mexico. J. Sed. Res. 1996, 66, 11–16. [Google Scholar]
- Dutton, S.P.; White, C.D.; Willis, B.J.; Novakovic, D. Calcite cement distribution and its effect on fluid flow in a deltaic sandstone, Frontier Formation, Wyoming. Am. Assoc. Pet. Geol. Bull. 2002, 86, 2007–2021. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.E.; Hampson, G.J.; Johnson, H.D. A sequence stratigraphic model for an intensely bioturbated shallow-marine sandstone: The Bridport Sand Formation, Wessex Basin, UK. Sedimentology 2006, 53, 1229–1263. [Google Scholar] [CrossRef]
- Lee, K.; Gani, M.R.; McMechan, G.A.; Bhattacharya, J.P.; Nyman, S.L.; Zeng, X. Three-dimensional facies architecture and three-dimensional calcite concretion distributions in a tide-influenced delta front, Wall Creek Member, Frontier Formation, Wyoming. Am. Assoc. Pet. Geol. Bull. 2007, 91, 191–214. [Google Scholar] [CrossRef]
- Dutton, S.P. Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties. Am. Assoc. Pet. Geol. Bull. 2008, 92, 765–787. [Google Scholar] [CrossRef]
- Loope, D.B.; Kettler, R.M.; Weber, K.A. Morphologic clues to the origins of iron oxide–cemented spheroids, boxworks, and pipelike concretions, Navajo Sandstone of south-central Utah, USA. J. Geol. 2011, 119, 505–520. [Google Scholar] [CrossRef]
- El-Ghali, M.A.K.; El Khoriby, E.; Mansurbeg, H.; Morad, S.; Ogle, N. Distribution of carbonate cements within depositional facies and sequence stratigraphic framework of shoreface and deltaic arenites, Lower Miocene, the Gulf of Suez rift, Egypt. Mar. Pet. Geol. 2013, 45, 267–280. [Google Scholar] [CrossRef]
- Ma, P.; Lin, C.; Zhang, S.; Dong, C.; Zhao, Y.; Dong, D.; Shehzad, K.; Awais, M.; Guo, D.; Mu, X. Diagenetic history and reservoir quality of tight sandstones: A case study from Shiqianfeng sandstones in upper Permian of Dongpu Depression, Bohai Bay Basin, eastern China. Mar. Pet. Geol. 2018, 89, 280–299. [Google Scholar] [CrossRef]
- Morad, S. (Ed.) Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 72. [Google Scholar] [CrossRef]
- Bjørlykke, K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sed. Geol. 2014, 301, 1–14. [Google Scholar] [CrossRef]
- Bjørkum, P.A.; Walderhaug, O. Geometrical arrangement of calcite cementation within shallow marine sandstones. Earth-Sci. Rev. 1990, 29, 145–161. [Google Scholar] [CrossRef]
- Spadafora, E.; De Ros, L.F.; Zuffa, G.G.; Morad, S.; Al-Aasm. Diagenetic evolution of synorogenic hybrid and lithic arenites (Miocene), northern Apennines, Italy. In Carbonate Cementation in Sandstones; Morad, S., Ed.; International Association of Sedimentologists Special Publication: Cambridge, UK, 1998; Volume 26, pp. 241–260. [Google Scholar] [CrossRef]
- Beitler, B.; Parry, W.T.; Chan, M.A. Fingerprints of fluid flow: Chemical diagenetic history of the Jurassic Navajo Sandstone, southern Utah, USA. J. Sed. Res. 2005, 75, 547–561. [Google Scholar] [CrossRef]
- Bjørkum, P.A.; Walderhaug, O. Isotopic composition of a calcite-cemented layer in the Lower Jurassic Bridport Sands, southern England: Implications for formation of laterally extensive calcite-cemented layers. J. Sed. Petrol. 1993, 63, 678–682. [Google Scholar] [CrossRef]
- Cibin, U.; Cavazza, W.; Fontana, D.; Milliken, K.L.; McBride, E.F. Comparison of composition and texture of calcite-cemented concretions and host sandstones, Northern Apennines, Italy. J. Sed. Res. 1993, 63, 945–954. [Google Scholar] [CrossRef]
- White, C.D.; Novakovic, D.; Dutton, S.P.; Willis, B.J. A geostatistical model for calcite concretions in sandstone. Math. Geol. 2003, 35, 549–575. [Google Scholar] [CrossRef]
- Buckley, S.J.; Howell, J.A.; Enge, H.D.; Kurz, T.H. Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. J. Geol. Soc. 2008, 165, 625–638. [Google Scholar] [CrossRef]
- Marini, M.; Milli, S.; Rossi, M.; De Tomasi, V.; Meda, M.; Lisi, N. Multi-scale characterization of the Pleistocene-Holocene Tiber delta deposits as a depositional analogue for hydrocarbon reservoirs. J. Mediterr. Earth Sci. Spec. Issue 2013, 103, 109–110. [Google Scholar]
- Assali, P.; Grussenmeyer, P.; Villemin, T.; Pollet, N.; Viguier, F. Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. J. Struct. Geol. 2014, 66, 102–114. [Google Scholar] [CrossRef]
- Casella, V.; Franzini, M. Modelling steep surfaces by various configurations of nadir and oblique photogrammetry. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Chesley, J.T.; Leier, A.L.; White, S.; Torres, R. Using unmanned aerial vehicles and structure-from-motion photogrammetry to characterize sedimentary outcrops: An example from the Morrison Formation, Utah, USA. Sediment. Geol. 2017, 354, 1–8. [Google Scholar] [CrossRef]
- Nieminski, N.M.; Graham, S.A. Modeling stratigraphic architecture using small unmanned aerial vehicles and photogrammetry: Examples from the Miocene East Coast Basin, New Zealand. J. Sediment. Res. 2017, 87, 126–132. [Google Scholar] [CrossRef]
- Madjid, M.Y.A.; Vandeginste, V.; Hampson, G.; Jordan, C.J.; Booth, A.D. Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping. Mar. Petrol. Geol. 2018, 91, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Ricci Lucchi, F. The Oligocene to Recent foreland basins of the northern Apennines. In Foreland Basins; Blackwell Scientific: Oxford, UK, 1986; Volume 8, pp. 105–139. [Google Scholar] [CrossRef]
- Biella, G.C.; Clari, P.; De Franco, R.; Gelati, R.; Ghibaudo, G.; Gnaccolini, M.; Lanza, R.; Polino, R.; Ricci, B.; Rossi, P.M. Geometrie crostali al nodo Alpi/Appennino: Conseguenze sull’evoluzione cinematica dei bacini neogenici. In Proceedings of the 76 Congresso della Società Geologica Italiana, Firenze, Italy, 20–26 September 1992; pp. 192–195. [Google Scholar]
- Maino, M.; Decarlis, A.; Felletti, F.; Seno, S. Tectono-sedimentary evolution of the Tertiary Piedmont Basin (NW Italy) within the Oligo–Miocene central Mediterranean geodynamics. Tectonics 2013, 32, 593–619. [Google Scholar] [CrossRef]
- Stocchi, S.; Cavalli, C.; Baruffini, L. The Guaso (south-central Pyrenees), Gremiasco and Castagnola (eastern sector of Tertiary Piedmont basin) turbidite deposits: Geometry and detailed correlation pattern. Atti Ticinensi Scienze della Terra 1992, 35, 153–177. [Google Scholar]
- Baruffini, L.; Cavalli, C.; Papani, L. Detailed stratal correlation and stacking patterns of the Gremiasco and lower Castagnola turbidite systems, Tertiary Piedmont Basin, northwestern Italy. In 15th Annual Research Conference Submarine Fans and Turbidite Systems; Weimer, P., Bouma, A.H., Perkins, B.F., Eds.; GCSSEPM Foundation: Houston, TX, USA, 1994; pp. 9–21. [Google Scholar] [CrossRef]
- Marini, M.; Patacci, M.; Felletti, F.; McCaffrey, W.D. Fill to spill stratigraphic evolution of a confined turbidite mini-basin succession, and its likely well bore expression: The Castagnola Fm, NW Italy. Mar. Pet. Geol. 2016, 69, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Marini, M.; Felletti, F.; Milli, S.; Patacci, M. The thick-bedded tail of turbidite thickness distribution as a proxy for flow confinement: Examples from Tertiary basins of central and northern Apennines (Italy). Sed. Geol. 2016, 341, 96–118. [Google Scholar] [CrossRef]
- Cavanna, F.; Di Giulio, A.; Galbiati, B.; Mosna, S.; Perotti, C.R.; Pieri, M. Carta Geologica dell’estremità orientale del Bacino Terziario Ligure-Piemontese. Atti Ticinesi Scienze della Terra 1989, 32. [Google Scholar]
- Marroni, M.; Ottria, G.; Pandolfi, L. Note Illustrative della Carta Geologica d’Italia alla scala 1: 50,000 Foglio 196 Cabella Ligure; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2010. [Google Scholar]
- Di Giulio, A.; Galbiati, B. Escursione nell’estremità orientale del Bacino Terziario Piemontese: Interazione tettonica eustatismo nella sedimentazione di un bacino tardo post-orogenico. 3 Convegno del Gruppo di Sedimentologia del C.N.R. 1993, 1–28. [Google Scholar]
- Bellinzona, G.; Boni, A.; Braga, G.; Marchetti, G. Note illustrative della Carta Geologica d’Italia in scala 1: 100,000, Foglio 71, Voghera; Servizio Geologico d’Italia: Roma, Italy, 1971. [Google Scholar]
- Milliken, K.L.; McBride, E.F.; Cavazza, W.; Cibin, U.; Fontana, D.; Picard, M.D.; Zuffa, G.G. Geochemical history of calcite precipitation in Tertiary sandstones, northern Apennines, Italy. In Carbonate Cementation in Sandstones; Morad, S., Ed.; International Association of Sedimentologists Special Publication: Cambridge, UK, 1998; Volume 26, pp. 213–239. [Google Scholar] [CrossRef]
- Hodgetts, D.; Gawthorpe, R.L.; Wilson, P.; Rarity, F. Integrating digital and traditional field techniques using virtual reality geological studio (VRGS). In Proceedings of the Society of Petroleum Engineers 69th European Association of Geoscientists and Engineers Conference and Exhibition 2007, London, UK, 11–14 June 2007; pp. 83–87. [Google Scholar] [CrossRef]
- Zingg, T. Beitrag zur Schotteranalyse. Schweizerische Mineralogische und Petrographische Mitteilungen 1935, 15, 39–140. [Google Scholar]
- Lynch, L.F. Frio shale mineralogy and the stoichiometry of the smectite to illite reaction—The most important reaction in sedimentary diagenesis. Clays Clay Miner. 1997, 45, 618–631. [Google Scholar] [CrossRef]
- Mutti, E. Turbidite Sandstones; AGIP, Istituto di Geologia, Università di Parma: Parma, Italy, 1992. [Google Scholar]
- Bouma, A.H. Sedimentology of Some Flysch Deposits: A graphic Approach to Facies Interpretation; Elsevier: Amsterdam, The Netherlands, 1962; Volume 168. [Google Scholar]
- Barton, M.; O’Byrne, C.; Pirmez, C.; Prather, B.; Van der Vlugt, F.; Alpak, F.O.; Sylvester, Z. Turbidite channel architecture: Recognizing and quantifying the distribution of channel base drapes using core and dipmeter data. In Dipmeter and Borehole Image Log Technology; Pöppelreiter, M., Garcia-Carballido, C., Kraaijveld, M.A., Eds.; AAPG Memoir: Houston, TX, USA, 2010; Volume 92, pp. 195–210. [Google Scholar] [CrossRef]
- McHargue, T.; Pyrcz, M.J.; Sullivan, M.D.; Clark, J.D.; Fildani, A.; Romans, B.W.; Covault, J.A.; Levy, M.; Posamentier, H.W.; Drinkwater, N.J. Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Mar. Pet. Geol. 2011, 28, 728–743. [Google Scholar] [CrossRef]
- Janocko, M.; Nemec, W.; Henriksen, S.; Warchoł, M. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Mar. Pet. Geol. 2013, 41, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Ebdon, D. Statistics in Geography: A Practical Approach-Revised with 17 Programs; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1980. [Google Scholar]
- Worden, R.H.; Morad, S. Clay minerals in sandstones: Controls on formation, distribution and evolution. In Clay Mineral Cements in Sandstones; Worden, R.H., Morad, S., Eds.; International Association of Sedimentologists Special Publication: Oxford, UK, 2003; Volume 34, pp. 3–41. [Google Scholar] [CrossRef]
- Machel, H.-G. Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geosci. Can. 1983, 12, 139–147. [Google Scholar]
- Tucker, M.; Wright, V.P. Carbonate Sedimentology; Blackwell Science: Oxford, UK, 1990; 482p. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies of Carbonate Rocks; Springer: Berlin/Heidelberg, Germany, 2004; 976p. [Google Scholar] [CrossRef]
- Hiatt, E.E.; Pufahl, P.K. Cathodoluminescence petrography of carbonate rocks: Application to understanding diagenesis, reservoir quality, and pore system evolution. In Cathodoluminescence and Its Application to Geoscience; Coulson, I., Ed.; Short Course Series; Mineralogical Association of Canada: Quebec, QC, Canada, 2014; Volume 45, pp. 75–96. [Google Scholar]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef]
- Swart, P.K. The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology 2015, 62, 1233–1304. [Google Scholar] [CrossRef]
- Dale, A.; John, C.M.; Mozley, P.S.; Smalley, P.C.; Muggeridge, A.H. Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth Planet. Sci. Lett. 2014, 394, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.S.; Mozley, P.; Campbell, A.R.; Cole, R. Spatial distribution of carbon and oxygen isotopes in laterally extensive carbonate-cemented layers; implications for mode of growth and subsurface identification. J. Sediment. Res. 1999, 69, 184–201. [Google Scholar] [CrossRef]
- Eschard, R.; Deschamps, R.; Doligez, B.; Lerat, O.; Langlais, V.; Euzen, T. Connectivity estimation between turbiditic channels and overbank deposits from the modelling of an outcrop analogue (Pab Formation, Maastrichtian, Pakistan). Geol. Soc. Lond. Spec. Publ. 2014, 387, 203–231. [Google Scholar] [CrossRef]
- Gardner, M.H.; Borer, J.M.; Bouma, A.H.; Stone, C.G. Submarine channel architecture along a slope to basin profile, Brushy Canyon Formation, west Texas; Special Publication-SEPM: Houston, TX, USA, 2000; Volume 68, pp. 195–214. [Google Scholar]
- Cunha, L.B.; Barroso, A.D.S.; Romeu, R.K.; Sombra, C.L.; Cortez, M.M.; Backheuser, Y.; Lopes, M.F.; Schwerdesky, G.; Bruhn, C.H.; de Souza, R.S.; et al. A multi-scale approach to improve reservoir characterization and forecasting: The Albacora Field (deep-water offshore Brazil) study. Pet. Geosci. 2001, 7, S17–S23. [Google Scholar] [CrossRef]
Shape Category | Intermediate and Long Axes | Intermediate and Short Axes | Explanation | Example |
---|---|---|---|---|
equant | 0.67 < w/l < 1 | 0.67 < t/w < 1 | all dimensions are comparable | ball |
oblate 1 | 0.67 < w/l < 1 | t/w < 0.67 | thickness is shorter | pancake |
prolate | w/l < 0.67 | 0.67 < t/w < 1 | length is much longer | cigar |
bladed | w/l < 0.67 | t/w < 0.67 | all dimensions very different | belt |
Test Area | ANN | z-score | p-Value | Area (m2) | n 1 and Density (n/m) | Interpretation | ||
---|---|---|---|---|---|---|---|---|
T1 | 0.72 | 0.63 | 1.14 | 3.01 | 0.002 | 195 | 135; 0.69 | Dispersed |
T2 | 0.60 | 0.54 | 1.10 | 2.47 | 0.01 | 204 | 172; 0.84 | Dispersed |
T3 | 0.49 | 0.50 | 1.00 | 0.02 | 0.97 | 199 | 200; 1.00 | Random |
Sample | δ13C (‰ V-PDB) | δ18O (‰ V-PDB) | Sample 1 | δ13C (‰ V-PDB) | δ18O (‰ V-PDB) |
---|---|---|---|---|---|
Concretions (N = 21) | Marlstone rip-ups (N = 161) | ||||
α3 | −3.0 | −7.1 | O3 | −0.6 | −8.6 |
α3b | −3.0 | −6.9 | γ1 (58.3%) | −9.7 | 0.2 |
ϕ1 | −4.1 | −6.2 | A1 | −10.7 | −0.5 |
J1 | −3.3 | −6.9 | A1B | −10.8 | −0.4 |
P2B | −3.9 | −6.5 | ϕ2 (58.2%) | −9.6 | −0.2 |
V1 | −4.1 | −8.5 | ϕ2b | −9.6 | −0.2 |
V11 | −4.5 | −6.8 | P1 (45.3%) | −7.7 | −0.9 |
V11b | −5.7 | −6.6 | P1B (45.3%) | −5.8 | −1.4 |
V12 | −6.6 | −6.6 | P2C | −7.3 | −1.1 |
V12b | −6.4 | −6.9 | P3 | −5.7 | −3.1 |
Z4 | −0.9 | −10.5 | Q | −6.8 | −1.2 |
Z6 | −1.1 | −12.4 | T1 (70.4%) | −10.1 | −0.3 |
Z6b | −2.1 | −12.7 | T1b | −9.9 | −0.6 |
Z7 | −1.5 | −13.3 | W1 (70.3%) | −10.8 | −0.9 |
Ω3 | −1.0 | −7.2 | W3 (61.4%) | −9.8 | −1.3 |
V4 | −8.3 | −6.5 | X1 (34.5%) | −7.6 | −0.3 |
O2 II | −1.8 | −7.6 | Average | −8.6 | −0.9 |
O2 IIa | −1.9 | −6.9 | St. Deviation | 1.8 | 0.8 |
O2 IIb | −1.9 | −7.0 | Minimum | −10.8 | −3.1 |
O4 II | −9.3 | −5.8 | Maximum | −5.7 | 0.2 |
O4 IIb | −9.4 | −5.9 | |||
Average | −4.0 | −7.9 | Calcite in fracture (N = 2) | ||
St. Deviation | 2.7 | 2.3 | P2A | −5.4 | −5.8 |
Minimum | −9.4 | −13.3 | P2Ab | −5.5 | −5.7 |
Maximum | −0.9 | −5.8 | Average | −5.5 | −5.8 |
St. Deviation | 0.1 | 0.1 | |||
Host Sandstone (N = 12) | Minimum | −5.5 | −5.8 | ||
K2 | −0.6 | −8.6 | Maximum | −5.4 | −5.7 |
K2b | −0.5 | −9.0 | |||
K3 | −1.0 | −9.9 | Hemipelagic marlstones (N=9) | ||
K3a | −0.6 | −10.2 | Ω1 (40.2%) | 0.1 | −1.4 |
K3b | −0.7 | −9.6 | Ω2 (75.4%) | −1.2 | −1.6 |
O1 I | −1.0 | −12.0 | Ω2b | −1.2 | −1.4 |
O1 Ib | −0.6 | −11.5 | MR1 | 0.6 | −1.7 |
S3 | −1.3 | −11.8 | MR2 | −0.1 | −1.8 |
V3 | −1.1 | −12.4 | MR3 | 0.6 | −1.8 |
V3b | −1.9 | −10.9 | MR3b | 0.6 | −1.7 |
V5 | −1.0 | −7.8 | MR4 | −1.6 | −2.9 |
V8 | −1.4 | −12.7 | MR5 | −0.3 | −3.7 |
Average | −1.0 | −10.5 | Average | −0.3 | −2.0 |
St. Deviation | 0.4 | 1.6 | St. Deviation | 0.9 | 0.8 |
Minimum | −1.9 | −12.7 | Minimum | −1.6 | −3.7 |
Maximum | −0.5 | −7.8 | Maximum | 0.6 | −1.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marini, M.; Della Porta, G.; Felletti, F.; Grasso, B.M.; Franzini, M.; Casella, V. Insight into Heterogeneous Calcite Cementation of Turbidite Channel-Fills from UAV Photogrammetry. Geosciences 2019, 9, 236. https://doi.org/10.3390/geosciences9050236
Marini M, Della Porta G, Felletti F, Grasso BM, Franzini M, Casella V. Insight into Heterogeneous Calcite Cementation of Turbidite Channel-Fills from UAV Photogrammetry. Geosciences. 2019; 9(5):236. https://doi.org/10.3390/geosciences9050236
Chicago/Turabian StyleMarini, Mattia, Giovanna Della Porta, Fabrizio Felletti, Benedetta Marcella Grasso, Marica Franzini, and Vittorio Casella. 2019. "Insight into Heterogeneous Calcite Cementation of Turbidite Channel-Fills from UAV Photogrammetry" Geosciences 9, no. 5: 236. https://doi.org/10.3390/geosciences9050236
APA StyleMarini, M., Della Porta, G., Felletti, F., Grasso, B. M., Franzini, M., & Casella, V. (2019). Insight into Heterogeneous Calcite Cementation of Turbidite Channel-Fills from UAV Photogrammetry. Geosciences, 9(5), 236. https://doi.org/10.3390/geosciences9050236