# Modeling Dry-Snow Densification without Abrupt Transition

## Abstract

**:**

## 1. Introduction

#### 1.1. Time-Varying Conditions

#### 1.2. Stage 1 and Stage 2 Densification

## 2. Transition Model

#### 2.1. Calibration and Validation

#### 2.2. Strain-Rate Profiles

#### 2.3. Density Profiles

## 3. Discussion

## 4. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

$\overline{a}$ | mean annual accumulation rate, m w.e. a${}^{-1}$ or kg m${}^{-2}$ a${}^{-1}$ |

$\mathrm{A}$ | constant in activation equation, a${}^{2}$ |

$\mathrm{B}$ | constant in activation equation, kg m${}^{-3}$ |

c | density-corrected volumetric strain rate, a${}^{-1}$ |

$\mathrm{C}$ | constant in activation equation, kg m${}^{-3}$ |

$\mathrm{D}$ | constant in activation equation, a${}^{-1}$ |

E | activation energy, J mol${}^{-1}$ |

${f}_{0}$ | parameter in Simonsen model |

${f}_{1}$ | parameter in Simonsen model |

F | average density-corrected volumetric strain rate, a${}^{-1}$ |

I | integral |

k | local vertical densification rate, m w.e.${}^{-1}$ |

${k}^{*}$ | global vertical densification rate, m w.e.${}^{-1}$ |

$\mathrm{M}$ | constant in transition model equation |

q | water equivalent height, m w.e. |

Q | mass of section of profile, m w.e. |

$\mathrm{R}$ | gas constant, 8.314 J mol${}^{-1}$ K${}^{-1}$ |

t | time, a |

T | temperature, K |

${T}_{m}$ | mean annual temperature, K |

w | vertical velocity, m a${}^{-1}$ |

X | scaled density, kg m${}^{-3}$ |

z | vertical co-ordinate, m |

Z | length of section of profile, m |

$\Delta t$ | time between measurements at a given site, a |

$\dot{\epsilon}$ | volumetric strain rate, a${}^{-1}$ |

${\dot{\epsilon}}_{H}$ | horizontal velocity divergence, a${}^{-1}$ |

${\dot{\epsilon}}_{zz}$ | vertical strain rate, a${}^{-1}$ |

$\rho $ | density, kg m${}^{-3}$ |

${\rho}_{i}$ | density of ice, 917 kg m${}^{-3}$ |

${\rho}_{T}$ | transition density, kg m${}^{-3}$ |

${\rho}_{0}$ | vertically-smoothed density, kg m${}^{-3}$ |

$\sigma $ | stress, Pa |

$\tau $ | time since deposition of snow, a |

$\Psi $ | cost function |

## Appendix A. Analytical Solution for Depth as a Function of Density

## Appendix B. Analytical Solution for Depth-Integrated Porosity as a Function of Density

## References

- Lundin, J.; Stevens, C.; Arthern, R.J.; Buizert, C.; Orsi, A.J.; Ligtenberg, S.R.M.; Simonsen, S.B.; Cummings, E.; Essery, R.; Leahy, W.; et al. Firn Model Intercomparison Experiment (FirnMICE). J. Glaciol.
**2017**, 63, 401–422. [Google Scholar] [CrossRef][Green Version] - Vionnet, V.; Brun, E.; Morin, S.; Boone, A.; Faroux, S.; Le Moigne, P.; Martin, E.; Willemet, J. The detailed snowpack scheme Crocus and its implementation in SURFEX v7. 2. Geosci. Model Dev.
**2012**, 5, 773–791. [Google Scholar] [CrossRef][Green Version] - Wever, N.; Schmid, L.; Heilig, A.; Eisen, O.; Fierz, C.; Lehning, M. Verification of the multi-layer SNOWPACK model with different water transport schemes. Cryosphere
**2015**, 9, 2271–2293. [Google Scholar] [CrossRef][Green Version] - Steger, C.; Reijmer, C.; Van den Broeke, M.; Wever, N.; Forster, R.; Koenig, L.; Lehning, M.; Lhermitte, S.; Ligtenberg, S.; Miège, C.; et al. Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Front. Earth Sci.
**2017**, 5, 1–16. [Google Scholar] [CrossRef] - Robin, G.d.Q. Glaciology. III. Seismic shooting and related investigations. In Norwegian-British-Swedish Antarctic Expedition, 1949-52; Norsk Polarinstitutt: Oslo, Norway, 1958; Volume 5. [Google Scholar]
- Herron, M.M.; Langway, C.C. Firn densification: An empirical model. J. Glaciol.
**1980**, 25, 373–385. [Google Scholar] [CrossRef] - Hörhold, M.W.; Kipfstuhl, S.; Wilhelms, F.; Freitag, J.; Frenzel, A. The densification of layered polar firn. J. Geophys. Res.
**2011**, 116, 1–15. [Google Scholar] [CrossRef] - Morris, E.M.; Mulvaney, R.; Arthern, R.J.; Davies, D.; Gurney, R.J.; Lambert, P.; De Rydt, J.; Smith, A.M.; Tuckwell, R.; Winstrup, M. Snow Densification and Recent Accumulation Along the iSTAR Traverse, Pine Island Glacier, Antarctica. J. Geophys. Res. Earth Surf.
**2017**, 122, 2284–2301. [Google Scholar] [CrossRef][Green Version] - Arthern, R.J.; Wingham, D.J. The natural fluctuations of firn densification and their effect on the geodetic determination of ice sheet mass balance. Clim. Chang.
**1998**, 40, 605–624. [Google Scholar] [CrossRef] - Brown, R.L. A volumetric constitutive law for snow based on a neck growth model. J. Appl. Phys.
**1980**, 51, 161–165. [Google Scholar] [CrossRef] - Hörhold, M.W.; Laepple, T.; Freitag, J.; Bigler, M.; Fischer, H.; Kipfstuhl, S. On the impact of impurities on the densification of polar firn. Earth Planet. Sci. Lett.
**2012**, 325–326, 93–99. [Google Scholar] [CrossRef][Green Version] - Arthern, R.J.; Vaughan, D.G.; Rankin, A.M.; Mulvaney, R.; Thomas, E.R. In-situ measurements of Antarctic snow compaction compared with predictions of models. J. Geophys. Res.
**2010**, 115. [Google Scholar] [CrossRef] - Ligtenberg, S.R.M.; Helsen, M.M.; van den Broeke, M.R. An improved semi-empirical model for the densification of Antarctic firn. Cryosphere
**2011**, 5, 809–819. [Google Scholar] [CrossRef][Green Version] - Kuipers Munneke, P.; Ligtenberg, S.R.; Noël, B.P.Y.; Howat, I.; Box, J.E.; Mosley-Thompson, E.; McConnell, J.R.; Steffen, K.; Harper, J.; Das, S.B.; et al. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere
**2015**, 9, 2009–2025. [Google Scholar] [CrossRef][Green Version] - Simonsen, S.B.; Stenseng, L.; Adalgeirsdottir, G.; Fausto, R.S.; Hvidberg, C.S.; Lucas-Picher, P. Assessing a multilayered dynamic firn-compaction model for Greenland with ASIRAS radar measurements. J. Glaciol.
**2013**, 59, 545–558. [Google Scholar] [CrossRef][Green Version] - Morris, E.; Wingham, D.J. The effect of fluctuations in surface density, accumulation and compaction on elevation change rates along the EGIG line, central Greenland. J. Glaciol.
**2011**, 57, 416–430. [Google Scholar] [CrossRef] - Morris, E.M.; Wingham, D.J. Densification of polar snow: measurements, modelling and implications for altimetry. JGR Earth Surf.
**2014**, 119, 349–365. [Google Scholar] [CrossRef] - Morris, E.M.; Wingham, D.J. Uncertainty in mass balance trends derived from altimetry; a case study along the EGIG line, Central Greenland. J. Glaciol.
**2015**, 61, 345–356. [Google Scholar] [CrossRef][Green Version] - Wilhelms, F. Density of Firn Core DML96C07_ 39. 2007. Available online: https://doi.pangaea.de/10.1594/PANGAEA.615238 (accessed on 23 October 2018).
- Miller, H.; Schwager, M. Density of Ice Core ngt37C95.2 from the North Greenland Traverse. 2000. Available online: https://doi.pangaea.de/10.1594/PANGAEA.57798 (accessed on 23 October 2018).

**Figure 1.**Vertical densification rates for (

**a**) Stage 1 and (

**b**) Stage 2 densification. Black lines show the Herron and Langway values (solid lines) with their uncertainties (dashed lines). Colored lines show the Ligtenberg values for mean annual temperatures of 230 (blue), 240 (cyan), 250 (green), 260 (magenta), and 270 K (red), with solid lines for Antarctic sites and dashed lines for Greenland sites.

**Figure 2.**Mean annual temperature and accumulation at sites for which strain rate data are available (in Greenland [16] and Antarctica [8]), where high-resolution (gamma-ray) core-density profiles are available [7], and where the cores used to calibrate the Herron and Langway densificaton equation were collected [6].

**Figure 3.**Density and volumetric strain-rate profiles from Site 21 along the iSTAR traverse. (

**a**) Density profiles from the austral summers of 2013/14 (red curve) and 2014/15 (green curve), and a fitted polynomial curve showing ${\rho}_{0}$ for 2013/14. (

**b**) Volumetric strain rate at intervals of 1 cm w.e. (red curve) and smoothed over ≈3 cm w.e. (blue curve).

**Figure 4.**Measured values of F as a function of density for iSTAR Site 21 (red dots), values of c for Stage 1 and Stage 2 from the Herron and Langway model (cyan lines) and c as a function of density from the transition model with ${\rho}_{T}$ = 590 kg m${}^{-3}$, M = 2.8 (black line).

**Figure 5.**Measured values of F as a function of density for iSTAR Site 21 (red dots), values of c for Stage 1 and Stage 2 from the Herron and Langway model (cyan lines), and c as a function of density from the transition model with ${\rho}_{T}$ = 580 kg m${}^{-3}$, M = 7 (black line).

**Figure 6.**Profiles of ln($\rho /({\rho}_{i}-\rho ))$ for iSTAR Site 21. Measured values (green), modelled values using Herron and Langway Stage 1 (red) and Stage 2 (blue) densification rates, and modelled values using the transition model with ${\rho}_{T}$ = 580 kg m${}^{-3}$, M = 7 (black line).

**Figure 7.**Profiles of ln($\rho /({\rho}_{i}-\rho ))$ for iSTAR Site 4. Measured values from ice cores (magenta dots) and neutron-probe profiles (green), modelled values using Herron and Langway Stage 1 (red) and Stage 2 (blue) densification rates and modelled values using the transition model with ${\rho}_{T}$ = 580 kg m${}^{-3}$, M = 7 (black line).

**Figure 8.**Profiles of ln($\rho /({\rho}_{i}-\rho ))$ for ice core B39. Measured values (magenta line), modelled values using Herron and Langway Stage 1 (red) and Stage 2 (blue) densification rates, and modelled values using the transition model with ${\rho}_{T}$ = 580 kg m${}^{-3}$, M = 7 (black line).

**Figure 9.**Profiles of ln($\rho /({\rho}_{i}-\rho ))$ for ice core B26. Measured values (magenta line), modelled values using Herron and Langway Stage 1 (red) and Stage 2 (blue) densification rates, and modelled values using the transition model with ${\rho}_{T}$ = 530 kg m${}^{-3}$, M = 7 (black line).

**Figure 10.**Variation of steady-state BCO depth with $\overline{a}$ using the Herron and Langway (brown line), Ligtenberg (green line), Simonsen (pink line), and transition (blue line) models. Simonsen and Ligtenberg results are taken from [1].

**Figure 11.**Variation of steady-state DIP with $\overline{a}$ using the Herron and Langway (brown line), Ligtenberg (green line), Simonsen (pink line) and transition (blue line) models. Simonsen and Ligtenberg results are taken from [1].

**Table 1.**Cost functions over the range of 500–600 kg m${}^{-3}$ for the Herron and Langway, Ligtenberg, and transition models for sites in the Pine Island Glacier basin.

Site | $\overline{\mathit{a}}$ | Herron and Langway | Ligtenberg | Transition |
---|---|---|---|---|

m w.e. a${}^{-1}$ | $\mathbf{\Psi}$ | $\mathbf{\Psi}$ | $\mathbf{\Psi}$ | |

1 | 0.35 | 0.202 | 0.185 | 0.097 |

2 | 0.34 | 0.186 | 0.148 | 0.036 |

3 | 0.43 | 0.154 | 0.098 | 0.053 |

4 | 0.58 | 0.212 | 0.162 | 0.037 |

5 | 0.45 | 0.237 | 0.217 | 0.094 |

6 | 0.45 | 0.125 | 0.076 | 0.072 |

7 | 0.33 | 0.275 | 0.250 | 0.204 |

8 | 0.32 | 0.169 | 0.133 | 0.094 |

9 | 0.37 | 0.149 | 0.125 | 0.064 |

10 | 0.23 | 0.167 | 0.083 | 0.128 |

11 | 0.23 | 0.135 | 0.060 | 0.086 |

12 | 0.28 | 0.209 | 0.155 | 0.134 |

13 | 0.43 | 0.164 | 0.129 | 0.030 |

14 | 0.47 | 0.186 | 0.162 | 0.035 |

15 | 0.80 | 0.202 | 0.284 | 0.105 |

16 | 0.51 | 0.143 | 0.110 | 0.045 |

17 | 0.52 | 0.192 | 0.140 | 0.013 |

18 | 0.69 | 0.164 | 0.163 | 0.132 |

19 | 0.69 | 0.258 | 0.219 | 0.019 |

20 | 0.64 | 0.195 | 0.156 | 0.042 |

21 | 0.75 | 0.214 | 0.181 | 0.042 |

22 | 0.78 | 0.198 | 0.170 | 0.041 |

**Table 2.**Cost functions over the range 500–800 kg m${}^{-3}$ for the Herron and Langway, Ligtenberg, and transition models for sites in the Pine Island Glacier basin.

Site | $\overline{\mathit{a}}$ | Herron and Langway | Ligtenberg | Transition |
---|---|---|---|---|

m w.e. a${}^{-1}$ | $\mathbf{\Psi}$ | $\mathbf{\Psi}$ | $\mathbf{\Psi}$ | |

1 | 0.35 | 0.264 | 0.145 | 0.097 |

4 | 0.58 | 0.228 | 0.092 | 0.088 |

6 | 0.45 | 0.205 | 0.106 | 0.093 |

7 | 0.33 | 0.291 | 0.287 | 0.270 |

8 | 0.32 | 0.182 | 0.114 | 0.093 |

10 | 0.23 | 0.168 | 0.116 | 0.147 |

15 | 0.80 | 0.293 | 0.186 | 0.155 |

18 | 0.69 | 0.222 | 0.137 | 0.103 |

20 | 0.64 | 0.297 | 0.184 | 0.072 |

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Morris, E. Modeling Dry-Snow Densification without Abrupt Transition. *Geosciences* **2018**, *8*, 464.
https://doi.org/10.3390/geosciences8120464

**AMA Style**

Morris E. Modeling Dry-Snow Densification without Abrupt Transition. *Geosciences*. 2018; 8(12):464.
https://doi.org/10.3390/geosciences8120464

**Chicago/Turabian Style**

Morris, Elizabeth. 2018. "Modeling Dry-Snow Densification without Abrupt Transition" *Geosciences* 8, no. 12: 464.
https://doi.org/10.3390/geosciences8120464