4.1. Finding Unchartered Faults
4.1.1. The Improved Geological Map Based on the Interpretation Results
According to the result of visual interpretation using Landsat 8, the research area can be divided into four lithological units including Young Merapi Volcano deposits (Qmi), Alluvium (Qa), Nglanggran Formation (Tmn), and Semilir Formation (Tmse). All lithological units have distinctive colour, relief, and texture. The Qmi consists of undifferentiated tuff, ash, breccia, agglomerate and, lava. This lithology is widely distributed in the fluvial-volcanic plain of Merapi volcano, south part of Merapi Volcano, including the study area. Qmi is characterised as an extensive flat area which has high soil fertility due to the volcanic activity. Additionally, Qmi is also characterised as a dense soil which has abundant of groundwater. Therefore, Qmi is often utilised as residential areas or agricultural areas. Based on Landsat 8 imagery, the Qmi is characterised by blue, light red, and dark red colour (
Figure 9). The blue colour represents the built-up areas, light and dark red show the agricultural areas and other vegetation covers. The Qmi unit covers the majority area of the study area. It extends from the middle part near the Opak River to the west area of Bantul’s Grabens. This area extends approximately 1086.68 ha or 45.62% of the study area.
The Qa consists of gravel, sand, silt, and clay along the river. The Qa deposits have the same characteristics as Qmi deposits. It is formed of the denudation materials of the mountainous areas in the east part of the study site. Qa is characterised as narrow flat areas that located on the border area between flat and mountainous area. The main difference with the Qmi deposit is the clay content. Qa tends to have higher clay content rather than Qmi deposits because Qa is formed from the denudation materials which have clay texture. This lithological unit is usually used for residential area or dry agricultural area. Based on the Landsat 8 imagery, Qa has the same appearance as Qmi. It has blue and light red colour and very fine texture. However, due to the spatial distribution, Qa often associated with the narrow flat area located on the border area of the mountainous areas. This area covers only 267.94 ha or 11.25% of the study area.
The Tmn is described as a volcanic breccia, lava flow containing breccia, agglomerate rock, and tuff. Tmn was formed in the middle Miocene as a result of an effusive eruption and deposited on the top of Semilir Formation. The Miocene deposits were buried by the younger deposits such as Qmi and Qa. In study site, Tmn is widespread along the summit of Baturagung Escarpment. From the Landsat satellite image, Tmn has a striking dark red colour with a few of light blue spot. The dark red colour reflects that the area is covered by dense vegetation, while the light blue spot refers to the open areas. Tmn is also characterised by the rough texture in the eastern part, and most of them are located in the flat areas (summit of Baturagung Escarpment) with the highest elevation being 334.70 m above sea level. This lithological unit covers about 82.16 ha or 3.45% of the study area.
The Tmse is a tertiary volcanic deposit which consists of interbedded tuff-breccia, pumice breccia, dacite tuff and andesite tuff. Tmse is the oldest rock formation in the study area. It was formed between late Oligocene until early Miocene. According to Yusliandi’s study, Tmse is a volcanic clastic deposit with the pumice as the main material [
40]. The abundance of pumice fragments indicates that Tmse is a co-ignimbrite deposit which was generated by the close explosive eruption [
28,
29,
40]. From Landsat 8 image, Tmse is indicated by the light green colour with a few light blue colour of spot (
Figure 9). The light green colour refers to the extensive open areas, while the light blue colour spot refers to the residential areas. Tmse has very rough texture, indicating that extensive erosion occurs especially in the east part of this lithological unit. Tmse is mainly distributed in the middle part of the study site. It is located between undulating and very steep slope areas (40 < slope < 350). The total area of Tmse is about 945.03 ha or about 39.67% of the study area.
Qa and Qmi are robust to differentiate from Landsat 8 because both units have the similar visual characteristic of morphology, colour, texture, and relief. However, the association concept can be used to identify the Qa deposits. As formed from the denudation processes, Qa is mostly accumulated in the foot slope of denudation hills. Thus, Qa is often referred to the narrow flat areas which are located in the border areas between mountainous and flat areas. Additionally, it has bad sortation of materials and high clay content, due to the colluvial processes near the denudation hills.
There are some differences between the geological units described in the geology map of Yogyakarta and visual interpretation results. The geology map of Yogyakarta shows that the border between Tmse and Tmn is located in the foot slope of Baturagung Escarpment near the Guyangan Villages, but we found that the contact lithic between Tmn and Tmse is located on the upper slope of Baturagung Escarpment (outcrop 39, 48, 39 and 50). Moreover, we found some isolated denudation hills of Tmn in the north part of the study area (
Figure 10). The other difference is the extent of Qmi area. Based on the visual interpretation and field investigation results, Qmi is spread along the left and the right side of Opak River, while the Qa only occupies the narrow plain near the hilly area of Semilir Formation. Based on the brickmaker location, the Qmi was still found on the east part of Opak river until the Bawuran I Villages (500 m from eastern Opak’s riverbank) (
Figure 11). The documentation of lithological check in the field is shown in the
Figure 11.
4.1.2. Lineament Interpretation
Based on the interpretation of Landsat 8 and Quickbird, some lineament has been detected in the study site. These lineaments are closely related to the geomorphological characteristics. It was noticed that most of the lineaments have similar orientation and pattern to the direction of the fault. Most of them are NW-SE and NE-SW oriented which have the same orientation as the major faults. This fact signifies that the fault controls the erosion of the rock, and also controls the landforms.
The boundaries of the elevated areas in study areas (west and east part of Opak River) indicates an existing of geological lineament. The sudden change of the flat area in the west to the high areas in the east (from 40 to 487.97 m above sea level) indicates the existence of the fault in this area. Based on the geology map of Yogyakarta this lineament is close to the major fault in Yogyakarta city namely, Opak Fault. Additionally, this sudden change of topography can be shown in the Landsat 8 imagery. There is a definite difference of colour characteristic between the flat and undulating areas in the west and the elevated flat area in the east part. This colour characteristic reflects the surface condition (vegetation, land cover, or surface lithology). As discussed in previous section (
Section 4.1.1, and
Figure 10), the middle part of study site is the border area between three main lithological units and formations: First, the young volcanic deposits of Merapi Volcano (Qmi); second, The Semilir Formation (Tmse); and third, The Nglanggran Formation (Tmn). These boundaries of the lithological unit and geological formations show the semi-linear or linear feature that can be indicated as a geological lineament (
Figure 12).
Based on the Landsat 8 imagery, there are some linear or semi-linear features in the study area. Opak, Oya, and Pesing Rivers have some linear features indicating the geological lineament. The Opak River flows from the north to the south and shows the NE-SW lineament. This river is often associated with the famous Opak Fault in Yogyakarta City. The other lineaments were found in Pesing and Oya Rivers. They have the same orientation (West–East) of lineament. These lineaments are closely related to strike-slip faults (W–E) which trims The Opak Fault in the north and middle of the study area. This phenomenon explains why the Opak River turns westward in some locations (
Figure 13).
The most prominent lineament in the study site is the lineament of Baturagung Escarpment and Opak River. Both of them have NE-SW orientation. The Baturagung escarpment is a ridge lineament which can be identified from the lineament of boundaries of elevated areas. Based on the advanced spaceborne thermal emission and reflection radiometer (ASTER) DEM (
Figure 12A), there is a distinct difference of flat area in the west part and the elevated flat area in the east part of the study area. The flat areas are expressed with the black colour and have very fine texture, while the elevated flat areas are expressed with the white colour with the rough texture on the left and right side areas. From the south (Parangtritis beach) to the north (Berbah Village, near the Yogyakarta International Airport), this lineament has approximately 35 km of total length with NE-SW orientation and continues to Prambanan, Gantiwarno, Wedi Villages in Klaten Regency with E-W orientation. The lineament in this area is closely related to the Dengkeng Fault (E–W orientation) which is located 8 km north part of the study area. The complete lineament of the study area and their orientation is presented in
Figure 14 below.
In term of physiographic characteristic, the study area is located in the border area between the central depression zone of Java and Northern part of Southern Mountains [
3]. In the study area, the central depression zone consists of young volcanic deposits of Merapi Volcano (Qmi), while the northern part of Southern Mountains consists of Semilir (Tmse) and Nglanggran Formation (Tmn). Geomorphologically, the study area is located in the eastern part of Bantul’s Grabens. This area is characterised as an extensive flat area in the west and suddenly change to an elevated area in the east or known as the Baturagung escarpment which has specific characteristic of morphology. Baturagung has a steep slope on the NW flank and gentle slope on the SW flank. Additionally, Baturagung forms a distinctive morphology of hogback as most of the rocks layer dipping to the southeast (SE) direction (
Figure 15A).
The hogback mountain can be identified by the strike and dip direction of each outcrop that mostly located on the west flank of Baturagung Escarpment. Based on the 73 outcrops, the most outcrops are dipping to the SE direction (100°–165°). Additionally, based on the strike and dip characteristic of the several outcrops such as Trimulyo outcrops (outcrop 1a, 1b, 2, 3 and 57) and Banyakan outcrop (outcrop 54), we found a folded hill between the Opak River and Baturagung Escarpment. This folded hill has the opposite rock dipping in NW direction (290°–330°) with the other dip directions of the eastern folded hills. Thus, it indicates that an anticline hill exists between the Opak River and Baturagung Escarpment. The anticline area extends from the south to the north part and has similar direction with the Opak River (SW-NE). Administratively, this anticline area is located in the Dahromo, Segoroyoso, and Srumbung Villages (South part of study area) also Bawuran and north Wonolelo Villages (north part of the study area).
The folded hills are usually formed in the fault zone especially in the adjacent area of normal fault. This phenomenon is known as normal fault amplitude [
41]. During the normal fault formation, the rocks are displaced along the fault line upward and downward. In this case, the west part of the study area is a downthrown component, while the east part of the study area is upthrow component. The displacement of the upthrow component in the east part also affected the adjacent lithologies. Since any displacement along the shear surface needs space to accommodate the displaced blocks, the adjacent lithologies received the expansion forced by the moving block. There are three general impacts of expansion force by the moving block toward the adjacent lithologies such as the lengthening (expansion) the shortening (contraction); and no change in length effects [
41].
Based on the strike and dip characteristics in the eastern hills of Opak Fault, it can be concluded that the folded hills between the Opak River and Baturagung escarpment experienced a shortening effect due to the expansion force of the moving blocks (
Figure 15B,C). As a result, the lithologies in the eastern part of Opak fault is obliged to fold and forms the folded hills. Additionally, this area consists of Semilir Formation which has relatively soft volcanic deposits. The anticline landform of the folded hill, and the map of the distribution of strike and dip of the outcrops in the study area can be seen in
Figure 15 below.
4.2. The Outcrop Characteristic
Most of the identified outcrops were located in middle part of the study area. They consist of 66 Tmse outcrops, three Tmn outcrops, and an outcrop of transitional area between Tmse and Tmn. Additionally, about three outcrops which are located northeast outside the study area (Prambanan and Berbah), were also observed to obtain the characteristic of the outcrop that located in the adjacent area. Tmse outcrops were located in the traditional mining areas of breccia pumice or the abandoned mining areas which are located in the middle and east part of the study area, while the Tmn is located mostly in the summit of Baturagung Escarpment, the eastern part of the study area (
Supplementary Materials, part 1). Tmse outcrops have characteristic of white or grey outcrop with the interbedded layer between breccia pumice (more compact) and the tuff, tuffaceous clay, and tuff dacite deposits which is typically more loose and breakable deposits. In contrast with Tmse, the Tmn outcrops were characterised as the compact hard rock with the dark colour. Most of the Tmn outcrops in the study area are consist of one single layer of compact rock.
Semilir Formation (Tmse) is typically formed of pyroclastic density currents deposits [
28,
29]. This deposits can be classified into ignimbrites, pyroclastic surge, and block and ash flow deposits. Ignimbrites are commonly characterised as pumices and ash-rich deposits [
42]. Ignimbrites may vary in thickness from many hundreds of metres to a few of centimetres. It commonly consists of the subordinate pumice-poor layer such as lithic breccia and scoria agglomerates. Pyroclastic surge and ash flow deposits differ from ignimbrites. Pyroclastic surges are often deposited as stratified and laminated sediment [
43]. This kind of deposit was formed when a volcanic eruption generates a low-density mixture of volcanic debris and fluids or known as base surges. This deposit can travel at high velocity in a horizontal direction.
The study areas are categorised into three major types of outcrop, i.e., type 1, 2 and 3. The outcrop type 1 include zone 1, 2, 3 and 5 (western part of Semilir Formation). The outcrop type 2 including zone 4, 6 and 7. The outcrop type 3 is located in the eastern part of the study area and the small area in the middle. Most of the outcrop type 3 belongs to the Nglanggran Formation (
Figure 16). The type 1 usually consists of two distinc layers: the lower and upper layers. The lower layer consists of interbedded layers between diffuse stratified Lapilli-Tuff (dsLT), thin-bedded Lapilli-Tuff (bLT), and massive Lapilli-Tiff (mLT). Meanwhile, the upper layer consists of the interbedded layer of stratified Tuff (sT), parallel stratified Tuff (//sT), and cross-stratified Tuff (xsT). The type 2 is similar to the type 1 which consists of the interbedded layer of dsLT, bLT, mLT and sT. However, the outcrops type 2 has a complicated layer configuration and has various thin layers. Additionally, based on the structure from motion analysis (SfM) the fault evidence was mainly found on outcrops type 2 in the middle part of the study area. The outcrops type 3 is entirely different from the outcrops type 1 and 2. The outcrops type 3 consists of volcanic breccia, lava flow containing breccia, agglomerate rock, and tuff. This type of outcrop is characterised as massive and compact outcrops with the bigger fragment of breccia. The outcrops type 3 has the different colour from the other outcrops. This outcrop has a darker colour (black or dark brown) comparing to the outcrop 1 and 2 (see
Figure 16).
Outcrops type 1 consists of outcrop 1–14; 18–20; 28–37; 41–43 and 57. These outcrops are located in the eastern of Semilir Formation in the adjacent area with Alluvium (Qa) and Young volcanic deposits of Merapi Volcano (Qmi). The outcrop type 1 has characteristics as the light grey to the dark grey outcrop with the aphanitic to the medium texture, hardness more than 2.5 of Mohs scale, compact rock and has distinct bLT (thin-bedded Lapilli and Tuff) or sometimes have diffuse (dsLT: diffuse stratified Lapilli-Tuff) bedding plane. The dsLT and bLT layers usually deposited in the middle layer of the outcrops (near the flow boundary zone or above the aggradations deposits). For example, the outcrops in the Trimulyo zone (zone 1). This zone is located in the most southwest part of the study area. Geomorphologically, this area is located on the foot slope of medium denudation hills with the medium level of erosion process. This zone is located 700 m on the west side of Opak River (
Figure 16). In general, the outcrops in zone 1 have SW-NE direction, and the bedding direction (dip) is 5.5°. The dip angle is closely related to the micro geological structure in this area. The highest elevation is 137.5 m, and the lowest elevation is 37.5 m. There are four big outcrops in this zone such as outcrop 1, 2, 3 and 57 and one small outcrops 11. The outcrop 1 has an average dimension of 172.13 m of width and 9.96 m of height (the west outcrop); 223.56 m of width and 12.75 m of height (east outcrop). The outcrop 2 has an average dimension of 129.48 m of width and 3.41 m of height. The outcrop 3 has an average dimension of 76.46 m of width and 11.76 m of height. The outcrop 11 has an average dimension of 17.46 m of width and 1.80 of height. The outcrop 57 has an average dimension of 270.76 m of width and 10.25 m of height. The outcrop 1 has 7 segments (3 segments on the west outcrop and 4 segments on the east outcrop), outcrop 2 has 4 segments, outcrop 3 has 2 segments, outcrop 11 has 1 segment, and outcrop 57 has 4 segments. The detail information about the outcrop type 1 can be found in
Supplementary Materials, part 2.
The outcrop type 2 spreads in the middle of the study area. All of these outcrops belongs to the Semilir Formation (Qmi). In general, the layer’s configuration of this outcrop is similar to the outcrop type 1. It consists of interbedded layer of mLT, dsLT, bLT and //sT. However, the outcrop type 2 has much more thin layers. The outcrop type 2 consists of several outcrops in zone 3 (Sindet-Srumbung Zone), zone 4 (Srumbung-Sanan Zone), zone 6 (Banyakan Zone) and zone 7 (Ngelosari Zone) (
Figure 16). There are four big outcrops that can be categorised as outcrop type 2 such as outcrop 15 (Dengkeng area), outcrop 24, outcrop 54 (Piyungan area) and outcrop 56 (Banyakan area). The detail information about the outcrop type 2 can be found in
Supplementary Materials, part 3.
The outcrops type 3 are mostly located in the east part of the study area. Geomorphologically, the eastern part of the study area is the Baturagung Escarpment summit which belongs to the Formation Nglanggran. This formation consists of volcanic breccia, lava flow containing breccia, agglomerate rock, and tuff. In the field, this lithology is characterised as the very hard rock, dark colour, and the bigger grain size. There are at least six outcrops classified as the type 3 (outcrop 38, 46, 47, 49, 50, 70 and 71). All of them have the same characteristic of dark grey outside and light grey inside. It has angular blocks (>64 mm) grain size, very poorly sorted, and random configuration of pumice and lithic. According to the research done by Kokelaar team [
42], this layer is categorised as a massive lithic breccia lithofacies (mlBr). This kind of lithofacies are usually known as a common proximal lithofacies, and they can deposit at the bottom, in the middle, or on the top of the other ignimbrites deposits. The mlBr layer can be easily distinguished from the other ignimbrites deposits due to the pumice and lithic grain size. mlBr contains fragment with the size of blocks from several centimetres to decimetres. Similar to the others ignimbrites deposits, the mlBr layer was formed from the coarse facies of ignimbrites which deposits in the lower flow boundary of the pyroclastic flow. The block in the mlBr was formed from the collapse of the vent wall during the eruption or additional avalanche into the pyroclastic density current or the lithics from the other materials due to the pyroclastic erosion [
42]. The mlBr thickness significantly depends on the topography condition and is closely related to the caldera deposits.
The spatial distribution of outcrop type 3 in the study area proves that the Opak Fault is a normal fault. The outcrop with the Nglanggran Formation characteristic was found in the west part of the study area near the Opak River. These outcrops are located in Gunung Gelap near the Piyungan landfill. These outcrops have the same characteristic with the outcrop 49 and 50 which are located in the middle slope of Baturagung Escarpment (transition zone between Semilir and Nglanggran Formation). These outcrops (Gunung Gelap, outcrop 49, and outcrop 50) have the transition characteristics of Semilir and Nglanggran Formations. The detail information about the characteristic of outcrop type 3 can be found in
Supplementary Materials, part 4.
4.3. Faults Evidence
Based on the field observation and the structure from motion (SfM) results, there are loads of evidence of fault which were recorded on the outcrop. At least 31 faults were found in the study area. Most of them are located in the outcrop type 1 and 2 which belongs to the Semilir Formation. Most of them spread between the main normal fault (Opak Fault) and the main strike-slip fault (Bawuran Fault and Punthuk-Cinomati Fault) or in the centre of the study area. The biggest fault displacement is located in the outcrop 17 segment 3 in Srumbung Village. The fault was seen in the field with the direction of 147°–327° or Southeast and Northwest direction. The layer displacement was about 2.31 m with the south part moves upward and north part moves downward (
Figure 17A). The other big displacements were found in the outcrop 26 (Srumbung Village) (0.42 m) and outcrop 56 (Banyakan Village) (0.76 m). Most of these faults are the normal fault. It was challenging to identify the strike-slip in the field or through the structure from motion analysis because there is no vertical displacement in a strike-slip fault.
The outcrop study also describes when the fault occurred. Most of the faults in the study area cut the outcrop’s layers from the bottom to the top. It means that the faults occurred after the layer of the outcrop perfectly formed. Based on the Yogyakarta geological map, it can be concluded that the fault was formed after the middle Miocene epoch. It can be late Miocene, early Pliocene or other younger epoch. The further study of the Opak Fault and the other related fault in study area also need to be conducted to know exactly when the fault occurred. The study of fault is beneficial to characterise the seismic and earthquake activities in the study area to support the earthquake hazard and risk management. The list of the faults displacement and the faults direction can be seen in
Table 3.
The other interesting fault evidence was also found in the middle part of the study area (Outcrop 73) and the north part area outside the study area in the Piyungan and Prambanan Village (Outcrop 65 and 66). The outcrop 73 is located on the upper slope of strongly eroded denudation hills in the middle of the study area. This location is a border area between the Bawuran Village and Piyungan Village and also near the Piyungan landfill. The outcrop 73 is a massive big outcrop which has the average height and width of 8.02 and 18.35 m, respectively. This outcrop belongs to the Semilir Formation and consists of the interbedded layer between dsLT, //sT and mLT. At least seven faults were found in the outcrop 73. All of the faults have the similar direction of North to South). These faults can be classified as step fault with the southwest block are moving upward relatively than the Northeast block. The biggest displacement in this outcrop is 2.81 m (
Figure 18).
The outcrop 65 is located approximately 7.5 km Northeast of Pleret Sub-District. Geomorphologically, this location is a border area between the Baturagung Escarpment and the flat area. Based on the geological map of Yogyakarta and Surakarta, the outcrop 65 belongs to the Semilir Formation which consists of the interbedded layer of breccia pumice, dacite tuff, sandy tuff, etc. This outcrop has an average height of 3.5 m and consists of interbedded layers of //sT, dsLT, bLT and mLT. The outcrop has a dominant outer surface colour of yellowish brown and has strong sulphur odour. The strong sulphur smell indicates that the rock contains a lot of sulphur element (S) which gives the yellow colour of the outer rock surface. The stronger sulphur odour also indicates that this location was close to the source of the eruption. The pure sulphur element has no smell. The sulphur becomes smelly when the burning sulphur produces the sulphur dioxide. In nature, the burning sulphur is caused by the volcanic eruption.
Two type of faults were found in the outcrop 65, normal and strike-slip fault. Both normal and strike-slip faults have the same direction of 87°–267° (East-West oriented). The normal fault was found in the most southern block of this outcrop. This normal fault was relatively easier to identify rather than the strike-slip fault due to the displacement of the rock layers. The faults displacement is about 25 cm with the north block is relatively moving upward, while the south block is moving downward (
Figure 19). The strike-slip fault was found next to the normal fault approximately 1.80 m north of the normal fault line. The strike-slip fault was more difficult to identify because there is no layer displacement. The strike-slip fault was identified based on the geology map and also based on the long strike line that was found on the ground surface in front of the outcrop (
Figure 19). The fault displacement of the strike-slip fault is still unknown because the lateral movement could not be identified in the fieldwork. The only way to know the fault movement especially the strike-slip fault is to plan the Global Positioning System (GPS) and conduct continuously real-time monitoring for the certain period [
7]. However, both of these faults are susceptible to the earthquake movement. The surrounding areas will receive a relatively high earthquake shaking due to the movement of both faults. The fault evidence of the Outcrop 65 can be seen in
Figure 19 below.
The outcrop 66 is located in Prambanan District, Central Java. Outcrop 66 is located approximately 14 km Northeast of study area. Previously, this area was an active mining area. Recently, the local people developed this area become a tourism spot that supports the main tourist attraction of Prambanan and Boko Temple. Situated in the foot slope of north part of Baturagung Escarpment, this area offers beautiful scenery with handmade sculpture attached to the outcrop. According to the Geology map and also the field observation, this area belongs to the Semilir Formation. The outcrop can be categorised as the Outcrop type 2 which is characterised as the outcrop with the multiple layers of lithofacies. This outcrop has 17 layers, which consist of interbedded layers of mLT, bLT, dsLT and //sT. The most bottom layer of this outcrop is the mLT layer of rich pumice. This layer has approximately 2.7 m of thickness and has the normal grading of pumice fragment with the grain size of 2–64 mm. The interbedded layer of dsLT rich pumice and //sT were deposited on the top of that. The bLT layer also found on the layer number 3. This layer has very well sorted fragment configuration and has coarse ash grain size. This layer was formed during the direct fall out of Plinian eruption of the ancient volcano nearby. There are approximately 7 m of interbedded layers between dsLT and //sT were deposited on the upper layer of this outcrop (
Figure 20). Normal fault evidence was found on the upper layer of this outcrop. The fault has a direction of northeast-southwest (64°–244°). The fault displacement is 43 cm with the southeast block moves upward and the northwest block moves downward (
Figure 20).
In general, the fault evidence of the study area and surrounding that were found in the outcrops have the dominant direction of Northwest-Southeast, and only a few of them have the direction of Northeast-Southwest (
Table 2 above). Most of the faults that found on the outcrop are typical of Normal Fault. Only two faults were suspected as the strike-slip fault (outcrop 27 segment 2 and outcrop 65). The combination of the fault evidence and the identified lineament give the general description of the micro fault configuration in the study area. This result is very important because by knowing the fault configuration including the micro fault, the zonation of the earthquake vulnerability based on the existing fault can be determined. Moreover, the geology map of Yogyakarta scale 1:100,000 are only inform the main fault such as the Opak Fault and Bawuran Fault.
The results show that the south part of the study area (south part of Bawuran Fault) has more fault movement rather than the north part of the study area (north part of Bawuran Fault). Additionally, another geologic structure such as joint often found in the south part of the study area. Usually, the closer to the fault area, the number of joint or the joint density on the outcrop become denser. In the south part of the study area, the joints have the average space of less than 60 cm, while the northern part has the space between joints about more than 200 cm [
44]. This fact signifies that the south part of the study area has more micro faults than the north part. For example, the outcrop 17 segment 3, this outcrop has the much micro fault and joint. Also, the structure of the rock in the outcrop 17 segment 3 is very brittle. Therefore, based on the analysis, this area is very vulnerable when the earthquake occurs. The surface tremor due to the earthquake will cause extensive damage in the area that has a lot of joint and fault. The fault reconstruction based on the lineament and outcrop study can be seen in
Supplementary Materials, part 5.
The reconstruction result shows that the north part of study area (north part of Bawuran Fault) lacks of fault movement. Only 8 out of 32 fault evidence are located in the north part of the study area. Therefore, the second fieldwork in March 2017 was conducted to find the fault evidence in the north part of the study area. The scope of the observation area was expanded which covers the area in northeast part of study areas such as Berbah, Piyungan and Prambanan Village. Two important outcrops were found in Berbah-Piyungan and Prambanan Village. The step fault was found in the Piyungan village. The other normal faults were also found in Berbah-Piyungan and Prambanan. Moreover, we found the evidence of strike-slip fault in the Berbah-Piyungan Village in Outcrop 65. This evidence signifies that beside the Dengkeng Fault (Strike-Slip fault, west-east oriented), there are also several micro faults that have the same type and orientation. Based on the second field observation, the additional fault data can support describing the micro fault and another geological structure such as anticline in the north and northeast part of the study area. The indicated anticline was found by combining the strike and dip direction between outcrop 65 and 66. Both of them have the similar direction of strike, i.e., 40° and 235°, respectively. Both of them have the same bedding angle of 5 degrees but have the opposite direction of dip orientation. The outcrop 65 has the dip orientation of 130° (Southwest), while the outcrop 66 has the dip orientation of 325° (Northwest). This north anticline is located exactly in the front of the Baturagung Escarpment, same with the south anticline (Trimulyo anticline,
Figure 15A,B). This fact signifies that the northeast part of the study area (Berbah, Piyungan, and Prambanan) also experienced a contraction effect due to tectonic deformation and caused the formation of anticline landform along the escarpment area. The additional fault reconstruction in the north and northeast part of the study area can be seen in
Figure 21 below.
4.4. Lateral Variation of Ignimbrite Deposits Based on the Outcrop Study
In the volcanology, the analysis and interpretation of longitudinal lithofacies variations of the outcrops are very important. Beside outcrop is the only one of the data source to study pyroclastic density current, the longitudinal variation (proximal-distal) lithofacies is also useful to identify the dynamic characteristic of pyroclastic density current, and it is very important to trace the ancient volcanic activities. According to Kokelaar’s research in general, the ignimbrites lithofacies may be diachronous [
42]. A diachronous deposit is the similar sedimentary rock formation that varies in age from place to place. Therefore, the lithofacies analysis needs to consider about the time and distance. It is very important to divide the outcrop lithofacies based on the timeline in cross section. In this study, the lithofacies lateral variations analysis was used to support the better understanding of the outcrop characteristic including the characteristic of the pyroclastic density current (PCD) and the volcanic source that produces the PCD.
Based on the outcrop analysis, three types of outcrops (Outcrop type 1, 2 and 3) were found in the study area and its surrounding (
Figure 16). In general, the outcrop type 1 is thicker and massive mLT with sometimes consist of the pumice-rich layer and lapilli tuff from the direct fallout. The outcrop type 2 dominant consists of relatively thin stratified lithofacies such as //sT, dsLT and bLT, while the outcrop type 3 is typical of large of lithic clastic deposit such as mlBr. Outcrop type 1 is located on the most western part of the mountainous area, while the outcrop type 2 is located in the middle mountainous area to the middle slope of Baturagung Escarpment, and outcrop type 3 is located on the top of Baturagung Escarpment. Based on this pattern, it can be concluded that the study area and its surrounding has the longitudinal pattern of down current lithofacies changes from stratified to massive [
42]. This pattern is characterised by a decrease of clastic lithic size from the proximal area (mlBr) to the distal area (mLT) in the east part of the study area. This lithofacies probably was formed because of the significant decrease of the pyroclastic current during the quasi-steady flow. The middle-west part of the study area is a transitional area from relatively thin to stratified lithofacies such as sT, dsLT and bLT on steep proximal slopes to thicker deposits of mLT. Such down current occurred when the flow transformation from turbulent current to laminar current [
42,
45].
To sum up, the study area has a pattern of mIBr in the proximal area (the particular area that close to the centre or the source of the eruption), dsLT, //st and bLT in the medial area, and the thicker mLT as a distal facies on the lower slope. Thus, it can be concluded that the source of eruption was located in the proximal area or the east to northeast part of the study area. The possible location of the source of the eruption is in the top of the Baturagung Escarpment or more to the northeast in Berbah-Piyungan area (nearby outcrop 65) or Wonosari Basin in Gunung Kidul Regency. The general description of the horizontal variations of pyroclastic density current is presented in
Figure 22 below.
The direction of the Semilir eruption source is in line with the previous studies [
15,
28,
29,
46]. However, there is a slightly different in the estimation of eruption location. Astuti team and Hartono team were estimated that the source of Semilir Eruption was located in the east part of Baturagung far away from the study area [
28,
46]. They believed the Semilir eruption source was located approximately 60 km to the east of study area (near Wonogiri District, Central Java). Meanwhile, Quincey team has an opinion that the source of the eruption was not too far to the east part of Baturagung Escarpment [
15]. This fact is totally in line with the findings of this study. Based on the lateral variation of ignimbrite deposits, it can be concluded that the source of Semilir eruption was close to the eastern part of Baturagung Escarpment.
Additionally, based on the close investigation in Trimulyo Zone especially outcrop 1a (facing east), it can be seen that the ignimbrite deposits were produced from direct eruption or one single eruption or multi eruption with the short interval of eruption time. It can be shown from the absent of soil deposits in between each lithofacies layers. Moreover, the ignimbrite deposits are dominated by horizontal lamination which indicates that this ignimbrite was deposited in the land environment (not in water environmental).
4.6. Earthquake Susceptibility Based on the Fault Configuration
Based on the outcrop study, it can be shown that various earthquakes often occurred in the study area. The earthquake was closely related to the main fault (Opak and Bawuran Fault) and the configuration of the micro fault. Based on the spatial planning guidance of the volcanic eruption prone area and earthquake-prone area PP No. 21/PRT/M/2007. The more complicated and the closer particular to the fault, fold, and joint area indicates that the area is relatively more unstable.
The middle part of the study area (south part of Bawuran Fault) has more complicated geologic structure. It can be indicated form the fault evidence that was found in the outcrop and also from the density of the fault. For example, Outcrop 17 segment 3 (Srumbung Village), the outcrop has a complicated fault evidence. At least more than five faults evidence were found in the one segment of this outcrop. Additionally, the various number of joint with space less than 10 cm were also found in this outcrops (compare
Figure 17A,C). It can be seen in
Figure 17A that the rock structure in the outcrop 56 (
Figure 17C) is more compact than the rock structure in the outcrop 17 segment 3 (
Figure 17A). This phenomenon shows that the outcrop 17 segment 2 experienced a great tectonic force and caused various joints and also faults in the rock. This condition also impacted the quality of the rock itself. Based on the laboratory analysis of the rock sample that conducted by Fisher [
44]), the rock sample from the middle part of the study area has the value of compressive strength lower than the northern and the southern part of the study area. Additionally, the area which has a complex configuration of geologic structure (fault, joint, and fold) indicates the area is more unstable if the earthquake occurs. The unstable area will amplify the ground motion and will increase the vulnerable level of the particular area. Therefore, based on this study, the middle part of the study area is more vulnerable rather than the north part and south part of the study area. Administratively, the north part of Segoroyoso, the middle part of Bawuran and middle part of Wonolelo village are very unstable and vulnerable to the ground motion amplification.