Impacts of Land Use on Soil Erosion: RUSLE Analysis in a Sub-Basin of the Peruvian Amazon (2016–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Soil Loss Calculation
2.3. Calculation of RUSLE’s Factors
2.3.1. Erosivity Factor (R)
2.3.2. Erodibility Factor (K)
2.3.3. Topographic Factor (LS)
2.3.4. Plant Cover Factor (C)
2.3.5. Conservation Practices Factor (P)
2.4. Calculation of Erosion and Classification by Levels and Type of Coverage
3. Results
3.1. R Factor
3.2. K Factor
3.3. LS Factor
3.4. Factor C and Change of Coverage
3.5. P Factor
3.6. Erosion
4. Discussion
5. Conclusions
- The study showed an increase in average erosion in the Neshuya sub-basin, from 3.87 t ha⁻1 year⁻1 in 2016 to 4.55 t ha⁻1 year⁻1 in 2022, which represents a change of 17.6% between both years. This increase is directly related to the expansion of agricultural activities quantifies in terms of area. It went from 615.05 km2 in 2016 to 709.4 km2 in 2022. This means a replacement of 15.3% of the Amazon forest. The hypothesis that the conversion of forest to agricultural land increases erosion is confirmed.
- The “moderate”, “high” and “very high” erosion categories showed an increase in their affected area between 2016 and 2022, with increases of 6.79 km2, 6.94 km2 and 7.50 km2, respectively. This corresponds to the areas with the highest slope (11–35%) located in the eastern part of the sub-basin, where precipitation has a greater incidence with rainfall erosivity rates in a range from 1500 to 2297 MJ mm ha−1 h−1 year−1.
- In the study area, soils had a high resistance to erodibility with very low values for the K factor, due to the predominance of clay loam, loam and sandy clay loam textures. This is consistent with other studies. In addition, a low percentage of organic carbon was not sufficient to increase the erodibility factor.
- The tolerated erosion was over the limit in 74.52 km2. This is spatially related to slash-and-burn deforestation (107.96 km2) near waterways.
- The “very low” erosion category showed a reduction of 49.78 km2 (−5.12%) as a result of less sustainable practices. Less susceptible areas to erosion had lower erosivity ranges between 1100 and 1500 MJ mm ha−1 h−1 year−1 and gentler slopes, from 0 to 11%.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. El Estado Mundial de La Agricultura y La Alimentación 2020; Organización de las Naciones Unidas para la Agricultura y la Alimentación: Washington, DC, USA, 2020; ISBN 978-92-5-133644-1. [Google Scholar] [CrossRef]
- Weil, R.; Brady, N. The Nature and Properties of Soils, 15th ed.; Pearson: Essex, UK, 2017. [Google Scholar]
- Cisneros, J.; Cholaky, C.; Cantero, G.; Gonzáles, J.; Reynero, M. Erosión Hídrica: Principios y Técnicas de Manejo; Universidad Nacional de Río Cuarto: Río Cuarto, Argentina, 2012; ISBN 9789876880244. [Google Scholar]
- Vasquez, A. Manejo de Cuencas Altoandinas; Universidad Nacional Agraria La Molina: Lima, Peru, 2000; Volume 1, ISBN 978-612-4147-55-5. [Google Scholar]
- Boardman, J.; Favis-Mortlock, D. Modelling Soil Erosion ByWater; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-63787-2. [Google Scholar] [CrossRef]
- Ramirez, F.A.; Hincapié, E.; Sadeghian, S. Erodabilidad de Los Suelos de La Zona Central Cafetera Del Departamento de Caldas. Centro Nacional de Investigaciones de Café—Cenicafe 2009, 60, 58–71. Available online: https://biblioteca.cenicafe.org/bitstream/10778/157/1/arc060%2801%2958-71.pdf (accessed on 5 January 2025).
- Ei-Swaify, S.; Dangler, E.; Armstrong, C. Soil Erosion by Water in the Tropics; University of Hawaii: Honolulu, HI, USA, 1982. [Google Scholar]
- Lense, G.H.E.; Parreiras, T.C.; Spalevic, V.; Avanzi, J.C.; Mincato, R.L. Soil Losses in the State of Rondônia, Brazil. Ciência Rural 2021, 51, e20200460. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Valladares, G.; Batistella, M. Mapping Soil Erosion Risk in Rondônia, Brazilian Amazonia: Using RUSLE, Remote Sensing and GIS. Land Degrad. Dev. 2004, 15, 499–512. [Google Scholar] [CrossRef]
- Alyson Bueno, F. Estimativa de Erosão Em Área de Desflorestamento Da Amazônia, Bacia Do Baixo Rio Acre. Rev. Geográfica De América Cent. 2024, 2, 247–262. [Google Scholar] [CrossRef]
- Ministerio del Ambiente del Gobierno de Peru. Marco Conceptual Para La Neutralidad En La Degradación de Las Tierras. 2020. Available online: https://cdn.www.gob.pe/uploads/document/file/859308/2020_06_16DipticoNDT72_2.pdf?v=1592417234 (accessed on 5 January 2025).
- Lense, G.H.E.; Avanzi, J.C.; Parreiras, T.C.; Mincato, R.L. Effects of Deforestation on Water Erosion Rates in the Amazon Region. Rev. Bras. Cienc. Agrar. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Aybar, C.; Lavado-Casimiro, W.; Huerta, A.; Fernández, C.; Vega, F.; Sabino, E.; Felipe-Obando, O. Uso Producto Grillado Pisco Precipitación Estudios Investigaciones Sistemas Operacionales Monitoreo Pronóstico Hidrometeorlógico; Ministerio del Ambiente: Lima, Peru, 2017.
- Coello Fababa, J.C.; Calle Montes, V. Efecto de la corriente en chorro de bajos niveles en la ocurrencia de precipitación en la selva del Peru. Ecol. Apl. 2021, 20, 147–159. [Google Scholar] [CrossRef]
- Paccini, L.; Espinoza, J.C.; Ronchail, J.; Segura, H. Intra-seasonal Rainfall Variability in the Amazon Basin Related to Large-scale Circulation Patterns: A Focus on Western Amazon–Andes Transition Region. Int. J. Climatol. 2018, 38, 2386–2399. [Google Scholar] [CrossRef]
- Ichikawa, M. Degradation and Loss of Forest Land and Land-use Changes in Sarawak, East Malaysia: A Study of Native Land Use by the Iban. Ecol. Res. 2007, 22, 403–413. [Google Scholar] [CrossRef]
- Flores, B.M.; Montoya, E.; Sakschewski, B.; Nascimento, N.; Staal, A.; Betts, R.A.; Levis, C.; Lapola, D.M.; Esquível-Muelbert, A.; Jakovac, C.; et al. Critical Transitions in the Amazon Forest System. Nature 2024, 626, 555–564. [Google Scholar] [CrossRef]
- Marcus, M.; Gutierrez-Velez, V.H.; Cronkleton, P. Land Use Change in Four Landscapes in the Peruvian Amazon; CIFOR: Bogor, Indonesia, 2020. [Google Scholar] [CrossRef]
- Del Aguila Feijoo, M.; Walker, T.R. Correspondence to the Editor Re: Artisanal and Small-Scale Gold Mining Impacts in Madre de Dios, Peru: Management and Mitigation Strategies. Environ. Int. 2018, 111, 133–134. [Google Scholar] [CrossRef]
- Alarcón Aguirre, G.; Canahuire Robles, R.R.; Guevara Duarez, F.M.; Rodríguez Achata, L.; Gallegos Chacón, L.E.; Garate-Quispe, J. Dynamics of Forest Loss in the Southeast of the Peruvian Amazon: A Case Study in Madre de Dios. Ecosistemas 2021, 30, 1–11. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning; U. S Department of Agriculture, A.H.N. 537., Ed.; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. Available online: https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf (accessed on 5 January 2025).
- Renard, K.; Foster, G.; Weesies, D.; Mccool, D.; Yoder, D. Predicting Soil Erosion by Water A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook, 703, Ed.; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997.
- Barbosa, W.C.d.S.; Guerra, A.J.T.; Valladares, G.S. Soil Erosion Modeling Using the Revised Universal Soil Loss Equation and a Geographic Information System in a Watershed in the Northeastern Brazilian Cerrado. Geosciences 2024, 14, 78. [Google Scholar] [CrossRef]
- Martins, S.G.; Silva, M.L.N.; Avanzi, J.C.; Curi, N.; Fonseca, S. Cover-Management Factor and Soil and Water Losses from Eucalyptus Cultivation and Atlantic Forest at the Coastal Plain in the Espírito Santo State, Brazil. Sci. For. 2010, 38, 517–526. [Google Scholar]
- Arias, M.P.; Saz, M.; Escolano, S. Estimation of Soil Erosion through the RUSLE Model. Case Study: Upper-Middle Basin of Mira River in Andean-Ecuador. Investig. Geogr. 2023, 207–230. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S. The Assessment of Water-Borne Erosion at Catchment Level Using GIS-Based RUSLE and Remote Sensing: A Review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A. Rainfall Erosivity in Brazil: A Review. Catena 2013, 100, 139–147. [Google Scholar] [CrossRef]
- Ramírez, F.; Hincapié, E.; Sadeghian, S. Erosividad de las lluvias en la zona cafetalera central y occidental del Departamento de Caldas. Cent. Nac. De Investig. De Café Cenicafé 2007, 58, 40–52. [Google Scholar]
- Angulo-Martínez, M.; Beguería, S. Análisis de La Erosividad de La Lluvia: Procesos, Índices y Fronteras de Conocimiento. Cuaternario Geomorfol. 2013, 27, 53–69. [Google Scholar]
- Calero Mosquera, D.; Martinez López, C.; Menjivar Flores, J. C Evaluation of Models to Estimate Rainfall Erosivity in Valle Del Cauca, Colombia. Acta Agron. 2021, 70, 198–210. [Google Scholar] [CrossRef]
- Castelán Vega, R.; López Teloxa, L.C.; Tamariz Flores, J.V.; Linares Fleites, G.; Cruz Montalvo, A. Erosión y Pérdida de Nutrientes En Diferentes Sistemas Agrícolas de Una Microcuenca En La Zona Periurbana de La Ciudad de Puebla, México. Terra Latinoam. 2017, 35, 229. [Google Scholar] [CrossRef]
- Arnoldous, H.M.J. Approximation of the Rainfall Factor in the USLE in Assessment of Erosion; Wiley: Chichester, UK, 1980; pp. 127–132. [Google Scholar]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.D.; Rodrigues, D.B.B.; Alves Sobrinho, T.; Panachuki, E. Estimativa Do Fator Topográfico Da USLE a Partir de Três Algoritmos. Ambiente E Agua—Interdiscip. J. Appl. Sci. 2010, 5, 217–225. [Google Scholar] [CrossRef]
- Lima, C.G.D.R.; Bacani, V.M.; Montanari, R.; Vick, E.P.; Ferreira, C.C.; Silva, E.R.D.S.D. Indirect methodologies for measuring soil erodibility and characterizing its spatial variability. Mercator 2021, 20, 2. [Google Scholar] [CrossRef]
- Silva, M.L.N.; Curi, N.; Lima, J.; Ferreira, M. Evaluation of Indirect Methods for Determination of Erodibility of Brazilian Latosols (Oxisols). Pesq. Agropec. Bras 2000, 35, 1207–1220. [Google Scholar] [CrossRef]
- Silva, A.M.D.; Silva, M.L.N.; Curi, N.; Avanzi, J.C.; Ferreira, M.M. Erosividade Da Chuva e Erodibilidade de Cambissolo e Latossolo Na Região de Lavras, Sul de Minas Gerais. Rev. Bras. Cienc. Solo 2009, 33, 1811–1820. [Google Scholar] [CrossRef]
- Nunes, J.G.; Campos, M.C.C.; Oliveira, F.P.; Nunes, J.C.; Macedo, J.A.B. Tolerância de Perda de Solo Por Erosão Na Região Sul Do Amazonas / Soil Loss Tolerance in Southern Amazon. Rev. Ambiência 2012, 8, 859–868. [Google Scholar] [CrossRef]
- Málaga, N.; Hergoualc’h, K.; Kapp, G.; Martius, C. Variation in Vegetation and Ecosystem Carbon Stock Due to the Conversion of Disturbed Forest to Oil Palm Plantation in Peruvian Amazonia. Ecosystems 2021, 24, 351–369. [Google Scholar] [CrossRef]
- Valdez Campos, J.; Delgado Monsalve, F.; Rodriguez Vasquez, K.I.; Garrido Pérez, S.; Tangoa Tuesta, E. Características Del Suelo y Su Influencia En El Crecimiento de Plantaciones de Eucaliptus urograndis En La Región Ucayali. Rev. De Innovación Y Transf. Product. 2022, 2, e003. [Google Scholar] [CrossRef]
- Oliveira, P.; Nearing, M.; Wendland, E. Orders of Magnitude Increase in Soil Erosion Associated with Land Use Change from Native to Cultivated Vegetation in a Brazilian Savannah Environment. Earth Surf. Process Landf. 2015, 40, 1524–1532. [Google Scholar] [CrossRef]
- Almagro, A.; Thomé, T.C.; Colman, C.B.; Pereira, R.B.; Marcato Junior, J.; Rodrigues, D.B.B.; Oliveira, P.T.S. Improving Cover and Management Factor (C-Factor) Estimation Using Remote Sensing Approaches for Tropical Regions. Int. Soil Water Conserv. Res. 2019, 7, 325–334. [Google Scholar] [CrossRef]
- Fournier, F. Climat et Érosion—La Relation Entre l’érosion Du Sol Parl’eau et Les Précipitations Atmosphériques; Presses Universitaires de France: Paris, France, 1960. [Google Scholar]
- Armijos, E.; Crave, A.; Vauchel, P.; Fraizy, P.; Santini, W.; Moquet, J.S.; Arevalo, N.; Carranza, J.; Guyot, J.L. Suspended Sediment Dynamics in the Amazon River of Peru. J. South Am. Earth Sci. 2013, 44, 75–84. [Google Scholar] [CrossRef]
- Espinoza, R.; Martinez, J.M.; Armijos, E.; Espinoza, J.C.; Filizola, N.; Dos Santos, A.; Willems, B.; Fraizy, P.; Santini, W.; Vauchel, P. Spatio-Temporal Monitoring of Suspended Sediments in the Solimões River (2000–2014). Comptes Rendus Géosci. 2017, 350, 4–12. [Google Scholar] [CrossRef]
- Mouyen, M.; Longuevergne, L.; Steer, P.; Crave, A.; Lemoine, J.M.; Save, H.; Robin, C. Assessing Modern River Sediment Discharge to the Ocean Using Satellite Gravimetry. Nat. Commun. 2018, 9, 3384. [Google Scholar] [CrossRef] [PubMed]
- Soudre, M.; Ricse, A.; Carbajal, Y.; Kobayashi, S.; Sabogal, C.; Alegre, J. Adaptability of Six Native Forest Tree Species to Degraded Lands in Pucallpa, Peruvian Amazon. In Rehabilitation of Degraded Tropical Forest Ecosystems: Workshop Proceedings; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2001; pp. 123–128. ISBN 979-8764-70-6. [Google Scholar]
- Kobayashi, S. Landscape Rehabilitation of Degraded Tropical Forest Ecosystems: Case Study of the CIFOR/Japan Project in Indonesia and Peru. For. Ecol. Manag. 2004, 201, 13–22. [Google Scholar] [CrossRef]
- Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. SOIL 2021, 7, 217–240. [Google Scholar] [CrossRef]
- QGIS Proyecto. Available online: http://www.qgis.org/ (accessed on 27 October 2024).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Aybar, C.; Fernández, C.; Huerta, A.; Lavado, W.; Vega, F.; Felipe-Obando, O. Construction of a High-Resolution Gridded Rainfall Dataset for Peru from 1981 to the Present Day. Hydrol. Sci. J. 2020, 65, 770–785. [Google Scholar] [CrossRef]
- Roque, Q. Validation of the Precipitation Data (1981–2016) of the PISCO v2.1 Product: Meteorological Station, Elevation, Seasonality of the Year, and Climatic Region in the Tumbes Basin, Peru. Manglar 2023, 20, 41–50. [Google Scholar] [CrossRef]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A Global Satellite-Assisted Precipitation Climatology. Earth Syst. Sci. Data 2015, 7, 275–287. [Google Scholar] [CrossRef]
- Guo, R.; Liu, Y. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications. Water 2016, 8, 281. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Williams, J.R. EPIC-Erosion/Productivity Impact Calculator 1. Model Documentation; U.S. Department of Agriculture, A.R.S. 1993, Ed.; United States Department of Agriculture: Washington, DC, USA, 1990; Volume 1. Available online: https://agrilife.org/epicapex/files/2015/05/EpicModelDocumentation.pdf (accessed on 5 January 2025).
- Ahaneku, I.E.; Ezinna, K.C.; Orji, F.N.; Alaneme, G.U.; Chukwudi, E.E. Spatial Distribution of Soil Erodibility Factors in Erosion-Prone Areas in Umuahia, Southeast, Nigeria. J. Eng. Res. 2024; in press. [Google Scholar] [CrossRef]
- Denton, O.A.; Aduramigba-Modupe, V.O.; Ojo, A.O.; Adeoyolanu, O.D.; Are, K.S.; Adelana, A.O.; Oyedele, A.O.; Adetayo, A.O.; Oke, A.O. Assessment of Spatial Variability and Mapping of Soil Properties for Sustainable Agricultural Production Using Geographic Information System Techniques (GIS). Cogent Food Agric. 2017, 3, 1279366. [Google Scholar] [CrossRef]
- NASA ASF Data Search Vertex: Images of Satelite Alos Palsar. Available online: https://search.asf.alaska.edu/#/ (accessed on 27 October 2024).
- Hydrologic Engineering Center. HEC-HMS Software, version 4.1; Hydrologic Engineering Center: Davis, CA, USA, 2024.
- Desmet, P.J.; Govers, G. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Soil Water Conserv. 1995, 51, 427–433. Available online: https://www.jswconline.org/content/51/5/427 (accessed on 5 January 2025).
- Proyecto MapBiomas Peru Colección 2.0 de Mapas Anuales de Cobertura y Uso Del Suelo Del Peru. Available online: https://peru.mapbiomas.org/herramientas/ (accessed on 27 January 2024).
- Rizeei, H.M.; Saharkhiz, M.A.; Pradhan, B.; Ahmad, N. Soil Erosion Prediction Based on Land Cover Dynamics at the Semenyih Watershed in Malaysia Using LTM and USLE Models. Geocarto Int. 2016, 31, 1158–1177. [Google Scholar] [CrossRef]
- Kamaludin, H.; Lihan, T.; Ali Rahman, Z.; Mustapha, M.A.; Idris, W.M.R.; Rahim, S.A. Integration of Remote Sensing, RUSLE and GIS to Model Potential Soil Loss and Sediment Yield (SY). Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 4567–4596. [Google Scholar] [CrossRef]
- Department of Irrigation and Drainage, (DID). Guideline for Erosion And Sediment Control in Malaysia; Ministry of Natural Resources and Environment Department of Irrigation and Drainage Malaysia: Putrajaya, Malaysia, 2010; ISBN 9789834186722.
- Ramadhan, S.; Hermansah; Rusman, B.; Yasin, S. Erosion Hazard Index [EHI] on Different Land Use in Sub-Watershed Kaos, Jambi. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 741. [Google Scholar] [CrossRef]
- Naharuddin, N.; Malik, A.; Ahyauddin, A. Soil Loss Estimation for Conservation Planning in the Dolago Watershed Central Sulawesi, Indonesia. J. Ecol. Eng. 2021, 22, 242–251. [Google Scholar] [CrossRef]
- Naharuddin. Konservasi Tanah Dan Air; Penerbit Media Sains Indonesia: Cimenyan, Indonesia, 2020; ISBN 78-623-95100-1-5. [Google Scholar]
- Guimarães, D.V.; Silva, M.L.N.; Curi, N.; Martins, R.P.; Melo Neto, J.O. Modeling of Soil Losses on a Yellow Argisol under Planted Forest. Floresta E Ambiente 2019, 26, e20160292. [Google Scholar] [CrossRef]
- Instituto Privado de Investigación sobre Cambio Climático. Informe de Estimación de la Erosión Hídrica del Suelo a Partir del Modelo USLE en la Vertiente del Pacífico. Santa Lucía Cotzumalguapa, Guatemala: Instituto Privado de Investigación sobre Cambio Climático. 2023. Available online: https://icc.org.gt/wp-content/uploads/2023/03/191.pdf (accessed on 5 January 2025).
- Ministerio de Transportes y Comunicaciones. Descarga de Datos Espaciales. Ministerio de Transportes y Comunicaciones. Available online: https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on 20 December 2023).
- Subedi, A.; Subedi, M.; Gautam, S.; Dahal, S. Temporal Variation of Soil Erosion of Kali Gandaki River. Bachelor’s Thesis, Department of Civil and Geomatics Engineering, Pashchimanchal Campus, Pokhara, Nepal, 2017. [Google Scholar] [CrossRef]
- Mannigel, A.R.; de Passos, M.; Moreti, D.; Rosa Medeiros, L. Fator Erodibilidade e Tolerância de Perda Dos Solos Do Estado de São Paulo. Acta Sci. Agron. 2008, 24, 1335. [Google Scholar] [CrossRef]
- Lobo, D.; Gabriels, D.; Ovalles, F.; Santibañez, F.; Moyano, M.C.; Aguilera, R.; Urra, N. Guía Metodológica Para La Elaboración Del Mapa de Zonas Áridas, Semiáridas y Subhúmedas Secas de América Latina y El Caribe; Programa Hidrológico Internacional de la UNESCO para América Latina y El Caribe., Ed.; 2006; ISBN 9290890886. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000228113.locale=en (accessed on 5 January 2025).
- Angulo, R.J. Relações Entre a Erodibilidade e Algumas Propriedades de Solos Brasileiros. Master’s Thesis, Universidade Federal do Paraná (UFPR), Curitiba, Brazil, 1978. Available online: https://acervodigital.ufpr.br/handle/1884/27471 (accessed on 5 January 2025).
- Martins, S.G.; Avanzi, J.C.; Silva, M.L.N.; Curi, N.; Fonseca, S. Erodibilidade Do Solo Nos Tabuleiros Costeiros. Pesqui. Agropecu. Trop. 2011, 41, 322–327. [Google Scholar] [CrossRef]
- Marques, J.J.G.S.M.; Curi, N.; Ferreira, M.M.; Lima, J.M.; Silva, M.L.N. Adequação de Métodos Indiretos Para Estimativa Da Erodibilidade de Solos Com Horizonte B Textural No Brasil. Ciência Do Solo 1997, 21, 447–456. [Google Scholar] [CrossRef]
- Abdu, A.; Laekemariam, F.; Gidago, G.; Kebede, A.; Getaneh, L. Variability Analysis of Soil Properties, Mapping, and Crop Test Responses in Southern Ethiopia. Heliyon 2023, 9, e14013. [Google Scholar] [CrossRef]
- Putra, A.; Triyatno, T.; Syarief, A.; Hermon, D. Penilaian Erosi Berdasarkan Metode USLE Dan Arahan Konservasi Pada DAS Air Dingin Bagian Hulu Kota Padang-Sumatera Barat. J. Geogr. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Franca Rocha, W.J.S.; Vasconcelos, R.N.; Costa, D.P.; Duverger, S.G.; Lobão, J.S.B.; Souza, D.T.M.; Herrmann, S.M.; Santos, N.A.; Franca Rocha, R.O.; Ferreira-Ferreira, J.; et al. Towards Uncovering Three Decades of LULC in the Brazilian Drylands: Caatinga Biome Dynamics (1985–2019). Land 2024, 13, 1250. [Google Scholar] [CrossRef]
- Franca Rocha, W.J.S.; Vasconcelos, R.N.; Duverger, S.G.; Costa, D.P.; Santos, N.A.; Franca Rocha, R.O.; de Santana, M.M.M.; Alencar, A.A.C.; Arruda, V.L.S.; da Silva, W.V.; et al. Mapping Burned Area in the Caatinga Biome: Employing Deep Learning Techniques. Fire 2024, 7, 437. [Google Scholar] [CrossRef]
- Palliyaguru, C.; Basnayake, V.; Makumbura, R.K.; Gunathilake, M.B.; Muttil, N.; Wimalasiri, E.M.; Rathnayake, U. Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka. Land 2022, 12, 107. [Google Scholar] [CrossRef]
- Teshome, D.S.; Moisa, M.B.; Gemeda, D.O.; You, S. Effect of Land Use-Land Cover Change on Soil Erosion and Sediment Yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia. Land 2022, 11, 2173. [Google Scholar] [CrossRef]
- Gutierrez, L.; Huerta, A.; Sabino, E.; Bourrel, L.; Frappart, F.; Lavado-Casimiro, W. Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020). Remote Sens. 2023, 15, 5432. [Google Scholar] [CrossRef]
- Valladares, G.S.; Bognola, I.A.; Gouvêa, J.R.F. Levantamento de Reconhecimento de Solos de Média Intensidade Da Gleba Machadinho, RO; Brasil. 2003. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/17128 (accessed on 5 January 2025).
- Zaroni, M.J.; Santos, H.G. Argissolos. Agência Embrapa de Informação Tecnológica (Embrapa). Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/solos-tropicais/sibcs/chave-do-sibcs/argissolos (accessed on 28 July 2024).
- Moreno-Seceña, J.C.; Nava-Tablada, M.E.; HErnández-Sánchez, M.I. Actitud de Cafeticultores Sobre El Manejo y Conservación de Suelos Del Sitio Ramsar, Cascadas de Texolo. Agric. Soc. Y Desarro. 2015, 12, 553. [Google Scholar] [CrossRef]
- Zalles, J.I. Turismo Basado En Naturaleza y Conservación Biológica: Decisiones de Uso de Suelo En Mindo/ Nature-Based Tourism and Biological Conservation: Land-Use Decisions in Mindo. Let. Verdes. Rev. Latinoam. De Estud. Socioambientales 2018, 178–198. [Google Scholar] [CrossRef]
- Collado, L.A.; Alegre, J. Farming Systems on Alluvial Soils and Their Impact on the Economy of the Shipibo-Konibo in Ucayali. Manglar 2020, 17, 193–201. [Google Scholar] [CrossRef]
- Reyes, M.; Robiglio, V. ¿Cómo Es La Deforestación Asociada a Las Carreteras En La Amazonía Peruana? Análisis y Recomendaciones En Tres Estudios de Caso Para Reducir Su Impacto; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2023; Available online: https://www.cifor-icraf.org/knowledge/publication/9062/ (accessed on 5 January 2025).
- Ichikawa, M.; Ricse, A.; Ugarte, J.; Kobayashi, S. Migration Patterns and Land Use by Immigrants under a Changing Frontier Society in the Peruvian Amazon. Tropics 2014, 23, 73–82. [Google Scholar] [CrossRef]
- Larrea-Gallegos, G.; Vázquez-Rowe, I.; Gallice, G. Life Cycle Assessment of the Construction of an Unpaved Road in an Undisturbed Tropical Rainforest Area in the Vicinity of Manu National Park, Peru. Int. J. Life Cycle Assess. 2017, 22, 1109–1124. [Google Scholar] [CrossRef]
- Andrieu, N.; Blundo-Canto, G.; Cruz-Garcia, G.S. Trade-Offs between Food Security and Forest Exploitation by Mestizo Households in Ucayali, Peruvian Amazon. Agric. Syst. 2019, 173, 64–77. [Google Scholar] [CrossRef]
- Blundo-Canto, G.; Cruz-Garcia, G.S.; Talsma, E.F.; Francesconi, W.; Labarta, R.; Sanchez-Choy, J.; Perez-Marulanda, L.; Paz-Garcia, P.; Quintero, M. Changes in Food Access by Mestizo Communities Associated with Deforestation and Agrobiodiversity Loss in Ucayali, Peruvian Amazon. Food Secur. 2020, 12, 637–658. [Google Scholar] [CrossRef]
- Porro, R.; Lopez-Feldman, A.W.; Vela-Alvarado, J.; QuiÑonez-Ruíz, L.P.; Seijas-Cardenas, Z.; Vásquez-Macedo, M.; Salazar-Arista, C.I.; NúÑez-Paredes, V.; Cardenas-Ruiz, J. Forest Use and Agriculture in Ucayali, Peruvian Amazon: Interactions Among Livelihood Strategies, Income and Environmental Outcomes. Tropics 2014, 23, 47–62. [Google Scholar] [CrossRef]
- Bennett, A.; Ravikumar, A.; McDermott, C.; Malhi, Y. Smallholder Oil Palm Production in the Peruvian Amazon: Rethinking the Promise of Associations and Partnerships for Economically Sustainable Livelihoods. Front. For. Glob. Chang. 2019, 2, 14. [Google Scholar] [CrossRef]
- Fearnside, P.M. An Ecological Analysis of Predominant Land Uses in the Brazilian Amazon. Environmentalist 1988, 8, 281–300. [Google Scholar] [CrossRef]
- Luizão, F.J.; Fearnside, P.M.; Cerri, C.E.P.; Lehmann, J. The Maintenance of Soil Fertility in Amazonian Managed Systems. In Amazonia and Global Change; Wiley Blackwell: Hoboken, NJ, USA, 2009; pp. 311–336. [Google Scholar] [CrossRef]
- Glave, M.; Vergara, K. ¿Agroindustria En La Amazonía?: Posibilidades Para El Desarrollo Inclusivo y Sostenible de La Palma Aceitera En El Peru; 2016; ISBN 978-9972-615-94-8. Available online: https://repositorio.grade.org.pe/bitstream/handle/20.500.12820/306/boletin33.pdf?sequence=1&isAllowed=y (accessed on 5 January 2025).
- Dammert, J.L. Promoción y Regulación Ambiental de La Palma Aceitera En El Peru: Aspectos Legales e Institucionales. 2016. Available online: https://repositorio.grade.org.pe/handle/20.500.12820/183 (accessed on 5 January 2025).
- Dammert J., L. Desafíos y Recomendaciones Ante La Expansión de La Palma Aceitera En La Amazonía Andina; 2014. Available online: https://pdf.usaid.gov/pdf_docs/PA00KK1B.pdf (accessed on 5 January 2025).
- Adiprasetyo, T.; Purnomo, B.; Handajaningsih, M.; Hidayat, H. The Usage of BIOM3G-Biofertilizer to Improve and Support Sustainability of Land System of Independent Oil Palm Smallholders. Int. J. Adv. Sci. Eng. Inf. Technol. 2014, 4, 345. [Google Scholar] [CrossRef]
- Cabrera, M.; Capparelli, M.V.; Ñacato-Ch, C.; Moulatlet, G.M.; López-Heras, I.; Díaz González, M.; Alvear-S, D.; Rico, A. Effects of Intensive Agriculture and Urbanization on Water Quality and Pesticide Risks in Freshwater Ecosystems of the Ecuadorian Amazon. Chemosphere 2023, 337, 139286. [Google Scholar] [CrossRef]
- Nelson, P.N.; Banabas, M.; Nake, S.; Goodrick, I.; Webb, M.J.; Gabriel, E. Soil Fertility Changes Following Conversion of Grassland to Oil Palm. Soil Res. 2014, 52, 698. [Google Scholar] [CrossRef]
Weather Station | Correlation Coefficient (r) | Type of Correlation | RMSE | Number of Observations (Months) | Correlation Coefficient Significance (p_Value) |
---|---|---|---|---|---|
‘El Maronal’ | 0.963 | very high | 31.88 | 283 | 1.8954 × 10−160 < 0.05 |
Las Palmeras de Ucayali | 0.766 | high | 75.58 | 249 | 2.3767 × 10−51 < 0.05 |
San Alejandro | 0.959 | very high | 33.824 | 240 | 3.3720 × 10−132 < 0.05 |
Tournavista | 0.964 | very high | 33.646 | 276 | 4.7058 × 10−158 < 0.05 |
IFM | Classification |
---|---|
0–60 | very low |
60–90 | low |
90–120 | moderate |
120–160 | high |
>160 | very high |
Fraction | Average (%) | Min. (%) | Max. (%) | Standard Deviation | CV (%) | K Correlation Coef. |
---|---|---|---|---|---|---|
Sand (%) | 43.41 | 11.12 | 84.29 | 13.28 | 31 | 0.03 |
Silt (%) | 29.75 | 7.14 | 52.37 | 8.46 | 28 | 0.46 |
Clay (%) | 26.84 | 7.1 | 60.38 | 10.28 | 38 | −0.42 |
MO (%) | 2.1 | 0.13 | 7.8 | 1.26 | 60 | −0.70 |
Textural Class | K Factor t ha h MJ−1 mm−1 | Bibliographic Source |
---|---|---|
Loamy sand | 0.008 | Angulo [75] |
Sandy loam | 0.034 | Tovara et al. 1985 cited by Silva et al. [37] |
Sandy clay loam | 0.007; 0.026 | Angulo [75]; Martins et al. [76] |
Sandy clay | 0.0004; 0.0115; 0.034 | Angulo [75]; Silva et al. [37] |
Clay | 0.002; 0.0045; 0.025 | Marques et al. [77]; Mondargo 1978 cited by [37]; Silva et al. [37] |
Parameter | Model | Nugget Co | Sill Co + C | A (Range) | RMSE | R2 | SDE (%) Co/Co + C |
---|---|---|---|---|---|---|---|
Sand | Sph | 209.84 | 164.347 | 13,931.168 | 4,976,180.515 | 0.007 | 128% |
Silt | Gau | 93.624 | 70.28 | 5742.932 | 1,021,137.486 | 0.005 | 133% |
Clay | Linear | 87.686 | 100.751 | 18,610.93 | 2,752,316.58 | 0.008 | 87% |
OM | Sph | 1.224 | 1.645 | 10,102.697 | 923.055 | 0.002 | 74% |
K Factor | Gau | 0 | 0 | 0 | 0 | −0.038 | --- |
Slope (%) | LS Factor |
---|---|
0–3.3 | 0–0.5 |
3.3–6.5 | 0.5–1 |
6.5–9 | 1–1.5 |
9–11 | 1.5–2 |
11–14 | 2–2.5 |
14–21 | 2.5–4 |
21–35 | 4–6.25 |
Ground Cover | Factor C | Bibliographic Source |
---|---|---|
Forest | 0.001 | Alyson Bueno [10]; ICC et al. [70]; Kamaludin et al. [64]; Naharuddin [67,68]; Oliveira et al. [41]; Putra et al. [79]; Rosee (1997) cited by Ei-Swaify [7]. |
Flooded forest | 0.001 | Kamaludin et al. [64]; Rosee (1997) cited by Ei-Swaify [7]; |
Oil Palm | 0.3 | Kamaludin et al. [64]; Ramadhan et al. [66]; Rosee (1997) cited by Ei-Swaify [7] |
Pasture | 0.1 | Almagro et al. [42]; Alyson Bueno [10]; ICC et al. [70]; Naharuddin [67,68]; Rosee (1997) cited by Ei-Swaify [7]. |
Agricultural mosaic | 0.4 | Rosee (1997) cited by Ei-Swaify [7]; DID [65]; Martins et al. [24]; Naharuddin [67,68]; |
Bare ground | 1 | Almagro et al. [42]; Kamaludin et al. [64]; Naharuddin [67,68]; Rose (1997) cited by Ei-Swaify [7] |
Roads and cities | 1 | Almagro et al. [42]; Ramadhan et al. [66]; Rose (1997) cited by Ei-Swaify [7]; Kamaludin et al. [64]; Naharuddin [67,68] |
Type of Coverage | 2016 Area (km2) | 2022 Area (km2) | Variation Area (km2) |
---|---|---|---|
Forest | 340.41 | 237.65 | −102.76 |
Flooded forest | 11.23 | 6.03 | −5.2 |
Pasture | 23.62 | 78.71 | +55.09 |
Agricultural mosaic | 447.78 | 422.35 | −25.43 |
Roads and Cities | 4.68 | 6.49 | +1.81 |
Bare ground | 0.31 | 11.69 | +11.38 |
Water | 1.34 | 1.75 | +0.41 |
Palm | 143.65 | 208.34 | +64.69 |
Total area | 972.99 | 972.99 | 266.36 * |
Erosion Category | Soil Loss in t ha−1 Year−1 | 2016 Area (km2) | 2022 Area (km2) | Change Areas (km2) | Rate (%) |
---|---|---|---|---|---|
Very low | 0–2.5 | 579.83 | 530.05 | −49.78 | −5.12% |
Low | 2.5–5 | 117.37 | 136.17 | 18.80 | 1.93% |
Moderately high | 5–10 | 155.73 | 165.48 | 9.75 | 1.00% |
Moderate | 10–15 | 59.96 | 66.75 | 6.79 | 0.70% |
High | 15–25 | 43.07 | 50.01 | 6.94 | 0.71% |
Very high | 25–225 | 17.02 | 24.51 | 7.50 | 0.77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ascencio-Sanchez, M.; Padilla-Castro, C.; Riveros-Lizana, C.; Hermoza-Espezúa, R.M.; Atalluz-Ganoza, D.; Solórzano-Acosta, R. Impacts of Land Use on Soil Erosion: RUSLE Analysis in a Sub-Basin of the Peruvian Amazon (2016–2022). Geosciences 2025, 15, 15. https://doi.org/10.3390/geosciences15010015
Ascencio-Sanchez M, Padilla-Castro C, Riveros-Lizana C, Hermoza-Espezúa RM, Atalluz-Ganoza D, Solórzano-Acosta R. Impacts of Land Use on Soil Erosion: RUSLE Analysis in a Sub-Basin of the Peruvian Amazon (2016–2022). Geosciences. 2025; 15(1):15. https://doi.org/10.3390/geosciences15010015
Chicago/Turabian StyleAscencio-Sanchez, Moises, Cesar Padilla-Castro, Christian Riveros-Lizana, Rosa María Hermoza-Espezúa, Dayan Atalluz-Ganoza, and Richard Solórzano-Acosta. 2025. "Impacts of Land Use on Soil Erosion: RUSLE Analysis in a Sub-Basin of the Peruvian Amazon (2016–2022)" Geosciences 15, no. 1: 15. https://doi.org/10.3390/geosciences15010015
APA StyleAscencio-Sanchez, M., Padilla-Castro, C., Riveros-Lizana, C., Hermoza-Espezúa, R. M., Atalluz-Ganoza, D., & Solórzano-Acosta, R. (2025). Impacts of Land Use on Soil Erosion: RUSLE Analysis in a Sub-Basin of the Peruvian Amazon (2016–2022). Geosciences, 15(1), 15. https://doi.org/10.3390/geosciences15010015