Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk
Abstract
:1. Introduction
1.1. Co-Produced Water and Human Health
1.2. Study Areas

1.2.1. Bandanna Formation, Bowen Basin
1.2.2. Walloon Coal Measures, Eastern Surat Basin
2. Methods
2.1. CSG Water Organic Analyses
2.2. Leaching Experiments
| Sample# | Coal | Leachant |
|---|---|---|
| A-LIG-1 | Lignite | TCLP Extraction fluid # 1 |
| A-SUB-1 | HvA-bituminous | TCLP Extraction fluid # 1 |
| A-BIT-1 | Mv-bituminous | TCLP Extraction fluid # 1 |
| N-LIG-1 | Lignite | Deionised water |
| N-SUB-1 | HvA-bituminous | Deionised water |
| N-BIT-1 | Mv-bituminous | Deionised water |
| B-LIG-1 | Lignite | Synthetic CSG |
| B-SUB-1 | HvA-bituminous | Synthetic CSG |
| B-BIT-1 | Mv-bituminous | Synthetic CSG |
| N-LIG-2 | Lignite | Deionised water |
| N-SUB-2 | HvA-bituminous | Deionised water |
| N-BIT-2 | Mv-bituminous | Deionised water |
| B-LIG-2 | Lignite | Synthetic CSG |
| B-SUB-2 | HvA-bituminous | Synthetic CSG |
| B-BIT-2 | Mv-bituminous | Synthetic CSG |
| P-LIG-3 | Lignite * | Deionised water |
| P-SUB-3 | HvA-bituminous * | Deionised water |
| P-BIT-3 | Mv-bituminous * | Deionised water |
| NB-1 | n/a | Deionised water |
| BB-1 | n/a | Synthetic CSG |
Extraction and Analysis
2.3. Coal Samples
| Sample | Locality | Age | Carbon % (d.a.f *) | Vitrinite Reflectance (Rv, Max) | Rank |
|---|---|---|---|---|---|
| LIG | Gippsland Basin, Victoria | Middle Miocene | 66 | 0.3% | Lignite B |
| SUB | Moreton Basin, Queensland | Middle Jurassic | 80 | 0.57% | High volatile bituminous A |
| BIT | Sydney-Gunnedah Basin, New South Wales | Early Permian | 85 | 0.67% | Medium volatile bituminous |
3. CSG Water Results
| PAHs | Detection Limit (µg/L) | Range (µg/L) | % of Wells with Detections |
|---|---|---|---|
| Naphthalene | 0.01 | BDL–0.046 | 23 |
| Phenanthrene | 0.01 | BDL–0.046 | 20 |
| Pyrene | 0.01 | BDL–0.01 | 2 |
| Chrysene | 0.01 | BDL–0.016 | 2 |
| Benzo[b+k]fluoranthene | 0.01 | BDL–0.033 | 9 |
| Dibenz[a,h]anthracene | 0.01 | BDL–0.014 | 9 |
3.1. CSG Water Holding Pond
3.2. Leaching Experiment Results
| Polycyclic aromatic hydrocarbons | Detection Limit (µg/L) | Coal Rank | ||
|---|---|---|---|---|
| Lignite | HvA-Bituminous | Mv-Bituminous | ||
| Naphthalene | 0.01 | 0.43–0.67 | BDL | BDL |
| Acenaphthylene | 0.01 | BDL | BDL | BDL |
| Acenaphthene | 0.01 | BDL | BDL | BDL |
| Fluorene | 0.01 | BDL | BDL | BDL |
| Phenanthrene | 0.01 | BDL | BDL | BDL-0.01 |
| Anthracene | 0.01 | BDL | BDL | BDL |
| Fluoranthene | 0.01 | BDL | BDL-0.03 | BDL-0.03 |
| Pyrene | 0.01 | BDL | BDL-0.02 | BDL-0.05 |
| Benz[a]anthracene | 0.01 | BDL | BDL | BDL-0.02 |
| Chrysene | 0.01 | BDL | BDL | BDL-0.01 |
| Benzo[b+k]fluoranthene | 0.01 | BDL | BDL | BDL-0.01 |
| Benzo[a]pyrene | 0.01 | BDL | BDL | BDL-0.01 |
| Indeno[1,2,3-cd]pyrene | 0.01 | BDL | BDL | BDL |
| Dibenz[a,h]anthracene | 0.01 | BDL | BDL | BDL |
| Benzo[ghi]perylene | 0.01 | BDL | BDL | BDL |
| Phenolics | Detection Limit (µg /L) | Lignite | HvA-Bituminous | Mv-Bituminous |
| Phenol | 0.25 | BDL–0.32 | BDL | BDL |
| 2-Chlorophenol | 0.25 | BDL | BDL | BDL |
| 2-Methylphenol | 0.25 | BDL | BDL | BDL |
| 4-Methylphenol | 0.25 | BDL | BDL | BDL |
| 2-Nitrophenol | 0.25 | BDL | BDL | BDL |
| 2,4-Dimethylphenol | 0.25 | BDL | BDL | BDL |
| 2,4-Dichlorophenol | 0.25 | BDL | BDL | BDL |
| 2,6-Dichlorophenol | 0.25 | BDL | BDL | BDL |
| 4-Chloro-3-methylphenol | 0.25 | BDL | BDL | BDL |
| 2,4,6-Trichlorophenol | 0.25 | BDL | BDL | BDL |
| 2,4,5-Trichlorophenol | 0.25 | BDL | BDL | BDL |
| 2,4-Dinitrophenol | 2.5 | BDL | BDL | BDL |
| 4-Nitrophenol | 1 | BDL | BDL | BDL |
| 2,3,4,6-Tetrachlorophenol | 0.3 | BDL | BDL | BDL |
| 2-Methyl-4,6-dinitrophenol | 0.5 | BDL | BDL | BDL |
| Pentachlorophenol | 1 | BDL | BDL | BDL |
| Polycyclic aromatic hydrocarbons | Detection Limit (µg/L) | Coal Rank | ||
|---|---|---|---|---|
| Lignite | HvA-Bituminous | Mv-Bituminous | ||
| Naphthalene | 0.01 | 0.58–0.64 | BDL | BDL |
| Acenaphthylene | 0.01 | BDL | BDL | BDL |
| Acenaphthene | 0.01 | BDL | BDL | BDL |
| Fluorene | 0.01 | BDL | BDL | BDL |
| Phenanthrene | 0.01 | 0.01 | BDL | BDL |
| Anthracene | 0.01 | BDL | BDL | BDL |
| Fluoranthene | 0.01 | BDL | BDL | BDL |
| Pyrene | 0.01 | BDL | BDL | BDL |
| Benz[a]anthracene | 0.01 | BDL | BDL | BDL |
| Chrysene | 0.01 | BDL | BDL | BDL |
| Benzo[b+k]fluoranthene | 0.01 | BDL | BDL | BDL |
| Benzo[a]pyrene | 0.01 | BDL | BDL | BDL |
| Indeno[1,2,3-cd]pyrene | 0.01 | BDL | BDL | BDL |
| Dibenz[a,h]anthracene | 0.01 | BDL | BDL | BDL |
| Benzo[ghi]perylene | 0.01 | BDL | BDL | BDL |
| Phenolics | Detection Limit (µg/L) | Lignite | HvA-Bituminous | Mv-Bituminous |
| Phenol | 0.25 | 0.26–0.31 | BDL | BDL |
| 2-Chlorophenol | 0.25 | BDL | BDL | BDL |
| 2-Methylphenol | 0.25 | BDL | BDL | BDL |
| 4-Methylphenol | 0.25 | BDL | BDL | BDL |
| 2-Nitrophenol | 0.25 | BDL | BDL | BDL |
| 2,4-Dimethylphenol | 0.25 | BDL | BDL | BDL |
| 2,4-Dichlorophenol | 0.25 | BDL | BDL | BDL |
| 2,6-Dichlorophenol | 0.25 | BDL | BDL | BDL |
| 4-Chloro-3-methylphenol | 0.25 | BDL | BDL | BDL |
| 2,4,6-Trichlorophenol | 0.25 | BDL | BDL | BDL |
| 2,4,5-Trichlorophenol | 0.25 | BDL | BDL | BDL |
| 2,4-Dinitrophenol | 2.5 | BDL | BDL | BDL |
| 4-Nitrophenol | 1 | BDL | BDL | BDL |
| 2,3,4,6-Tetrachlorophenol | 0.3 | BDL | BDL | BDL |
| 2-Methyl-4,6-dinitrophenol | 0.5 | BDL | BDL | BDL |
| Pentachlorophenol | 1 | BDL | BDL | BDL |

4. CSG Water Discussion
4.1. Leaching Experiment Discussion
| Compound | Molar Mass (g/mol) | Solubility at 25 °C (µg/L) | Log KoW * | No. of Aromatic Rings |
|---|---|---|---|---|
| Phenol | 94.1 | 83,000,000 | 1.46 | 1 |
| Naphthalene | 128.2 | 31,000 | 3.37 | 2 |
| Phenanthrene | 178.2 | 465 | 4.46 | 3 |
| Fluoranthene | 202.3 | 260 | 4.9 | 3 |
| Pyrene | 202.1 | 133 | 4.88 | 4 |
| Benz[a]anthracene | 228.3 | 11 | 5.63 | 4 |
| Chrysene | 228.3 | 1.9 | 5.63 | 4 |
| Benzo[b]fluoranthene | 252.3 | 2.4 | 6.04 | 4 |
| Benzo[k]fluoranthene | 252.3 | 2.4 | 6.21 | 4 |
| Benzo[a]pyrene | 252.3 | 3.8 | 6.06 | 5 |
| Dibenz[a]anthracene | 278.3 | 0.4 | 6.86 | 5 |
4.2. Aromatic Compound Mobilization from Coal
4.3. Human Health Risk
4.4. Detection Limits and Reporting
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blueprint for Queensland’s LNG Industry, LNG Industry Unit. Available online: http://rti.cabinet.qld.gov.au/documents/2010/nov/lng%20blueprint/Attachments/LNG%20Blueprint.pdf (accessed on 1 September 2014).
- Klohn Crippen Berger. Forecasting Coal Seam Gas Water Production in Queensland’s Surat and Southern Bowen Basins; Department of Natural Resources and Mines: Brisbane, Australia, 2012. [Google Scholar]
- Sinclair Knight Mertz. Hydraulic Fracturing Techniques (“Fraccing”) Techniques, including Reporting Requirements and Governance Arrangements, Background Review; Commonwealth of Australia: Canberra, Australia, 2014. [Google Scholar]
- National Research Council. Management and Effects of Coalbed Methane Produced Water in the United States; National Academy of Sciences: Washington, DC, USA, 2010. [Google Scholar]
- Batley, G.E.; Kookana, R.S. Environmental issues associated with coal seam gas recovery: Managing the fracking boom. Environ. Chem. 2012, 9, 425–428. [Google Scholar]
- Taulis, M.E. Australia and New Zealand CBNG development and environmental implications. In Coalbed Natural Gas: Energy and Environment; Reddy, K.J., Ed.; Nova Science Publishers: New York, NY, USA, 2010; pp. 401–424. [Google Scholar]
- Taulis, M.E. Groundwater Characterisation and Disposal Modelling for Coal Seam Gas Recovery; University of Canterbury: Christchurch, New Zealand, 2007. [Google Scholar]
- Department of Environment and Heritage Protection. Coal Seam Gas Water Management Policy; QLD Government: Brisbane, Australia, 2012. [Google Scholar]
- Dr Mariann Lloyd-Smith Speaking about Toxic Risks of CSG (aka Coal Bed Methane). Available online: http://www.faug.org.uk/link/dr-mariann-lloyd-smith-speaking-about-toxic-risks-csg-aka-coal-bed-methane (accessed on 18 June 2014).
- Feder, G.L.; Radovanovic, Z.; Finkelman, R.B. Relationship between weathered coal deposits and the etiology of Balkan endemic nephropathy. Kidney Int. Suppl. 1991, 34, 9–11. [Google Scholar]
- Tatu, C.A.; Orem, W.H.; Maharaj, S.V.M.; Finkelman, R.B.; Diaconita, D.; Feder, G.L.; Szilagyi, D.N.; Dumitrascu, V.; Paunescu, V. Organic compounds derived from Pliocene lignite and the etiology of Balkan endemic nephropathy. In Geology and Health: Closing the Gap; Skinner, H.C.W., Berger, A.R., Eds.; Oxford University Press: New York, NY, USA, 2003; pp. 159–162. [Google Scholar]
- Orem, W.; Tatu, C.; Pavlovic, N.; Bunnell, J.; Lerch, H.; Paunescu, V.; Ordodi, V.; Flores, D.; Corum, M.; Bates, A. Health effects of toxic organic substances from coal: Toward “Panendemic” nephropathy. AMBIO 2007, 36, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Orem, W.H.; Feder, G.L.; Finkelman, R.B. A possible link between Balkan endemic nephropathy and the leaching of toxic organic compounds from Pliocene lignite by groundwater: Preliminary investigation. Int. J. Coal Geol. 1999, 40, 237–252. [Google Scholar] [CrossRef]
- Sunwater Ltd. Chinchilla Beneficial Use Scheme Water Quality Report; Sunwater Ltd.: Brisbane, Australia, 2013. Available online: http://www.sunwater.com.au/__data/assets/pdf_file/0016/12607/Chinchilla-Beneficial-Use-Scheme-Water-Quality-Report-2013.pdf (accessed on 1 September 2014).
- Navi, M.; Skelly, C.; Taulis, M.; Nasiri, S. Coal seam gas water: Potential hazards and exposure pathways in Queensland. Int. J. Environ. Health Res. 2014, 24, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Sanei, H.; Klassen, P.; Mayer, B.; Goodarzi, F. Produced fluids and shallow groundwater in coalbed methane (CBM) producing regions of Alberta, Canada: Trace element and rare earth element geochemistry. Int. J. Coal Geol. 2009, 77, 338–349. [Google Scholar] [CrossRef]
- Jackson, R.E.; Reddy, K.J. Geochemistry of coalbed natural gas (CBNG) produced water in powder river basin, wyoming: Salinity and sodicity. Water Air Soil Pollut. 2007, 184, 49–61. [Google Scholar] [CrossRef]
- Jackson, R.E.; Reddy, K.J. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming. Environ. Sci. Technol. 2007, 41, 5953–5959. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.E.; Reddy, K.J. Coalbed natural gas product water: Geochemical transformations from outfalls to disposal ponds. In Coalbed Natural Gas: Energy and Environment; Reddy, K.J., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 121–143. [Google Scholar]
- Kinnon, E.C.P.; Golding, S.D.; Boreham, C.J.; Baublys, K.A.; Esterle, J.S. Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia. Int. J. Coal Geol. 2010, 82, 219–231. [Google Scholar] [CrossRef]
- McBeth, I.; Reddy, K.J.; Skinner, Q.D. Chemistry of trace elements in coalbed methane product water. Water Res. 2003, 37, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Patz, M.J.; Reddy, K.J.; Skinner, Q.D. Chemistry of coalbed methane discharge water interacting with semi-arid ephemeral stream channels. J. Am. Water Resour. Assoc. 2004, 40, 1247–1255. [Google Scholar] [CrossRef]
- Taulis, M.E.; Trumm, D.; Milke, M.W.; Nobes, D.; Manhire, D.; O’Sullivan, A. Characterisation of coal seam gas waters in New Zealand. In Proceedings of the New Zealand Minerals Conference: Realising New Zealand’s Mineral Potential, Auckland, New Zealand, 13–16 November 2005; pp. 416–425.
- Taulis, M.; Milke, M. Chemical variability of groundwater samples collected from a Coal Seam Gas exploration well, Maramarua, New Zealand. Water Res. 2012, 47, 1021–1034. [Google Scholar]
- Reddy, K.J.; Helmericks, C.; Whitman, A.; Legg, D. Geochemical processes controlling trace elemental mobility in coalbed natural gas (CBNG) disposal ponds in the Powder River Basin, WY. Int. J. Coal Geol. 2014, 126, 120–127. [Google Scholar] [CrossRef]
- Dahm, K.G.; Guerra, K.L.; Xu, P.; Drewes, J.E. Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region. Environ. Sci. Technol. 2011, 45, 7655–7663. [Google Scholar] [CrossRef] [PubMed]
- Volk, H.; Pinetown, K.; Johnston, C.; McLean, W. A Desktop Study of the Occurrence of Total Petroleum Hydrocarbon (TPH) and Partially Water-Soluble Organic Compounds in Permian Coals and Associated Coal Seam Groundwater; CSIRO: Sydney, Australia, 2011. [Google Scholar]
- Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D. Organic compounds in produced waters from coalbed natural gas wells in the Powder River basin, Wyoming, USA. Appl. Geochem. 2007, 22, 2240–2256. [Google Scholar] [CrossRef]
- Orem, W.; Tatu, C.; Varonka, M.; Lerch, H.; Bates, A.; Engle, M.; Crosby, L.; McIntosh, J. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. Int. J. Coal Geol. 2014, 126, 20–31. [Google Scholar] [CrossRef]
- APLNG. Coal Seam Gas Water Quality Monitoring Program: Talinga Water Treatment Facility. Available online: http://www.aplng.com.au/pdf/water_monitoring_management/Appendix_J-CSG_Water_Quality_Monitoring_Program_Talinga_Water_Treatment_Facility.pdf (accessed on 1 September 2014).
- Arrow Energy Ltd. Coal Seam Gas Water Management Plan. Surat Basin; Doc No. ENV11–133; Arrow Energy Ltd.: Brisbane, Australia, 2013. [Google Scholar]
- Sowder, J.T.; Kelleners, T.J.; Reddy, K.J. The origin and fate of arsenic in coalbed natural gas-produced water ponds. J. Environ. Qual. 2010, 39, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Beeston, J.W. Coal facies depositional models, Denison trough area, Bowen Basin. Qld. Geol. 1991, 2, 3–33. [Google Scholar]
- Beeston, J.W. Coal rank variation in the Bowen Basin, Queensland. Int. J. Coal Geol. 1986, 6, 163–179. [Google Scholar] [CrossRef]
- Draper, J.J.; Boreham, C.J. Geological controls on exploitable coal seam gas distribution in Queensland. Aust. Pet. Prod. Explor. Assoc. J. 2006, 46, 343–346. [Google Scholar]
- Salehy, M.R. Determination of rank and petrographic composition of Jurassic coals from eastern Surat Basin, Australia. Int. J. Coal Geol. 1986, 6, 149–162. [Google Scholar] [CrossRef]
- Fielding, C.R. The middle Jurassic Walloon coal measures in the type area, the Rosewood-Walloon Coalfield, SE Queensland. Aust. Coal Geol. 1993, 9, 4–16. [Google Scholar]
- Scott, S.; Anderson, B.; Crosdale, P.; Dingwall, J.; Leblang, G. Coal petrology and coal seam gas contents of the Walloon Subgroup-Surat Basin, Queensland, Australia. Int. J. Coal Geol. 2007, 70, 209–222. [Google Scholar] [CrossRef]
- Exon, N.F. Geology of the Surat Basin in Queensland; Bulletin 166; Bureau of Mineral Resources, Geology and Geophysics: Canberra, Australia, 1976. [Google Scholar]
- Clark, W.J.; Cooper, D.M. Sedimentological and wireline aspects of the Walloon Coal Measures in GSQ Dalby 1 and GSQ Chinchilla 3, Surat Basin, Queensland. Qld. Govt. Min. J. 1985, 86, 386–394. [Google Scholar]
- Radke, M.; Willsch, H.; Leythaeuser, D.; Teichmüller, M. Aromatic components of coal: Relation of distribution pattern to rank. Geochim. Cosmochim. Acta 1982, 46, 1831–1848. [Google Scholar]
- Hatcher, P.G.; Clifford, D.J. The organic geochemistry of coal: From plant materials to coal. Org. Geochem. 1997, 27, 251–274. [Google Scholar] [CrossRef]
- Stout, S.A.; Emsbo-Mattingly, S.D. Concentration and character of PAHs and other hydrocarbons in coals of varying rank—Implications for environmental studies of soils and sediments containing particulate coal. Org. Geochem. 2008, 39, 801–819. [Google Scholar] [CrossRef]
- Achten, C.; Hofmann, T. Native polycyclic aromatic hydrocarbons (PAH) in coals—A hardly recognized source of environmental contamination. Sci. Total Environ. 2009, 407, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polycyclic Aromatic Hydrocarbons; Public Health Service: Atlanta, GA, USA, 1995. [Google Scholar]
- Luch, A.; Baird, W.M. Carcinogenic Polycyclic Aromatic Hydrocarbons. In Comprehensive Toxicology; Charlene, A.M., Ed.; Elsevier: Oxford, UK, 2010; pp. 85–123. [Google Scholar]
- Melendez-Colon, V.J.; Luch, A.; Seidel, A.; Baird, W.M. Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogenesis 1999, 20, 1885–1891. [Google Scholar]
- Luch, A.; Baird, W.M. Metabolic Activation and Detoxification of Polycyclic Aromatic Hydrocarbons; Imperial College Press: London, UK, 2004. [Google Scholar]
- Xue, W.; Warshawsky, D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol. Appl. Pharmacol. 2005, 206, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Australian and New Zealand Environment and Conservation Council. Australian Water Quality Guidelines for Fresh and Marine Water Quality; ANZECC: Kingston, UK, 2000; Volume 1. [Google Scholar]
- Jafvert, C.T.; Rao, P.S.C.; Lane, D.; Lee, L.S. Partitioning of mono- and polycyclic aromatic hydrocarbons in a river sediment adjacent to a former manufactured gas plant site. Chemosphere 2006, 62, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Bertilsson, S.; Widenfalk, A. Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth—Influence of water chemistry. Hydrobiologia 2002, 469, 23–32. [Google Scholar] [CrossRef]
- Sabaté, J.; Bayona, J.M.; Solanas, A.M. Photolysis of PAHs in aqueous phase by UV irradiation. Chemosphere 2001, 44, 119–124. [Google Scholar]
- Laumann, S.; Micić, V.; Kruge, M.A.; Achten, C.; Sachsenhofer, R.F.; Schwarzbauer, J.; Hofmann, T. Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin. Environ. Pollut. 2011, 159, 2690–2697. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, A.B.; Fisher, J. Dissolved organic constituents in coal associated waters, and implications for human and ecosystem health. Toxicol. Sci. 2003, 72, 396–397. [Google Scholar]
- Maharaj, S.V.M.; Orem, W.H.; Tatu, C.A.; Lerch, H.E., III; Szilagyi, D.N. Organic compounds in water extracts of coal: Links to Balkan endemic nephropathy. Environ. Geochem. Health 2014, 36, 1–17. [Google Scholar]
- Neff, J.M. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; Applied Science Publishing Ltd.: London, UK, 1979. [Google Scholar]
- United States Environmental Protection Agency. Ambient Water Quality Criteria for Polynuclear Aromatic Hydrocarbons; EPA: Washington, WA, USA, 1980. [Google Scholar]
- De Maagd, P.G.-J.; Hulscher, T.D.; van den Heuvel, T.; Opperhuizen, A.; Sijm, D.T.H.M. Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry’s Law constants. Environ. Toxicol. Chem. 1998, 17, 251–257. [Google Scholar]
- Hegeman, W.J.M.; van der Weijden, C.H.; Loch, J.P. Sorption of benzo[a]pyrene and phenanthrene on suspended harbor sediment as a function of suspended sediment concentration and salinity: A laboratory study using the cosolvent partition coefficient. Environ. Sci. Technol. 1995, 29, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Maxin, C.R.; Kogel-Knabner, I. Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter. Eur. J. Soil Sci. 1995, 46, 193–204. [Google Scholar] [CrossRef]
- Fu, G.; Kan, A.T.; Tomson, M. Adsorption and desorption hysteresis of PAHs in surface sediment. Environ. Toxicol. Chem. 1994, 13, 1559–1567. [Google Scholar] [CrossRef]
- Kan, A.T.; Fu, G.; Tomson, M.B. Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction. Environ. Sci. Technol. 1994, 28, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Given, P.H. The Mobile Phase in Coals: Its Nature and Modes of Release; U.S. Department of Energy: Washington, DC, USA, 1987. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stearman, W.; Taulis, M.; Smith, J.; Corkeron, M. Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk. Geosciences 2014, 4, 219-239. https://doi.org/10.3390/geosciences4030219
Stearman W, Taulis M, Smith J, Corkeron M. Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk. Geosciences. 2014; 4(3):219-239. https://doi.org/10.3390/geosciences4030219
Chicago/Turabian StyleStearman, William, Mauricio Taulis, James Smith, and Maree Corkeron. 2014. "Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk" Geosciences 4, no. 3: 219-239. https://doi.org/10.3390/geosciences4030219
APA StyleStearman, W., Taulis, M., Smith, J., & Corkeron, M. (2014). Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk. Geosciences, 4(3), 219-239. https://doi.org/10.3390/geosciences4030219
