Ideal-Type Narratives for Engineering a Human Niche
Abstract
:1. Introduction
- of the intervention points that are targeted by an engineered system,
- of the levels of consensus that are needed for an effective deployment of an engineered system,
- of the perceptions of what human undertakings can achieve (‘human agency’),
- of the opinions about how ‘nature’ and ‘culture’ relate to each other,
- of the ways in which previous investments (economic, social, cultural) are safeguarded, and
- of the choice between well-worn and innovative technologies.
2. Framing Perspectives
2.1. Geo-, Bio-, Noosphere, and Other Notions
2.2. Engineering a Human Niche and Its Narratives
2.3. Applied Geosciences and Engineering
2.4. Intersections, Iterations, and Narratives
3. Narratives for Engineering a Human Niche
3.1. An Introduction to Four Tales
3.2. Schematized Narratives
- 1
- First feature, ‘end versus start’: This generic aspect regards the ‘intervention point’ of the engineered systems. As in pollution control, it is distinguished between engineering ‘at the start of the pipe’ (that is, to tackle root-causes) or ‘at the end of the pipe’ (that is, to tackle consequences). When applied to engineering a human niche, then a first bipolar feature can be discriminated, namely whether engineering tackles a cause within the production systems and consumption patterns or an effect within the biogeosphere. An example for such a choice is: whether to clean the seas of plastic discard or to restrict the use of plastic bags on land [76].
- 2
- Second feature, ‘regional versus global’: This generic aspect regards the societal process of ’consensus finding’. Consensus about a particular engineered system is important because engineering can be effective only if the relevant stakeholders are supportive [77,78,79,80]. When applied to engineering a human niche, then a second bipolar feature can be discriminated, namely whether consensus for an engineered system has to be found ‘regionally’ (that is, the consensus of limited scope and complexity including a limited geographical extent) or has to be found ‘globally’. An example is given by the issue of how to regulate the use of sulfur-rich fuels for ships: on a harbor by harbor basis, on a regional-sea level, or at the world-shipping level [81,82].
- 3
- Third feature, ‘to-respond versus to-shape’: This generic aspect regards peoples’ opinion about what human beings can achieve; namely of what is the nature of the ‘human agency’ [83,84,85,86,87,88,89]. This aspect distinguishes engineered systems by people’s understanding of how they may act when an event affects their ways of living, producing, or consuming. When applied to engineering a human niche, then a third bipolar feature can be discriminated, namely whether people perceive themselves as a ‘responding agent’ or a ‘shaping agent’. A ‘responding agent’ perceives the event as impacting from outside, that is to be ‘external', and the ‘responding agent’ tries to restrain the impact of this external event. A ‘shaping agent’ perceives the same event as something that results from its own way of operating. Consequently, the ‘shaping agent’ re-engineers its operations. An example for a ‘responding agency’ are the plans to strengthen shore defenses along the coast of the North Sea [90,91] in reaction to sea-level rise that is caused by global warming; a ‘shaping agency’ would curb greenhouse gas emissions that cause global warming.
- 4
- Forth feature, ‘culture-and-nature versus culture-or-nature’: This generic aspect regards people’s understanding of the concepts of ‘nature’ and ‘culture’ and the mutual relation between both concepts [92,93,94,95,96,97,98]. When applied to engineering a human niche, then a forth bipolar feature can be discriminated, namely whether people understand the concepts of ‘nature’ and ‘culture’ to prescribe two well disconnected realms of structures, processes, and categories, or as one interconnected realm. Depending on the respective understanding, the justification for engineered systems differ, namely regarding what is an ethical manner in which to intervene in the biogeosphere. Examples for such a choice are the engineering projects to transfer water between different river basins [99].
- 5
- Fifth feature, ‘to-preserve versus to-discount’: This generic aspect regards how past investments are assessed [100]. An investment may be of a cultural, social, or economic nature and may be made to secure either inputs or outputs; however for this essay, these investments of a different kind are lumped together because of their common aspects: (i) the investments concern the living conditions of people, (ii) efforts had been undertaken to make them, and (iii) early discounting of investments is a loss. When applied to engineering a human niche, then a fifth bipolar feature can be discriminated, namely whether engineered systems preserve the stockpile of investments or are disruptive. Thus, a distinction is made regarding the effect that deploying a particular engineered system may have for preserving or altering cultures, lifestyles, and the economy. An example of such an engineered system is the construction of the Aswan Dam, that among its benefits and collateral effects included the deliberate displacement of some historical monuments; while other monuments got drawn [101,102].
- 6
- Sixth feature, ‘innovative versus known’: This generic aspect regards the risk appetite that is implicit to the choice of the engineered systems and the involved technology options. A distinction is made whether a technology option is ‘innovative’ or ‘established’. When applied to engineering a human niche, then a sixth bipolar feature can be discriminated, namely whether the engineered systems deploy established technologies (or their incrementally improved variants) or whether new (even disruptive) technologies are used. An example is the recent choice to alter Germany’s energy mix, namely to phase out nuclear power and to strengthen renewable energies [103]. This choice prefers, instead of using established nuclear power technology and accepting its ‘known’ risks (such as: impact of accidents, long-term storage of radioactive substances), to use an emerging innovative technology. At the time of the decision of the German government to alter Germany’s energy mix, it was not proven that the technology-mix for renewable energies could provide the energy supply for an industrialized society.
3.2.1. Scheme: ‘Adjusting’
3.2.2. Scheme: ‘Dovetailing’
3.2.3. Scheme: ‘Decoupling’
3.2.4. Scheme: ‘Modulating’
4. From Engineering Schemes to Engineering Narratives
- The tags of the ‘adjusting scheme’ are: end of pipe control, regional consensus, responding agency, culture-nature dichotomy, preserving investments, and known technologies.
- The tags of the ‘modulating scheme’ are: end of pipe control, global consensus, responding agency, culture-nature dichotomy, preserving investments, new technologies.
- The tags of the ‘decoupling scheme’ are: start-of-the-pipe control, global consensus, shaping agency, culture-nature dichotomy, discounting investments, known technologies.
- The tags of the ‘dovetailing scheme’ are: start-of-the-pipe control, global consensus, shaping agency, culture-nature continuum, discounting investments, new technologies.
5. Summary and Conclusions
Acknowledgments
Conflicts of Interest
References
- Allen, T.F.; Giampietro, M.; Little, A. Distinguishing ecological engineering from environmental engineering. Ecol. Eng. 2003, 20, 389–407. [Google Scholar] [CrossRef]
- Bellamy, R.; Chilvers, J.; Vaughan, N.E.; Lenton, T.M. “Opening up” geoengineering appraisal: Multi-Criteria Mapping of options for tackling climate change. Glob. Environ. Chang. 2013, 23, 926–937. [Google Scholar] [CrossRef] [Green Version]
- Kleinhans, M.G.; Buskes, C.J.J.; de Regt, H.W. Philosophy of Earth Science. In Philosophies of the Sciences; Wiley-Blackwell: Oxford, UK, 2010; pp. 213–236. [Google Scholar]
- Phillips, J. Storytelling in Earth sciences: The eight basic plots. Earth-Sci. Rev. 2012, 115, 153–162. [Google Scholar] [CrossRef]
- Langmuir, C.; Broecker, W. How to Build a Habitable Planet; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Head, B.W.; Alford, J. Wicked problems: Implications for public policy and management. Adm. Soc. 2015, 47, 711–739. [Google Scholar] [CrossRef]
- Pollitt, C. Debate: Climate change—The ultimate wicked issue. Public Money Manag. 2016, 36, 78–80. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Brown, P.G.; Orr, C.J. Ethics in the Anthropocene: A research agenda. Anthropocene Rev. 2016, 3, 188–200. [Google Scholar] [CrossRef]
- Hamilton, C. The Commonwealth and sea-level rise. Round Table 2003, 92, 517–531. [Google Scholar] [CrossRef]
- Gibson-Graham, J.K.; Roelvink, G. An economic ethics for the Anthropocene. Antipode 2012, 41, 320–346. [Google Scholar] [CrossRef]
- Hamilton, C.; Grinevald, J. Was the Anthropocene anticipated? Anthropocene Rev. 2015, 2, 59–72. [Google Scholar] [CrossRef]
- Wilson, E.O. Half-Earth—Our Planet’s Fight for Life; Norton & Company: New York, NY, USA, 2016. [Google Scholar]
- Barry, A.; Maslin, M. The politics of the anthropocene: A dialogue. Geo Geogr. Environ. 2016, 3, e00022. [Google Scholar] [CrossRef]
- Ellis, E.C.; Goldewijk, K.K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Ellis, E.C. The Planet of No Return Human Resilience on an Artificial Earth. Breakthr. Inst. 2011, 2, 37–44. [Google Scholar]
- Ellis, E.C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 2011, 369, 1010–1035. [Google Scholar] [CrossRef] [PubMed]
- Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.; Marquet, P.A.; et al. Approaching a state shift in Earth’s biosphere. Nature 2012, 486, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Monastersky, R. Anthropocene: The human age. Nature 2015, 519, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Zalasiewicz, J.; Waters, C.N.; Williams, M.; Barnosky, A.D.; Cearreta, A.; Crutzen, P.; Ellis, E.C.; Ellis, M.A.; Fairchild, I.J.; Grinevald, J.; et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 2015, 383, 196–203. [Google Scholar] [CrossRef]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Galuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.A.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef] [PubMed]
- Braje, T.J.; Erlandson, J.M. Looking forward, looking back: Humans, anthropogenic change, and the Anthropocene. Anthropocene 2013, 4, 116–121. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.F.; Gronenborn, D.; Andreae, M.O.; Kadereit, J.W.; Esper, J.; Scholz, D.; Pöschl, U.; Jacob, D.E.; Schöne, B.R.; Schreg, R.; et al. The Palaeoanthropocene—The beginnings of anthropogenic environmental change. Anthropocene 2013, 3, 83–88. [Google Scholar] [CrossRef]
- Ellis, E.C. Ecology in an anthropogenic biosphere. Ecol. Monogr. 2015, 85, 287–331. [Google Scholar] [CrossRef]
- Fuentes, A. The extended evolutionary synthesis, ethnography, and the Human Niche: Toward an integrated anthropology. Curr. Anthropol. 2016, 57, S13–S26. [Google Scholar] [CrossRef]
- Brown, A.G.; Tooth, S.; Bullard, J.E.; Thomas, D.S.G.; Chiverrell, R.C.; Plater, A.J.; Murton, J.; Thorndycraft, V.R.; Tarolli, P.; Rose, J.; et al. The geomorphology of the Anthropocene: Emergence, status and implications. Earth Surf. Processes Landf. 2016, 42, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Schwägerl, C. The Anthropocene—The Human Era and How It Shapes Our Planet; Synergetic Press: London, UK, 2014. [Google Scholar]
- Morton, O. The Planet Remade—How Geoengineering Could Change the World; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Bellamy, R.; Hulme, M. Beyond the tipping point: Understanding perceptions of abrupt climate change and their implications. Weather Clim. Soc. 2011, 3, 48–60. [Google Scholar] [CrossRef]
- Steffen, W.; Grinevald, J.; Crutzen, P.; McNeill, J. The Anthropocene: Conceptual and historical perspectives. Philos. Trans. R. Soc. A 2011, 369, 842–867. [Google Scholar] [CrossRef] [PubMed]
- Moore, A. Anthropocene anthropology: Reconceptualizing contemporary global change. J. R. Anthropol. Inst. 2016, 22, 27–46. [Google Scholar] [CrossRef]
- Sweeney, J.A. Command-and-control: Alternative futures of geoengineering in an age of global weirding. Futures 2014, 57, 1–13. [Google Scholar] [CrossRef]
- Bohle, M. Handling of human-geosphere intersections. Geosciences 2016, 6, 3. [Google Scholar] [CrossRef]
- Veland, S.; Lynch, A.H. Scaling the Anthropocene: How the stories we tell matter. Geoforum 2016, 72, 1–5. [Google Scholar] [CrossRef]
- Srbulov, M. Practical Guide to Geo-Engineering; Geotechnical, Geological and Earthquake Engineering; Springer: Dordrecht, The Netherlands, 2014; Volume 29. [Google Scholar]
- Bugliarello, G. Ideal of civil engineering. J. Prof. Issues Eng. Educ. Pract. 1994, 120, 290–294. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower: Dimensions of social and environmental coexistence. Renew. Sustain. Energy Rev. 2008, 12, 1588–1621. [Google Scholar] [CrossRef]
- Dresp-Langley, B. Dimensions of environmental engineering. Open Environ. Eng. J. 2008, 1, 1–8. [Google Scholar] [CrossRef]
- Fu, B.; Wang, Y.K.; Xu, P.; Yan, K.; Li, M. Value of ecosystem hydropower service and its impact on the payment for ecosystem services. Sci. Total Environ. 2014, 472, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Donia, N. Aswan High Dam Reservoir management system. J. Hydroinform. 2013, 15, 1491–1510. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Kareiva, P.M.; Daily, G.C. Securing natural capital and expanding equity to rescale civilization. Nature 2012, 486, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Egré, D.; Milewski, J.C. The diversity of hydropower projects. Energy Policy 2002, 30, 1225–1230. [Google Scholar] [CrossRef]
- Koch, F.H. Hydropower—The politics of water and energy: Introduction and overview. Energy Policy 2002, 30, 1207–1213. [Google Scholar] [CrossRef]
- Halbe, J.; Adamowski, J.; Pahl-Wostl, C. The role of paradigms in engineering practice and education for sustainable development. J. Clean. Prod. 2015, 106, 272–282. [Google Scholar] [CrossRef]
- Schmidt, J.J. Historicising the Hydrological Cycle. Water Altern. 2014, 7, 220–234. [Google Scholar]
- Amundsen, H.; Berglund, F.; Westskog, H. Overcoming barriers to climate change adaptation—A question of multilevel governance? Environ. Plan. C Gov. Policy 2010, 28, 276–289. [Google Scholar] [CrossRef]
- Krauss, W. Anthropology in the Anthropocene: Sustainable development, climate change and interdisciplinary research. In Grounding Global Climate Change. Contributions from the Social and Cultural Sciences; Springer: Dordrecht, The Netherlands, 2015; pp. 59–76. [Google Scholar]
- Hutchings, J.A.; Stenseth, N.C. Communication of Science Advice to Government. Trends Ecol. Evol. 2016, 31, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Biermann, F. The Anthropocene: A governance perspective. Anthropocene Rev. 2014, 1, 57–61. [Google Scholar] [CrossRef]
- Kowarsch, M. A Pragmatist Orientation for the Social Sciences in Climate Policy; Boston Studies in the Philosophy and History of Science; Springer International Publishing: Basel, Switzerland, 2016; Volume 323. [Google Scholar]
- Deutsch, D. The Beginning of Infinity; Penguin Books: London, UK, 2011. [Google Scholar]
- Jones, N.A.; Ross, H.; Lynam, T.; Perez, P.; Leitch, A. Mental Model: An Interdisciplinary Synthesis of Theory and Methods. Ecol. Soc. 2011, 16, 46. [Google Scholar] [CrossRef]
- Pagel, M. Wired for Culture Origins of the Human Social Mind; Norton & Company: New York, NY, USA, 2012. [Google Scholar]
- Taschdjian, E. The sociotectonics of the Noosphere. J. Gener. Philos. Sci. 1989, 20, 106–115. [Google Scholar] [CrossRef]
- Ellis, M.A.; Trachtenberg, Z. Which Anthropocene is it to be? Beyond geology to a moral and public discourse. Earth’s Future 2014, 2, 122–125. [Google Scholar] [CrossRef]
- Dalby, S. Framing the Anthropocene: The good, the bad and the ugly. Anthropocene Rev. 2015, 3, 1–19. [Google Scholar] [CrossRef]
- Latour, B. Face à Gaia Huit Conférences sur le Nouveau Régime Climatique; Éditions La Découverte: Paris, France, 2015. [Google Scholar]
- Purdy, J. After Nature: A Politics for the Anthropocene; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Hamilton, C.; Bonneuil, C.; Gemenne, F. The Anthropocene and the Global Environmental Crisis: Rethinking Modernity in a New Epoche; Routledge: London, UK, 2015. [Google Scholar]
- Landes, D.S. The Unbound Prometheus; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Malanima, P. Europäische Wirtschaftsgeschichte 10–19. Jahrhundert; Böhlau Verlag: Kölm, Germany, 2010. [Google Scholar]
- Fressoz, J.-B. L’Apocalypse Joyeuse—Une Histoire du Risque Technologique; Le Seuil: Paris, France, 2012. [Google Scholar]
- Palsson, G.; Szerszynski, B.; Sörlin, S.; Marks, J.; Avril, B.; Crumley, C.; Hackmann, H.; Holm, P.; Ingram, J.; Kirman, A.; et al. Reconceptualizing the “Anthropos” in the Anthropocene: Integrating the Social Sciences and Humanities in Global Environmental Change Research. Environ. Sci. Policy 2013, 28, 2–13. [Google Scholar] [CrossRef]
- Kareiva, P.; Fuller, E. Beyond Resilience: How to Better Prepare for the Profound Disruption of the Anthropocene. Glob. Policy 2016, 7, 107–118. [Google Scholar] [CrossRef]
- Allenby, B.R.; Sarewitz, D. The Techno-Human Condition; The MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Nicholls, R. Planning for the impacts of sea level rise. Oceanography 2011, 24, 144–157. [Google Scholar] [CrossRef]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2014, 2, 383–406. [Google Scholar] [CrossRef]
- Godin-Beekmann, S. The stratospheric ozone layer and the Montreal Protocol. La Meteorologie 2013, 8, 59–66. [Google Scholar]
- Wu, Y.; Polvani, L.M.; Seager, R. The importance of the Montreal Protocol in protecting Earth’s hydroclimate. J. Clim. 2013, 26, 4049–4068. [Google Scholar] [CrossRef]
- Jacobs, J.R. The precautionary principle as a provisional instrument in environmental policy: The Montreal Protocol case study. Environ. Sci. Policy 2014, 37, 161–171. [Google Scholar] [CrossRef]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Asafu-Adjaye, J.; Blomqvist, L.; Brand, S.; Brook, B.; Defries, R.; Ellis, E.C.; Keith, D.; Foreman, C.; Lewis, M.; Lynas, M.; et al. An Ecomodernist Manifesto. 2015. Available online: http://www.ecomodernism.org/manifesto (accessed on 10 January 2017).
- Anshelm, J.; Hansson, A. Battling Promethean dreams and Trojan horses: Revealing the critical discourses of geoengineering. Energy Res. Soc. Sci. 2014, 2, 135–144. [Google Scholar] [CrossRef]
- Bonneuil, C.; Fressoz, J.-B. L’événement Anthropocène—La Terre, L’histoire et Nous; Le Seuil: Paris, France, 2013. [Google Scholar]
- European Environmental Agency (EEA). Litter in Our Seas; EEA: Copenhagen, Denmark, 2014; Available online: http://www.eea.europa.eu/signals/signals-2014/close-up/litter-in-our-seas (accessed on 10 January 2017).
- Crona, B.; Wutich, A.; Brewis, A.; Gartin, M. Perceptions of climate change: Linking local and global perceptions through a cultural knowledge approach. Clim. Chang. 2013, 119, 519–531. [Google Scholar] [CrossRef]
- Javeline, D.; Shufeldt, G. Scientific opinion in policymaking: the case of climate change adaptation. Policy Sci. 2014, 47, 121–139. [Google Scholar] [CrossRef]
- Biermann, F.; Bai, X.; Bondre, N.; Broadgate, W.; Arthur Chen, C.-T.; Dube, O.P.; Erisman, J.W.; Glaser, M.; van der Hel, S.; Lemos, M.C.; et al. Down to Earth: Contextualizing the Anthropocene. Glob. Environ. Chang. 2016, 39, 341–350. [Google Scholar] [CrossRef]
- Scolobig, A.; Thompson, M.; Linnerooth-Bayer, J. Compromise not consensus: Designing a participatory process for landslide risk mitigation. Nat. Hazards 2016, 81, 45–68. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Transport and Communications of Finland. Sulphur Content in Ships Bunker Fuel in 2015: A Study on the Impacts of the New IMO; Ministry of Transport and Communicatoins: Helsinki, Finland, 2009.
- Jager, M. Sulphur Emission Regulation: Changing the Market for Bunker Fuels. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Isendahl, C. The Anthropocene forces us to reconsider adaptationist models of human-environment interactions. Environ. Sci. Technol. 2010, 44, 6007. [Google Scholar] [CrossRef] [PubMed]
- Hulme, M. Meet the humanities. Nat. Clim. Chang. 2011, 1, 177–179. [Google Scholar] [CrossRef]
- Pievani, T. Geoethics and philosphy of Earth Sciences: The role of geophysical factors in human evolution. Ann. Geophys. 2012, 53. [Google Scholar] [CrossRef]
- Lynam, T.; Brown, K. Mental models in human-environment interactions: Theory, policy implications, and methodological explorations. Ecol. Soc. 2012, 17, 3–5. [Google Scholar] [CrossRef]
- Latour, B. Telling Friends from Foes in the Time of the Anthropocene. Thinking the Anthropocene, Paris, 14–15 November 2013. Available online: http://www.bruno-latour.fr/sites/default/files/131-FRIENDS-FOES.pdf (accessed on 10 Januray 2017).
- Hamilton, C. Human destiny in the Anthropocene. In The Anthropocene and the Environmental Crisis; Hamilton, C., Bonneuil, C., Gemenne, F., Eds.; Routledge: Abingdon, UK, 2015; pp. 32–43. [Google Scholar]
- Blühdorn, I. A much-needed renewal of environmentalism? Eco-politics in the Anthropocene. In The Anthropcene and the Environmental Crisis; Hamilton, C., Bonneuil, C., Gemenne, F., Eds.; Routledge: Abingdon, UK, 2015; pp. 157–167. [Google Scholar]
- De Graaf, R.; van de Giesen, N.; van de Ven, F. Alternative water management options to reduce vulnerability for climate change in the Netherlands. Nat. Hazards 2009, 51, 407–422. [Google Scholar] [CrossRef]
- Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C. Legitimate adaptive flood risk governance beyond the dikes: The cases of Hamburg, Helsinki and Rotterdam. Reg. Environ. Chang. 2014, 14, 671–682. [Google Scholar] [CrossRef]
- Weisz, H.; Clark, E. Society-nature coevolution: Interdisciplinary concept for sustainability. Geogr. Ann. Ser. B Hum. Geogr. 2011, 93, 281–287. [Google Scholar] [CrossRef]
- Sayre, N.F. The Politics of the Anthropogenic. Annu. Rev. Anthropol. 2012, 41, 57–70. [Google Scholar] [CrossRef]
- Bonatti, E. The Anthropocene: Of time, mice, and men. Rendiconti Lincei 2014, 25, 21–27. [Google Scholar] [CrossRef]
- Chakrabarty, D. The Anthropocene and the convergence of histories. In The Anthropcene and the Environmental Crisis; Hamilton, C., Bonneuil, C., Gemenne, F., Eds.; Routledge: Abingdon, UK, 2015; pp. 32–43. [Google Scholar]
- Hamilton, C. The Theodicy of the “Good Anthropocene”. Environ. Humanit. 2015, 7, 233–238. [Google Scholar] [CrossRef]
- Chew, S.; Sarabia, D. Nature–culture relations: Early globalization, climate changes, and system crisis. Sustainability 2016, 8, 78. [Google Scholar] [CrossRef]
- Kvellestad Isaksen, K. Where Does Nature End and Culture Begin? Available online: http://cas.oslo.no/full-width-article/where-does-nature-end-and-culture-begin-article1830-1082.html (accessed on 10 January 2017).
- Emanuel, R.E.; Buckley, J.J.; Caldwell, P.V.; McNulty, S.G.; Sun, G. Influence of basin characteristics on the effectiveness and downstream reach of interbasin water transfers: Displacing a problem. Environ. Res. Lett. 2015, 10, 124005. [Google Scholar] [CrossRef]
- Dietz, S.; Groon, B.; Pizer, W.A. Weighing the cost and benefits of climate change to our children. Future Child. 2016, 26, 133–155. [Google Scholar] [CrossRef]
- Abd-El Monsef, H.; Smith, S.E.; Darwish, K. Impacts of the Aswan High Dam after 50 Years. Water Resour. Manag. 2015, 29, 1873–1885. [Google Scholar] [CrossRef]
- Sutcliffe, J.; Hurst, S.; Awadallah, A.G.; Brown, E.; Hamed, K. Harold Edwin Hurst: The Nile and Egypt, past and future. Hydrol. Sci. J. 2016, 61, 1557–1570. [Google Scholar] [CrossRef]
- Hake, J.-F.; Fischer, W.; Venghaus, S.; Weckenbrock, C. The German Energiewende—History and status quo. Energy 2015, 92, 532–546. [Google Scholar] [CrossRef]
- Von Storch, H.; Emeis, K.; Meinke, I.; Kannen, A.; Matthias, V.; Ratter, B.M.W.; Stanev, E.; Weisse, R.; Wirtz, K. Making coastal research useful—Cases from practice. Oceanologia 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Weber, J. Container Shipping in the European Ranges and the Potential Viability of the Newcomer Jade-Weser Port. Ocean Yearbook Online 2005, 19, 336–356. [Google Scholar] [CrossRef]
- Newman, P.; McKenzie, R. UV impacts avoided by the Montreal Protocol. Photochem. Photobiol. Sci. 2011, 10, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Cancer Council Australia Risks and Benefits of Sun Exposure Summary Statement. 2007. Available online: http://wiki.cancer.org.au/policy/Position_statement_-_Risks_and_benefits_of_sun_exposure (accessed on 10 Januray 2017).
- Brown, A. Just Enough: Lessons in Living Green from Traditional JAPAN; Tuttle Publishing: Tokyo, Japan, 2012. [Google Scholar]
- Harris, P. Routledge Handbook of Global Environmental Politics; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Hallegatte, S.; Mach, K.J. Make climate-change assessments more relevant. Nature 2016, 534, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; Cao, J.; Rignot, E.; et al. Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous. Atmos. Chem. Phys. Discuss. 2015, 15, 20059–20179. [Google Scholar] [CrossRef]
- Pearce, F. The big green divide. New Sci. 2015, 226, 26–27. [Google Scholar] [CrossRef]
- Librová, H.; Pelikán, V. Ethical Motivations and the Phenomenon of Disappointment in Two Types of Environmental Movements: Neo-Environmentalism and the Dark Mountain Project. Environ. Values 2016, 25, 167–193. [Google Scholar] [CrossRef]
- Fox, T.; Chapman, L. Engineering geo-engineering. Meteorol. Appl. 2011, 18, 1–8. [Google Scholar] [CrossRef]
- Bracmort, K.; Lattanzio, R.K. Geoengineering: Governance and Technological Policy; Congressional Research Service: Washington, DC, USA, 2013; p. 42. [Google Scholar]
- Barrett, S. The Incredible Economics of Geoengineering. Environ. Resour. Econ. 2008, 39, 45–54. [Google Scholar] [CrossRef]
- Banerjee, B. The limitations of geoengineering governance in a world of uncertainty. Stanf. J. Law Sci. Policy 2011, 240, 15–36. [Google Scholar]
- Bodansky, D. The who, what, and wherefore of geoengineering governance. Clim. Chang. 2013, 121, 539–551. [Google Scholar] [CrossRef]
- Hamilton, C. No, we should not just “at least do the research”. Nature 2013, 496, 139. [Google Scholar] [CrossRef] [PubMed]
- Rayner, S.; Heyward, C.; Kruger, T.; Pidgeon, N.; Redgwell, C.; Savulescu, J. The Oxford Principles. Clim. Chang. 2013, 121, 499–512. [Google Scholar] [CrossRef]
- Ellis, E.C.; Richerson, P.J.; Mesoudi, A.; Svenning, J.-C.; Odling-Smee, J.; Burnside, W.R. Evolving the human niche. Proc. Natl. Acad. Sci. USA 2016, 113, E4436. [Google Scholar] [CrossRef] [PubMed]
- Tattersal, I. Masters of the Planet: The Search for Our Human Origins; Palgrave Macmillan: New York, NY, USA, 2012. [Google Scholar]
- Viollet, P.-L. L’hydraulique dans les Civilisations Anciennes: 5000ans D’histoire; Presses des Ponts et Chausssées: Paris, France, 2000. [Google Scholar]
- Millet, B.; Tronchère, H.; Goiran, J.-P. Hydrodynamic modeling of the Roman Harbor of Portus in the Tiber Delta: The impact of the North-Eastern Channel on current and sediment dynamics. Geoarchaeology 2014, 29, 357–370. [Google Scholar] [CrossRef]
- Mensing, S.; Tunno, I.; Cifani, G.; Passigli, S.; Noble, P.; Archer, C.; Piovesan, G. Human and climatically induced environmental change in the Mediterranean during the Medieval Climate Anomaly and Little Ice Age: A case from central Italy. Anthropocene 2016, 15, 49–59. [Google Scholar] [CrossRef]
- Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; Vavrus, S.; Klein Goldewijk, K.; Verburg, P.H. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. [Google Scholar] [CrossRef] [PubMed]
- Heede, R. Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. Clim. Chang. 2014, 122, 229–241. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Williams, M.; Waters, C.N.; Barnosky, A.D.; Palmesino, J.; Ronnskog, A.-S.; Edgeworth, M.; Neal, C.; Cearreta, A.; Ellis, E.C.; et al. Scale and diversity of the physical technosphere: A geological perspective. Anthropocene Rev. 2016. [Google Scholar] [CrossRef]
- Tickell, C. Societal responses to the Anthropocene. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2011, 369, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; van der Leeuw, S.; O’Brien, K.; Berkhout, F.; Biermann, F.; Brondizio, E.S.; Cudennec, C.; Dearing, J.; Duraiappah, A.; Glaser, M.; et al. Plausible and desirable futures in the Anthropocene: A new research agenda. Glob. Environ. Chang. 2015, 39, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Chopra, A.; Lineweaver, C.H. The case for a Gaian Bottleneck: The biology of habitability. Astrobiology 2016, 16, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Denevan, W.M. The Pristine Myth: The landscape of the Americas in 1492. Ann. Assoc. Am. Geogr. 1992, 82, 369–385. [Google Scholar] [CrossRef]
- Denevan, W.M. The Pristine Myth: Revisited. Geogr. Rev. 2011, 101, 576–591. [Google Scholar] [CrossRef]
- Rickards, L.A. Metaphor and the Anthropocene: Presenting Humans as a Geological Force. Geogr. Res. 2015, 53, 280–287. [Google Scholar] [CrossRef]
- Macnaghten, P.; Szersynski, B. Living the global social experiment: An analysis of public discourse on solar radiation management and its implications for governance. Glob. Environ. Chang. 2013, 23, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Mengel, M.; Levermann, A.; Frieler, K.; Robinson, A.; Marzeion, B.; Winkelmann, R. Future sea level rise constrained by observations and long-term commitment. Proc. Natl. Acad. Sci. USA 2016, 113, 2597–2602. [Google Scholar] [CrossRef] [PubMed]
- Williamson, P. Emissions reduction: Scrutinize CO2 removal methods. Nature 2016, 530, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Biermann, F. “Earth system governance” as a crosscutting theme of global change research. Glob. Environ. Chang. 2007, 17, 326–337. [Google Scholar] [CrossRef]
- Loevbrand, E.; Beck, S.; Chilvers, J.; Forsyth, T.; Hedrén, J.; Hulme, M.; Lidskog, R.; Vasileiadou, E. Who speaks for the future of Earth? How critical social science can extend the conversation on the Anthropocene. Glob. Environ. Chang. 2015, 32, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Jennings, B. WHO(SE) ARE WE. Minding Nature 2016, 93, 4–10. [Google Scholar]
- Cairney, P. The Politics of Evidence-Based Policy Making; Palgrave Macmillan: London, UK, 2016. [Google Scholar]
- Barnosky, A.D.; Ehrlich, P.R.; Hadly, E.A. Avoiding collapse: Grand challenges for science and society to solve by 2050. Elementa Sci. Anthropocene 2016, 4, 94. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohle, M. Ideal-Type Narratives for Engineering a Human Niche. Geosciences 2017, 7, 18. https://doi.org/10.3390/geosciences7010018
Bohle M. Ideal-Type Narratives for Engineering a Human Niche. Geosciences. 2017; 7(1):18. https://doi.org/10.3390/geosciences7010018
Chicago/Turabian StyleBohle, Martin. 2017. "Ideal-Type Narratives for Engineering a Human Niche" Geosciences 7, no. 1: 18. https://doi.org/10.3390/geosciences7010018
APA StyleBohle, M. (2017). Ideal-Type Narratives for Engineering a Human Niche. Geosciences, 7(1), 18. https://doi.org/10.3390/geosciences7010018