Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: An Assessment Using Machine Learning and Statistical Approaches
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Shallow Landslide Inventories
3.2. Thematic Variables
3.3. Susceptibility Assessment and Models
3.3.1. Logistic Regression (LR)
3.3.2. Support Vector Machine (SVM)
3.3.3. Extreme Gradient Boosting (XGBoost)
3.4. Evaluation of Spatial Agreement
3.5. Accuracy Assessment
4. Results
4.1. Comparison of the Inventory Characteristics
4.2. Shallow Landslide Susceptibility and Model Accuracy
4.3. Spatial Comparison Between Susceptibility Maps of Palmital–Gurutuba Watershed
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
Cfa | Humid subtropical climate |
DEM | Digital elevation Model |
INV1 | First inventory |
INV2 | Second inventory |
INV3 | Third inventory |
LSM | Landslide susceptibility maps |
LR | Logistic regression |
ML | Machine learning |
NIR | Near-infrared |
OBIA | Object-based image analysis |
TanDEM-X | TerraSAR-X add-on for digital elevation measurement |
SPOT 5 | Satellite Pour l’Observation de la Terre 5 |
SVM | Support vector machine |
XGBoost | Extreme gradient boosting |
References
- CRED. Disasters in Numbers 2021; Technical Report; Centre for Research on the Epidemiology of Disasters: Brussels, Belgium, 2022. [Google Scholar]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Lorentz, J.F.; Calijuri, M.L.; Marques, E.G.; Baptista, A.C. Multicriteria analysis applied to landslide susceptibility mapping. Nat. Hazards 2016, 83, 41–52. [Google Scholar] [CrossRef]
- de Brito, M.M.; Weber, E.J.; da Silva Filho, L.C.P. Análise multi-critério aplicada ao mapeamento da suscetibilidade a escorregamentos. Rev. Bras. Geomorfol. 2017, 10, 1117. [Google Scholar] [CrossRef]
- Ozer, B.C.; Mutlu, B.; Nefeslioglu, H.A.; Sezer, E.A.; Rouai, M.; Dekayir, A.; Gokceoglu, C. On the use of hierarchical fuzzy inference systems (HFIS) in expert-based landslide susceptibility mapping: The central part of the Rif Mountains (Morocco). Bull. Eng. Geol. Environ. 2020, 79, 551–568. [Google Scholar] [CrossRef]
- Barella, C.F.; Sobreira, F.G.; Zêzere, J.L. A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil. Bull. Eng. Geol. Environ. 2019, 78, 3205–3221. [Google Scholar] [CrossRef]
- Juliev, M.; Mergili, M.; Mondal, I.; Nurtaev, B.; Pulatov, A.; Hübl, J. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci. Total Environ. 2019, 653, 801–814. [Google Scholar] [CrossRef]
- Dias, H.C.; Gramani, M.F.; Grohmann, C.H.; Bateira, C.; Vieira, B.C. Statistical-based shallow landslide susceptibility assessment for a tropical environment: A case study in the southeastern Brazilian coast. Nat. Hazards 2021, 108, 205–223. [Google Scholar] [CrossRef]
- Sbroglia, R.M.; Reginatto, G.M.P.; Higashi, R.A.R.; Guimarães, R.F. Mapping susceptible landslide areas using geotechnical homogeneous zones with different DEM resolutions in Ribeirão Baú basin, Ilhota/SC/Brazil. Landslides 2018, 15, 2093–2106. [Google Scholar] [CrossRef]
- König, T.; Kux, H.J.H.; Mendes, R.M. Shalstab mathematical model and WorldView-2 satellite images to identification of landslide-susceptible areas. Nat. Hazards 2019, 97, 1127–1149. [Google Scholar] [CrossRef]
- Ávila, F.F.; Alvalá, R.C.; Mendes, R.M.; Amore, D.J. The influence of land use/land cover variability and rainfall intensity in triggering landslides: A back-analysis study via physically based models. Nat. Hazards 2021, 105, 1139–1161. [Google Scholar] [CrossRef]
- de Oliveira, G.G.; Ruiz, L.F.C.; Guasselli, L.A.; Haetinger, C. Random forest and artificial neural networks in landslide susceptibility modeling: A case study of the Fão River Basin, Southern Brazil. Nat. Hazards 2019, 99, 1049–1073. [Google Scholar] [CrossRef]
- Canavesi, V.; Segoni, S.; Rosi, A.; Ting, X.; Nery, T.; Catani, F.; Casagli, N. Different Approaches to Use Morphometric Attributes in Landslide Susceptibility Mapping Based on Meso-Scale Spatial Units: A Case Study in Rio de Janeiro (Brazil). Remote Sens. 2020, 12, 1826. [Google Scholar] [CrossRef]
- Pham, Q.B.; Achour, Y.; Ali, S.A.; Parvin, F.; Vojtek, M.; Vojteková, J.; Al-Ansari, N.; Achu, A.L.; Costache, R.; Khedher, K.M.; et al. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat. Nat. Hazards Risk 2021, 12, 1741–1777. [Google Scholar] [CrossRef]
- Alcântara, E.; Baião, C.F.; Guimarães, Y.C.; Mantovani, J.R.; Marengo, J.A. Machine learning approaches for mapping and predicting landslide-prone areas in São Sebastião (Southeast Brazil). Nat. Hazards Res. 2024. [Google Scholar] [CrossRef]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef]
- Riegel, R.P.; Alves, D.D.; Schmidt, B.C.; de Oliveira, G.G.; Haetinger, C.; Osório, D.M.M.; Rodrigues, M.A.S.; de Quevedo, D.M. Assessment of susceptibility to landslides through geographic information systems and the logistic regression model. Nat. Hazards 2020, 103, 497–511. [Google Scholar] [CrossRef]
- Tang, R.X.; Yan, E.C.; Wen, T.; Yin, X.M.; Tang, W. Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping. Sustainability 2021, 13, 3803. [Google Scholar] [CrossRef]
- Abad, L.; Hölbling, D.; Albrecht, F.; Dias, H.C.; Dabiri, Z.; Reischenböck, G.; Tešić, D. Mass movement susceptibility assessment of alpine infrastructure in the Salzkammergut area, Austria. Int. J. Disaster Risk Reduct. 2022, 76, 103009. [Google Scholar] [CrossRef]
- Cabral, V.; Reis, F.; Veloso, V.; Ogura, A.; Zarfl, C. A multi-step hazard assessment for debris-flow prone areas influenced by hydroclimatic events. Eng. Geol. 2023, 313, 106961. [Google Scholar] [CrossRef]
- Uehara, T.D.T.; Corrêa, S.P.L.P.; Quevedo, R.P.; Körting, T.S.; Dutra, L.V.; Rennó, C.D. Landslide Scars Detection using Remote Sensing and Pattern Recognition Techniques: Comparison Among Artificial Neural Networks, Gaussian Maximum Likelihood, Random Forest, and Support Vector Machine Classifiers. Rev. Bras. Cartogr. 2020, 72, 665–680. [Google Scholar] [CrossRef]
- Dias, H.C.; Hölbling, D.; Grohmann, C.H. Rainfall-Induced Shallow Landslide Recognition and Transferability Using Object-Based Image Analysis in Brazil. Remote Sens. 2023, 15, 5137. [Google Scholar] [CrossRef]
- Pyakurel, A.; Dahal, B.K.; Gautam, D. Does machine learning adequately predict earthquake induced landslides? Soil Dyn. Earthq. Eng. 2023, 171, 107994. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Agrawal, N.; Dixit, J. GIS-based landslide susceptibility mapping of the Meghalaya-Shillong Plateau region using machine learning algorithms. Bull. Eng. Geol. Environ. 2023, 82. [Google Scholar] [CrossRef]
- Steger, S.; Brenning, A.; Bell, R.; Glade, T. The propagation of inventory-based positional errors into statistical landslide susceptibility models. Nat. Hazards Earth Syst. Sci. 2016, 16, 2729–2745. [Google Scholar] [CrossRef]
- Bordoni, M.; Galanti, Y.; Bartelletti, C.; Persichillo, M.G.; Barsanti, M.; Giannecchini, R.; Avanzi, G.D.; Cevasco, A.; Brandolini, P.; Galve, J.P.; et al. The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models. Catena 2020, 193, 104630. [Google Scholar] [CrossRef]
- Loche, M.; Alvioli, M.; Marchesini, I.; Bakka, H.; Lombardo, L. Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth-Sci. Rev. 2022, 232, 104125. [Google Scholar] [CrossRef]
- Sahrane, R.; Ali, B.; Kharim, Y.E. Investigating the Effects of Landslides Inventory Completeness on Susceptibility Mapping and Frequency-Area Distributions: Case of Taounate Province, Northern Morocco. Catena 2023, 220, 106737. [Google Scholar] [CrossRef]
- Dias, H.C.; Grohmann, C.H. Standards for shallow landslide identification in Brazil: Spatial trends and inventory mapping. J. S. Am. Earth Sci. 2024, 135, 104805. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Augusto Filho, O. Caracterização Geológica-geotécnica voltada à estabilização de encostas: Uma proposta metodológica. In Proceedings of the Conferência Brasileira sobre Estabilidade de Encostas, Rio de Janeiro, Brazil, 3–5 November 1992; pp. 721–733. [Google Scholar]
- Highland, L.; Bobrowsky, P. The Landslide Handbook: A Guide to Understanding Landslides (USGS Circular 1325); US Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Dias, H.C.; Hölbling, D.; Grohmann, C.H. Landslide Susceptibility Mapping in Brazil: A Review. Geosciences 2021, 11, 425. [Google Scholar] [CrossRef]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H. Landslide inventories: The essential part of seismic landslide hazard analyses. Eng. Geol. 2011, 122, 9–21. [Google Scholar] [CrossRef]
- Macedo, E.S.; Sandre, L.H. Mortes por deslizamentos no Brasil: 1988 a 2022. Rev. Bras. Geol. Eng. Ambient. 2022, 12, 110–117. [Google Scholar] [CrossRef]
- Ferreira, M.L. Extreme rain event highlights the lack of governance to face climate change in the Southeastern coast of Brazil. Geogr. Sustain. 2024, 5, 29–32. [Google Scholar] [CrossRef]
- Alvalá, R.C.D.S.; Assis Dias, M.C.; Saito, S.M.; Stenner, C.; Franco, C.; Amadeu, P.; Ribeiro, J.; Santana, R.A.S.M.; Nobre, C.A. Mapping characteristics of at-risk population to disasters in the context of Brazilian early warning system. Int. J. Disaster Risk Reduct. 2019, 41, 101326. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I. Time in a bottle: Challenges to disaster studies in Latin America and the Caribbean. Disasters 2019, 43, 18–27. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Censo Demográfico 2010; Technical Report; Instituto Brasileiro de Geografia e Estatística: Brasília, Brazil, 2010. [Google Scholar]
- Faleiros, F.; Morais, S.; Costa, V. Geologia dos Recursos Naturais da Folha Apiaí- SG.22-X-B-V, Estados de São Paulo e Paraná—Escala 1:100.000; Technical Report; CPRM: São Paulo, Brazil, 2012; 107p. [Google Scholar]
- Zenero, J.; Vieira, O.; Godoy, A. Geologia e Litogeoquímica do Batólito de Itaóca, Sul do estado de São Paulo. Geociências 2020, 39, 317–342. [Google Scholar] [CrossRef]
- Rossi, M. Mapa pedológico do estado de São Paulo: Revisado e ampliado. São Paulo Inst. Florest. 2017, 1, 118. [Google Scholar]
- Köppen, W. Das Geographische System der Klimate; Chapter Das Geographische System der Klimate; Gerbruder Borntrager: Berlin, Germany, 1936; Volume 1, pp. 1–44. [Google Scholar]
- Ross, J.L.S. A morfogênese da bacia do Ribeira do Iguape e os sistemas ambientais. GEOUSP–Espaço Tempo São Paulo 2002, 6, 21–46. [Google Scholar] [CrossRef]
- Dias, V.C.; McDougall, S.; Vieira, B.C. Geomorphic analyses of two recent debris flows in Brazil. J. S. Am. Earth Sci. 2022, 113, 103675. [Google Scholar] [CrossRef]
- Gramani, M.; Martins, V. Debris flows occurrence by intense rains at Itaoca city, São Paulo, Brazil: Field observations. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2016; pp. 1011–1019. [Google Scholar]
- Brollo, M.J.; Santoro, J.; Penteado, D.R.; da Silva, P.C.F.; Ribeiro, R.R. Itaóca (SP): Histórico de acidentes e desastres relacionados a perigos geológicos. In Proceedings of the XIV Simpósio de Geologia do Sudeste, Campos do Jordão, Brazil, 26–29 October 2015. [Google Scholar]
- Planet. Planet Imagery Products Specifications; Planet: San Francisco, CA, USA, 2022. [Google Scholar]
- Sahin, E.K.; Colkesen, I.; Acmali, S.S.; Akgun, A.; Aydinoglu, A.C. Developing comprehensive geocomputation tools for landslide susceptibility mapping: LSM tool pack. Comput. Geosci. 2020, 144, 104592. [Google Scholar] [CrossRef]
- Dashbold, B.; Bryson, L.S.; Crawford, M.M. Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model. Nat. Hazards 2023, 116, 235–265. [Google Scholar] [CrossRef]
- Tang, L.; Yu, X.; Jiang, W.; Zhou, J. Comparative study on landslide susceptibility mapping based on unbalanced sample ratio. Sci. Rep. 2023, 13, 5823. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Statistics for Engineering and Informationscience; Springer: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, J.; Zheng, J.; Fan, H.; Kong, J.; Zhan, J. Application of Bayesian Hyperparameter Optimized Random Forest and XGBoost Model for Landslide Susceptibility Mapping. Front. Earth Sci. 2021, 9, 712240. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Remondo, J.; González, A.; Terán, J.D.D.; Cendrero, A.; Fabbri, A.; Chung, C.J.F. Validation of Landslide Susceptibility Maps: Examples and Applications from a Case Study in Northern Spain. Nat. Hazards 2003, 30, 437–449. [Google Scholar] [CrossRef]
- Zêzere, J.; Oliveira, S.; Garcia, R.A.; Reis, E. Landslide risk analysis in the area North of Lisbon (Portugal): Evaluation of direct and indirect costs resulting from a motorway disruption by slope movements. Landslides 2007, 4, 123–136. [Google Scholar] [CrossRef]
- Bornaetxea, T.; Remondo, J.; Bonachea, J.; Valenzuela, P. Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain). Nat. Hazards 2023, 118, 2513–2542. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Hölbling, D.; Abad, L.; Dabiri, Z.; Prasicek, G.; Tsai, T.T.; Argentin, A.L. Mapping and Analyzing the Evolution of the Butangbunasi Landslide Using Landsat Time Series with Respect to Heavy Rainfall Events during Typhoons. Appl. Sci. 2020, 10, 630. [Google Scholar] [CrossRef]
- Saito, H.; Uchiyama, S.; Teshirogi, K. Rapid vegetation recovery at landslide scars detected by multitemporal high-resolution satellite imagery at Aso volcano, Japan. Geomorphology 2022, 398, 107989. [Google Scholar] [CrossRef]
- Garcia, G.P.B.; Soares, L.P.; Espadoto, M.; Grohmann, C.H. Relict landslide detection using deep-learning architectures for image segmentation in rainforest areas: A new framework. Int. J. Remote Sens. 2023, 44, 2168–2195. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Hölbling, D.; Eisank, C.; Albrecht, F.; Vecchiotti, F.; Friedl, B.; Weinke, E.; Kociu, A. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences 2017, 7, 37. [Google Scholar] [CrossRef]
Inventory Type | INV1 | INV2 | INV3 |
---|---|---|---|
Total | 1847 | 1723 | 1108 |
Training (70%) | 1293 | 1.206 | 776 |
Test (30%) | 554 | 517 | 332 |
Characteristics | INV1 | INV2 | INV3 |
---|---|---|---|
Number of polygons | 1847 | 1723 | 1108 |
Total area (km2) | 0.81 | 3.48 | 2.15 |
Average area (m2) | 440 | 2022 | 1949 |
Maximum area (m2) | 10,305 | 53,599 | 84,792 |
Minimum area (m2) | 14.2 | 117 | 100 |
Model | Inventory | AUC-Success (%) | AUC-Prediction (%) |
---|---|---|---|
LR | 1 | 75.1 | 71.4 |
2 | 76.1 | 79.2 | |
3 | 77.1 | 80.9 | |
SVM | 1 | 88.0 | 76.8 |
2 | 86.1 | 81.9 | |
3 | 88.3 | 82.4 | |
XGBoost | 1 | 94.6 | 78.5 |
2 | 91.1 | 84.5 | |
3 | 94.2 | 85.2 |
Models | Pair of Inventories | k | k (VL) | k (L) | k (M) | k (H) | k (VH) |
---|---|---|---|---|---|---|---|
LR | 1 and 2 | 0.66 | 0.87 | 0.64 | 0.53 | 0.55 | 0.73 |
1 and 3 | 0.72 | 0.90 | 0.72 | 0.61 | 0.58 | 0.80 | |
2 and 3 | 0.80 | 0.90 | 0.73 | 0.76 | 0.71 | 0.91 | |
SVM | 1 and 2 | 0.39 | 0.35 | 0.29 | 0.27 | 0.38 | 0.65 |
1 and 3 | 0.36 | 0.35 | 0.28 | 0.22 | 0.34 | 0.66 | |
2 and 3 | 0.47 | 0.45 | 0.32 | 0.47 | 0.34 | 0.74 | |
XGBoost | 1 and 2 | 0.34 | 0.47 | 0.28 | 0.23 | 0.25 | 0.51 |
1 and 3 | 0.34 | 0.57 | 0.28 | 0.21 | 0.22 | 0.52 | |
2 and 3 | 0.42 | 0.63 | 0.33 | 0.29 | 0.34 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, H.C.; Hölbling, D.; Grohmann, C.H. Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: An Assessment Using Machine Learning and Statistical Approaches. Geosciences 2025, 15, 77. https://doi.org/10.3390/geosciences15030077
Dias HC, Hölbling D, Grohmann CH. Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: An Assessment Using Machine Learning and Statistical Approaches. Geosciences. 2025; 15(3):77. https://doi.org/10.3390/geosciences15030077
Chicago/Turabian StyleDias, Helen Cristina, Daniel Hölbling, and Carlos Henrique Grohmann. 2025. "Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: An Assessment Using Machine Learning and Statistical Approaches" Geosciences 15, no. 3: 77. https://doi.org/10.3390/geosciences15030077
APA StyleDias, H. C., Hölbling, D., & Grohmann, C. H. (2025). Examining the Influence of Different Inventories on Shallow Landslide Susceptibility Modeling: An Assessment Using Machine Learning and Statistical Approaches. Geosciences, 15(3), 77. https://doi.org/10.3390/geosciences15030077