Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk
Abstract
:1. Introduction
1.1. Co-Produced Water and Human Health
1.2. Study Areas
1.2.1. Bandanna Formation, Bowen Basin
1.2.2. Walloon Coal Measures, Eastern Surat Basin
2. Methods
2.1. CSG Water Organic Analyses
2.2. Leaching Experiments
Sample# | Coal | Leachant |
---|---|---|
A-LIG-1 | Lignite | TCLP Extraction fluid # 1 |
A-SUB-1 | HvA-bituminous | TCLP Extraction fluid # 1 |
A-BIT-1 | Mv-bituminous | TCLP Extraction fluid # 1 |
N-LIG-1 | Lignite | Deionised water |
N-SUB-1 | HvA-bituminous | Deionised water |
N-BIT-1 | Mv-bituminous | Deionised water |
B-LIG-1 | Lignite | Synthetic CSG |
B-SUB-1 | HvA-bituminous | Synthetic CSG |
B-BIT-1 | Mv-bituminous | Synthetic CSG |
N-LIG-2 | Lignite | Deionised water |
N-SUB-2 | HvA-bituminous | Deionised water |
N-BIT-2 | Mv-bituminous | Deionised water |
B-LIG-2 | Lignite | Synthetic CSG |
B-SUB-2 | HvA-bituminous | Synthetic CSG |
B-BIT-2 | Mv-bituminous | Synthetic CSG |
P-LIG-3 | Lignite * | Deionised water |
P-SUB-3 | HvA-bituminous * | Deionised water |
P-BIT-3 | Mv-bituminous * | Deionised water |
NB-1 | n/a | Deionised water |
BB-1 | n/a | Synthetic CSG |
Extraction and Analysis
2.3. Coal Samples
Sample | Locality | Age | Carbon % (d.a.f *) | Vitrinite Reflectance (Rv, Max) | Rank |
---|---|---|---|---|---|
LIG | Gippsland Basin, Victoria | Middle Miocene | 66 | 0.3% | Lignite B |
SUB | Moreton Basin, Queensland | Middle Jurassic | 80 | 0.57% | High volatile bituminous A |
BIT | Sydney-Gunnedah Basin, New South Wales | Early Permian | 85 | 0.67% | Medium volatile bituminous |
3. CSG Water Results
PAHs | Detection Limit (µg/L) | Range (µg/L) | % of Wells with Detections |
---|---|---|---|
Naphthalene | 0.01 | BDL–0.046 | 23 |
Phenanthrene | 0.01 | BDL–0.046 | 20 |
Pyrene | 0.01 | BDL–0.01 | 2 |
Chrysene | 0.01 | BDL–0.016 | 2 |
Benzo[b+k]fluoranthene | 0.01 | BDL–0.033 | 9 |
Dibenz[a,h]anthracene | 0.01 | BDL–0.014 | 9 |
3.1. CSG Water Holding Pond
3.2. Leaching Experiment Results
Polycyclic aromatic hydrocarbons | Detection Limit (µg/L) | Coal Rank | ||
---|---|---|---|---|
Lignite | HvA-Bituminous | Mv-Bituminous | ||
Naphthalene | 0.01 | 0.43–0.67 | BDL | BDL |
Acenaphthylene | 0.01 | BDL | BDL | BDL |
Acenaphthene | 0.01 | BDL | BDL | BDL |
Fluorene | 0.01 | BDL | BDL | BDL |
Phenanthrene | 0.01 | BDL | BDL | BDL-0.01 |
Anthracene | 0.01 | BDL | BDL | BDL |
Fluoranthene | 0.01 | BDL | BDL-0.03 | BDL-0.03 |
Pyrene | 0.01 | BDL | BDL-0.02 | BDL-0.05 |
Benz[a]anthracene | 0.01 | BDL | BDL | BDL-0.02 |
Chrysene | 0.01 | BDL | BDL | BDL-0.01 |
Benzo[b+k]fluoranthene | 0.01 | BDL | BDL | BDL-0.01 |
Benzo[a]pyrene | 0.01 | BDL | BDL | BDL-0.01 |
Indeno[1,2,3-cd]pyrene | 0.01 | BDL | BDL | BDL |
Dibenz[a,h]anthracene | 0.01 | BDL | BDL | BDL |
Benzo[ghi]perylene | 0.01 | BDL | BDL | BDL |
Phenolics | Detection Limit (µg /L) | Lignite | HvA-Bituminous | Mv-Bituminous |
Phenol | 0.25 | BDL–0.32 | BDL | BDL |
2-Chlorophenol | 0.25 | BDL | BDL | BDL |
2-Methylphenol | 0.25 | BDL | BDL | BDL |
4-Methylphenol | 0.25 | BDL | BDL | BDL |
2-Nitrophenol | 0.25 | BDL | BDL | BDL |
2,4-Dimethylphenol | 0.25 | BDL | BDL | BDL |
2,4-Dichlorophenol | 0.25 | BDL | BDL | BDL |
2,6-Dichlorophenol | 0.25 | BDL | BDL | BDL |
4-Chloro-3-methylphenol | 0.25 | BDL | BDL | BDL |
2,4,6-Trichlorophenol | 0.25 | BDL | BDL | BDL |
2,4,5-Trichlorophenol | 0.25 | BDL | BDL | BDL |
2,4-Dinitrophenol | 2.5 | BDL | BDL | BDL |
4-Nitrophenol | 1 | BDL | BDL | BDL |
2,3,4,6-Tetrachlorophenol | 0.3 | BDL | BDL | BDL |
2-Methyl-4,6-dinitrophenol | 0.5 | BDL | BDL | BDL |
Pentachlorophenol | 1 | BDL | BDL | BDL |
Polycyclic aromatic hydrocarbons | Detection Limit (µg/L) | Coal Rank | ||
---|---|---|---|---|
Lignite | HvA-Bituminous | Mv-Bituminous | ||
Naphthalene | 0.01 | 0.58–0.64 | BDL | BDL |
Acenaphthylene | 0.01 | BDL | BDL | BDL |
Acenaphthene | 0.01 | BDL | BDL | BDL |
Fluorene | 0.01 | BDL | BDL | BDL |
Phenanthrene | 0.01 | 0.01 | BDL | BDL |
Anthracene | 0.01 | BDL | BDL | BDL |
Fluoranthene | 0.01 | BDL | BDL | BDL |
Pyrene | 0.01 | BDL | BDL | BDL |
Benz[a]anthracene | 0.01 | BDL | BDL | BDL |
Chrysene | 0.01 | BDL | BDL | BDL |
Benzo[b+k]fluoranthene | 0.01 | BDL | BDL | BDL |
Benzo[a]pyrene | 0.01 | BDL | BDL | BDL |
Indeno[1,2,3-cd]pyrene | 0.01 | BDL | BDL | BDL |
Dibenz[a,h]anthracene | 0.01 | BDL | BDL | BDL |
Benzo[ghi]perylene | 0.01 | BDL | BDL | BDL |
Phenolics | Detection Limit (µg/L) | Lignite | HvA-Bituminous | Mv-Bituminous |
Phenol | 0.25 | 0.26–0.31 | BDL | BDL |
2-Chlorophenol | 0.25 | BDL | BDL | BDL |
2-Methylphenol | 0.25 | BDL | BDL | BDL |
4-Methylphenol | 0.25 | BDL | BDL | BDL |
2-Nitrophenol | 0.25 | BDL | BDL | BDL |
2,4-Dimethylphenol | 0.25 | BDL | BDL | BDL |
2,4-Dichlorophenol | 0.25 | BDL | BDL | BDL |
2,6-Dichlorophenol | 0.25 | BDL | BDL | BDL |
4-Chloro-3-methylphenol | 0.25 | BDL | BDL | BDL |
2,4,6-Trichlorophenol | 0.25 | BDL | BDL | BDL |
2,4,5-Trichlorophenol | 0.25 | BDL | BDL | BDL |
2,4-Dinitrophenol | 2.5 | BDL | BDL | BDL |
4-Nitrophenol | 1 | BDL | BDL | BDL |
2,3,4,6-Tetrachlorophenol | 0.3 | BDL | BDL | BDL |
2-Methyl-4,6-dinitrophenol | 0.5 | BDL | BDL | BDL |
Pentachlorophenol | 1 | BDL | BDL | BDL |
4. CSG Water Discussion
4.1. Leaching Experiment Discussion
Compound | Molar Mass (g/mol) | Solubility at 25 °C (µg/L) | Log KoW * | No. of Aromatic Rings |
---|---|---|---|---|
Phenol | 94.1 | 83,000,000 | 1.46 | 1 |
Naphthalene | 128.2 | 31,000 | 3.37 | 2 |
Phenanthrene | 178.2 | 465 | 4.46 | 3 |
Fluoranthene | 202.3 | 260 | 4.9 | 3 |
Pyrene | 202.1 | 133 | 4.88 | 4 |
Benz[a]anthracene | 228.3 | 11 | 5.63 | 4 |
Chrysene | 228.3 | 1.9 | 5.63 | 4 |
Benzo[b]fluoranthene | 252.3 | 2.4 | 6.04 | 4 |
Benzo[k]fluoranthene | 252.3 | 2.4 | 6.21 | 4 |
Benzo[a]pyrene | 252.3 | 3.8 | 6.06 | 5 |
Dibenz[a]anthracene | 278.3 | 0.4 | 6.86 | 5 |
4.2. Aromatic Compound Mobilization from Coal
4.3. Human Health Risk
4.4. Detection Limits and Reporting
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blueprint for Queensland’s LNG Industry, LNG Industry Unit. Available online: http://rti.cabinet.qld.gov.au/documents/2010/nov/lng%20blueprint/Attachments/LNG%20Blueprint.pdf (accessed on 1 September 2014).
- Klohn Crippen Berger. Forecasting Coal Seam Gas Water Production in Queensland’s Surat and Southern Bowen Basins; Department of Natural Resources and Mines: Brisbane, Australia, 2012. [Google Scholar]
- Sinclair Knight Mertz. Hydraulic Fracturing Techniques (“Fraccing”) Techniques, including Reporting Requirements and Governance Arrangements, Background Review; Commonwealth of Australia: Canberra, Australia, 2014. [Google Scholar]
- National Research Council. Management and Effects of Coalbed Methane Produced Water in the United States; National Academy of Sciences: Washington, DC, USA, 2010. [Google Scholar]
- Batley, G.E.; Kookana, R.S. Environmental issues associated with coal seam gas recovery: Managing the fracking boom. Environ. Chem. 2012, 9, 425–428. [Google Scholar]
- Taulis, M.E. Australia and New Zealand CBNG development and environmental implications. In Coalbed Natural Gas: Energy and Environment; Reddy, K.J., Ed.; Nova Science Publishers: New York, NY, USA, 2010; pp. 401–424. [Google Scholar]
- Taulis, M.E. Groundwater Characterisation and Disposal Modelling for Coal Seam Gas Recovery; University of Canterbury: Christchurch, New Zealand, 2007. [Google Scholar]
- Department of Environment and Heritage Protection. Coal Seam Gas Water Management Policy; QLD Government: Brisbane, Australia, 2012. [Google Scholar]
- Dr Mariann Lloyd-Smith Speaking about Toxic Risks of CSG (aka Coal Bed Methane). Available online: http://www.faug.org.uk/link/dr-mariann-lloyd-smith-speaking-about-toxic-risks-csg-aka-coal-bed-methane (accessed on 18 June 2014).
- Feder, G.L.; Radovanovic, Z.; Finkelman, R.B. Relationship between weathered coal deposits and the etiology of Balkan endemic nephropathy. Kidney Int. Suppl. 1991, 34, 9–11. [Google Scholar]
- Tatu, C.A.; Orem, W.H.; Maharaj, S.V.M.; Finkelman, R.B.; Diaconita, D.; Feder, G.L.; Szilagyi, D.N.; Dumitrascu, V.; Paunescu, V. Organic compounds derived from Pliocene lignite and the etiology of Balkan endemic nephropathy. In Geology and Health: Closing the Gap; Skinner, H.C.W., Berger, A.R., Eds.; Oxford University Press: New York, NY, USA, 2003; pp. 159–162. [Google Scholar]
- Orem, W.; Tatu, C.; Pavlovic, N.; Bunnell, J.; Lerch, H.; Paunescu, V.; Ordodi, V.; Flores, D.; Corum, M.; Bates, A. Health effects of toxic organic substances from coal: Toward “Panendemic” nephropathy. AMBIO 2007, 36, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Orem, W.H.; Feder, G.L.; Finkelman, R.B. A possible link between Balkan endemic nephropathy and the leaching of toxic organic compounds from Pliocene lignite by groundwater: Preliminary investigation. Int. J. Coal Geol. 1999, 40, 237–252. [Google Scholar] [CrossRef]
- Sunwater Ltd. Chinchilla Beneficial Use Scheme Water Quality Report; Sunwater Ltd.: Brisbane, Australia, 2013. Available online: http://www.sunwater.com.au/__data/assets/pdf_file/0016/12607/Chinchilla-Beneficial-Use-Scheme-Water-Quality-Report-2013.pdf (accessed on 1 September 2014).
- Navi, M.; Skelly, C.; Taulis, M.; Nasiri, S. Coal seam gas water: Potential hazards and exposure pathways in Queensland. Int. J. Environ. Health Res. 2014, 24, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Sanei, H.; Klassen, P.; Mayer, B.; Goodarzi, F. Produced fluids and shallow groundwater in coalbed methane (CBM) producing regions of Alberta, Canada: Trace element and rare earth element geochemistry. Int. J. Coal Geol. 2009, 77, 338–349. [Google Scholar] [CrossRef]
- Jackson, R.E.; Reddy, K.J. Geochemistry of coalbed natural gas (CBNG) produced water in powder river basin, wyoming: Salinity and sodicity. Water Air Soil Pollut. 2007, 184, 49–61. [Google Scholar] [CrossRef]
- Jackson, R.E.; Reddy, K.J. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming. Environ. Sci. Technol. 2007, 41, 5953–5959. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.E.; Reddy, K.J. Coalbed natural gas product water: Geochemical transformations from outfalls to disposal ponds. In Coalbed Natural Gas: Energy and Environment; Reddy, K.J., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 121–143. [Google Scholar]
- Kinnon, E.C.P.; Golding, S.D.; Boreham, C.J.; Baublys, K.A.; Esterle, J.S. Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia. Int. J. Coal Geol. 2010, 82, 219–231. [Google Scholar] [CrossRef]
- McBeth, I.; Reddy, K.J.; Skinner, Q.D. Chemistry of trace elements in coalbed methane product water. Water Res. 2003, 37, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Patz, M.J.; Reddy, K.J.; Skinner, Q.D. Chemistry of coalbed methane discharge water interacting with semi-arid ephemeral stream channels. J. Am. Water Resour. Assoc. 2004, 40, 1247–1255. [Google Scholar] [CrossRef]
- Taulis, M.E.; Trumm, D.; Milke, M.W.; Nobes, D.; Manhire, D.; O’Sullivan, A. Characterisation of coal seam gas waters in New Zealand. In Proceedings of the New Zealand Minerals Conference: Realising New Zealand’s Mineral Potential, Auckland, New Zealand, 13–16 November 2005; pp. 416–425.
- Taulis, M.; Milke, M. Chemical variability of groundwater samples collected from a Coal Seam Gas exploration well, Maramarua, New Zealand. Water Res. 2012, 47, 1021–1034. [Google Scholar]
- Reddy, K.J.; Helmericks, C.; Whitman, A.; Legg, D. Geochemical processes controlling trace elemental mobility in coalbed natural gas (CBNG) disposal ponds in the Powder River Basin, WY. Int. J. Coal Geol. 2014, 126, 120–127. [Google Scholar] [CrossRef]
- Dahm, K.G.; Guerra, K.L.; Xu, P.; Drewes, J.E. Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region. Environ. Sci. Technol. 2011, 45, 7655–7663. [Google Scholar] [CrossRef] [PubMed]
- Volk, H.; Pinetown, K.; Johnston, C.; McLean, W. A Desktop Study of the Occurrence of Total Petroleum Hydrocarbon (TPH) and Partially Water-Soluble Organic Compounds in Permian Coals and Associated Coal Seam Groundwater; CSIRO: Sydney, Australia, 2011. [Google Scholar]
- Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D. Organic compounds in produced waters from coalbed natural gas wells in the Powder River basin, Wyoming, USA. Appl. Geochem. 2007, 22, 2240–2256. [Google Scholar] [CrossRef]
- Orem, W.; Tatu, C.; Varonka, M.; Lerch, H.; Bates, A.; Engle, M.; Crosby, L.; McIntosh, J. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. Int. J. Coal Geol. 2014, 126, 20–31. [Google Scholar] [CrossRef]
- APLNG. Coal Seam Gas Water Quality Monitoring Program: Talinga Water Treatment Facility. Available online: http://www.aplng.com.au/pdf/water_monitoring_management/Appendix_J-CSG_Water_Quality_Monitoring_Program_Talinga_Water_Treatment_Facility.pdf (accessed on 1 September 2014).
- Arrow Energy Ltd. Coal Seam Gas Water Management Plan. Surat Basin; Doc No. ENV11–133; Arrow Energy Ltd.: Brisbane, Australia, 2013. [Google Scholar]
- Sowder, J.T.; Kelleners, T.J.; Reddy, K.J. The origin and fate of arsenic in coalbed natural gas-produced water ponds. J. Environ. Qual. 2010, 39, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Beeston, J.W. Coal facies depositional models, Denison trough area, Bowen Basin. Qld. Geol. 1991, 2, 3–33. [Google Scholar]
- Beeston, J.W. Coal rank variation in the Bowen Basin, Queensland. Int. J. Coal Geol. 1986, 6, 163–179. [Google Scholar] [CrossRef]
- Draper, J.J.; Boreham, C.J. Geological controls on exploitable coal seam gas distribution in Queensland. Aust. Pet. Prod. Explor. Assoc. J. 2006, 46, 343–346. [Google Scholar]
- Salehy, M.R. Determination of rank and petrographic composition of Jurassic coals from eastern Surat Basin, Australia. Int. J. Coal Geol. 1986, 6, 149–162. [Google Scholar] [CrossRef]
- Fielding, C.R. The middle Jurassic Walloon coal measures in the type area, the Rosewood-Walloon Coalfield, SE Queensland. Aust. Coal Geol. 1993, 9, 4–16. [Google Scholar]
- Scott, S.; Anderson, B.; Crosdale, P.; Dingwall, J.; Leblang, G. Coal petrology and coal seam gas contents of the Walloon Subgroup-Surat Basin, Queensland, Australia. Int. J. Coal Geol. 2007, 70, 209–222. [Google Scholar] [CrossRef]
- Exon, N.F. Geology of the Surat Basin in Queensland; Bulletin 166; Bureau of Mineral Resources, Geology and Geophysics: Canberra, Australia, 1976. [Google Scholar]
- Clark, W.J.; Cooper, D.M. Sedimentological and wireline aspects of the Walloon Coal Measures in GSQ Dalby 1 and GSQ Chinchilla 3, Surat Basin, Queensland. Qld. Govt. Min. J. 1985, 86, 386–394. [Google Scholar]
- Radke, M.; Willsch, H.; Leythaeuser, D.; Teichmüller, M. Aromatic components of coal: Relation of distribution pattern to rank. Geochim. Cosmochim. Acta 1982, 46, 1831–1848. [Google Scholar]
- Hatcher, P.G.; Clifford, D.J. The organic geochemistry of coal: From plant materials to coal. Org. Geochem. 1997, 27, 251–274. [Google Scholar] [CrossRef]
- Stout, S.A.; Emsbo-Mattingly, S.D. Concentration and character of PAHs and other hydrocarbons in coals of varying rank—Implications for environmental studies of soils and sediments containing particulate coal. Org. Geochem. 2008, 39, 801–819. [Google Scholar] [CrossRef]
- Achten, C.; Hofmann, T. Native polycyclic aromatic hydrocarbons (PAH) in coals—A hardly recognized source of environmental contamination. Sci. Total Environ. 2009, 407, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polycyclic Aromatic Hydrocarbons; Public Health Service: Atlanta, GA, USA, 1995. [Google Scholar]
- Luch, A.; Baird, W.M. Carcinogenic Polycyclic Aromatic Hydrocarbons. In Comprehensive Toxicology; Charlene, A.M., Ed.; Elsevier: Oxford, UK, 2010; pp. 85–123. [Google Scholar]
- Melendez-Colon, V.J.; Luch, A.; Seidel, A.; Baird, W.M. Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogenesis 1999, 20, 1885–1891. [Google Scholar]
- Luch, A.; Baird, W.M. Metabolic Activation and Detoxification of Polycyclic Aromatic Hydrocarbons; Imperial College Press: London, UK, 2004. [Google Scholar]
- Xue, W.; Warshawsky, D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol. Appl. Pharmacol. 2005, 206, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Australian and New Zealand Environment and Conservation Council. Australian Water Quality Guidelines for Fresh and Marine Water Quality; ANZECC: Kingston, UK, 2000; Volume 1. [Google Scholar]
- Jafvert, C.T.; Rao, P.S.C.; Lane, D.; Lee, L.S. Partitioning of mono- and polycyclic aromatic hydrocarbons in a river sediment adjacent to a former manufactured gas plant site. Chemosphere 2006, 62, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Bertilsson, S.; Widenfalk, A. Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth—Influence of water chemistry. Hydrobiologia 2002, 469, 23–32. [Google Scholar] [CrossRef]
- Sabaté, J.; Bayona, J.M.; Solanas, A.M. Photolysis of PAHs in aqueous phase by UV irradiation. Chemosphere 2001, 44, 119–124. [Google Scholar]
- Laumann, S.; Micić, V.; Kruge, M.A.; Achten, C.; Sachsenhofer, R.F.; Schwarzbauer, J.; Hofmann, T. Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin. Environ. Pollut. 2011, 159, 2690–2697. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, A.B.; Fisher, J. Dissolved organic constituents in coal associated waters, and implications for human and ecosystem health. Toxicol. Sci. 2003, 72, 396–397. [Google Scholar]
- Maharaj, S.V.M.; Orem, W.H.; Tatu, C.A.; Lerch, H.E., III; Szilagyi, D.N. Organic compounds in water extracts of coal: Links to Balkan endemic nephropathy. Environ. Geochem. Health 2014, 36, 1–17. [Google Scholar]
- Neff, J.M. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; Applied Science Publishing Ltd.: London, UK, 1979. [Google Scholar]
- United States Environmental Protection Agency. Ambient Water Quality Criteria for Polynuclear Aromatic Hydrocarbons; EPA: Washington, WA, USA, 1980. [Google Scholar]
- De Maagd, P.G.-J.; Hulscher, T.D.; van den Heuvel, T.; Opperhuizen, A.; Sijm, D.T.H.M. Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry’s Law constants. Environ. Toxicol. Chem. 1998, 17, 251–257. [Google Scholar]
- Hegeman, W.J.M.; van der Weijden, C.H.; Loch, J.P. Sorption of benzo[a]pyrene and phenanthrene on suspended harbor sediment as a function of suspended sediment concentration and salinity: A laboratory study using the cosolvent partition coefficient. Environ. Sci. Technol. 1995, 29, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Maxin, C.R.; Kogel-Knabner, I. Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter. Eur. J. Soil Sci. 1995, 46, 193–204. [Google Scholar] [CrossRef]
- Fu, G.; Kan, A.T.; Tomson, M. Adsorption and desorption hysteresis of PAHs in surface sediment. Environ. Toxicol. Chem. 1994, 13, 1559–1567. [Google Scholar] [CrossRef]
- Kan, A.T.; Fu, G.; Tomson, M.B. Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction. Environ. Sci. Technol. 1994, 28, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Given, P.H. The Mobile Phase in Coals: Its Nature and Modes of Release; U.S. Department of Energy: Washington, DC, USA, 1987. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stearman, W.; Taulis, M.; Smith, J.; Corkeron, M. Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk. Geosciences 2014, 4, 219-239. https://doi.org/10.3390/geosciences4030219
Stearman W, Taulis M, Smith J, Corkeron M. Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk. Geosciences. 2014; 4(3):219-239. https://doi.org/10.3390/geosciences4030219
Chicago/Turabian StyleStearman, William, Mauricio Taulis, James Smith, and Maree Corkeron. 2014. "Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk" Geosciences 4, no. 3: 219-239. https://doi.org/10.3390/geosciences4030219
APA StyleStearman, W., Taulis, M., Smith, J., & Corkeron, M. (2014). Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk. Geosciences, 4(3), 219-239. https://doi.org/10.3390/geosciences4030219