Risk Assessment of Nephrotoxic Metals in Soil and Water in Areas with High Prevalence of Chronic Kidney Disease in Panama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Water Analysis
2.3. Soil Analysis
2.3.1. Soil Analysis by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
2.3.2. Analysis of Soil Samples via X-ray Spectrometry
2.4. Calculation of the Non-Carcinogenic Risk Assessment
2.5. Total Risk Assessment
2.6. Mapping
3. Results and Discussion
3.1. Metals in Water
3.2. Metals in Soil
3.3. Geographical Distribution of Metals in Soil
3.4. Evaluation of Non-Carcinogenic Toxicological Risk
3.5. Blend Effect Evaluation, Total Risk, and Genotoxic Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Owolabi, M.O. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Li, P.K.-T.; Garcia-Garcia, G.; Lui, S.-F.; Andreoli, S.; Fung, W.W.-S.; Hradsky, A.; Kumaraswami, L.; Liakopoulos, V.; Rakhimova, Z.; Saadi, G.; et al. Kidney Health for Everyone Everywhere—From Prevention to Detection and Equitable Access to Care. Braz. J. Med. Biol. Res. 2020, 53, e9614. [Google Scholar] [CrossRef]
- Hernández, A.; Carrasquilla, C.; Castillo, I.; Barrios, K.; Bernal, D. Factores que influyen en el deterioro de la calidad de vida del paciente con nefropatía diabética en hemodiálisis. Enfoque 2024, 34, 57–77. [Google Scholar] [CrossRef]
- Ministerio de Salud de Panamá. Análisis de Situación de Salud con Énfasis en Macro Indicadores en la República de Panamá. 2018. Available online: https://www.minsa.gob.pa/informacion-salud/analisis-de-situacion-de-salud-asis (accessed on 8 August 2024).
- Correa-Rotter, R.; García-Trabanino, R. Mesoamerican Nephropathy. Semin. Nephrol. 2019, 39, 263–271. [Google Scholar] [CrossRef]
- Hoy, W.E.; Ordunez, P. Epidemia de Enfermedad Renal Crónica en Comunidades Agrícolas de Centroamérica. Definición de Casos, Base Metodológica y Enfoques Para la Vigilancia de Salud Pública; OPS: Washington, DC, USA, 2017; Available online: https://iris.paho.org/handle/10665.2/34157 (accessed on 8 September 2023).
- Rotter, R.C.; Trabanino, R.G. Nefropatía Mesoamericana: Una Nueva Enfermedad Renal Crónica de Alta Relevancia Regional. 2018. Available online: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=82350 (accessed on 8 August 2024).
- Valdés-Rodríguez, B.; Montero-Campos, V.; Siebecker, M.G. Causes of Chronic Kidney Disease of Non-Traditional Origin in Central America: An Approach Based on Medical Geology. Geosciences 2023, 13, 360. [Google Scholar] [CrossRef]
- Baker, A. Chronic Kidney Disease May Be “Black Lung of Climate Change”. TIME. 2023. Available online: https://time.com/6303020/chronic-kidney-disease-climate-change/ (accessed on 8 August 2024).
- Chapman, C.; Hess, H.; Lucas, R.; Glaser, J.; Saran, R.; Bragg-Gresham, J.; Wegman, D.; Hansson, E.; Minson, C.; Schlader, Z.J. Occupational Heat Exposure and the Risk of Chronic Kidney Disease of Nontraditional Origin in the United States. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R141–R151. [Google Scholar] [CrossRef]
- Lunyera, J.; Smith, S.R. Heavy Metal Nephropathy: Considerations for Exposure Analysis. Kidney Int. 2017, 92, 548–550. [Google Scholar] [CrossRef]
- Díaz García, J.D.; Arceo, E. Daño Renal Asociado a Metales Pesados: Trabajo de Revisión. Rev. Colomb. Nefrol. 2017, 5, 43–45. [Google Scholar] [CrossRef]
- Jalili, C.; Kazemi, M.; Cheng, H.; Mohammadi, H.; Babaei, A.; Taheri, E.; Moradi, S. Associations between Exposure to Heavy Metals and the Risk of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Crit. Rev. Toxicol. 2021, 51, 165–182. [Google Scholar] [CrossRef]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Kocadal, K.; Alkas, F.; Battal, D.; Saygi, S. Cellular Pathologies and Genotoxic Effects Arising Secondary to Heavy Metal Exposure: A Review. Hum. Exp. Toxicol. 2020, 39, 3–13. [Google Scholar] [CrossRef]
- Ortega-Moctezuma, O.; Zárate-Pérez, J.; Alba-Alba, C.M.; Jiménez-Hernández, M.; Ramírez-Girón, N. Enfermedad renal crónica asociada a la exposición a metales pesados y productos agroquímicos en Latinoamérica. Enferm. Nefrol. 2023, 26, 120–131. [Google Scholar] [CrossRef]
- Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, S.; et al. Chronic Interstitial Nephritis in Agricultural Communities is a Toxin-Induced Proximal Tubular Nephropathy. Kidney Int. 2020, 97, 350–369. [Google Scholar] [CrossRef]
- Soltani-Gerdefaramarzi, S.; Ghasemi, M.; Ghanbarian, B. Geogenic and Anthropogenic Sources Identification and Ecological Risk Assessment of Heavy Metals in the Urban Soil of Yazd, Central Iran. PLoS ONE 2021, 16, e0260418. [Google Scholar] [CrossRef]
- Redwood, S.D. The History of Mining and Mineral Exploration in Panama: From Pre-Columbian Gold Mining to Modern Copper Mining. BSGM 2020, 72, A180720. [Google Scholar] [CrossRef]
- Ministry of Health of Panama. Panama, Pan. Personal Communication Request for Official Data: National Statistics of Renal Disease. 2020. Available online: https://www.minsa.gob.pa/informacion-salud/estadisticas-de-salud (accessed on 8 August 2024).
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; APHA-AWWA-WEF: Washington, DC, USA, 2017. [Google Scholar]
- Oribhabor, C.B.; Anyanwu, C.A. Research Sampling and Sample Size Determination: A Practical Application. J. Educ. Res. 2019, 2, 47–56. Available online: https://www.researchgate.net/publication/336723498_Research_Sampling_and_Sample_Size_Determination_A_practical_Application (accessed on 8 August 2024).
- USEPA. United States Environmental Protection Agency, Method 3051A Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. 2007. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 8 August 2024).
- Zimmerman, A.J.; Gutierrez, D.G.; Campos, V.M.; Weindorf, D.C.; Deb, S.K.; Chacón, S.U.; Landrot, G.; Flores, N.G.G.; Siebecker, M.G. Arsenic Speciation in Titanium Dioxide (TiO2) Waste Produced via Drinking Water Filtration: Potential Environmental Implications for Soils, Sediments, and Human Health. Environ. Adv. 2021, 3, 100036. [Google Scholar] [CrossRef]
- Zimmerman, A.J.; Garcia Gutierrez, D.; Shaghaghi, N.; Sharma, A.; Deonarine, A.; Landrot, G.; Weindorf, D.C.; Siebecker, M.G. Mobility and Bioaccessibility of Arsenic (As) Bound to Titanium Dioxide (TiO2) Water Treatment Residuals (WTRs). Environ. Pollut. 2023, 326, 121468. [Google Scholar] [CrossRef]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2002. Available online: https://semspub.epa.gov/work/HQ/175878.pdf (accessed on 8 August 2024).
- Martín Olmedo, P.; Ma José Carroquiño, S.; Ordoñez, I.; Moya, J. La Evaluación de riesgos en salud. Guía Metodológica. Aplicaciones Prácticas de la Metodología de Evaluación de Riesgos en Salud por Exposición a Químicos. 2016. Available online: https://www.diba.cat/documents/467843/96195101/Evaluacion_riesgos_salud_Guia_metodologica.pdf/37481f80-8641-4a42-a647-eb7f24808d33 (accessed on 8 August 2024).
- IPDE. Geoservicios. Infraestructura Panameña de Datos Espaciales (IPDE). Available online: https://www.ipde.gob.pa/geoservicios/ (accessed on 6 February 2024).
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum, 4th ed + 1st add; World Health Organization: Geneva, Switzerland, 2017; Available online: https://iris.who.int/handle/10665/254637 (accessed on 8 August 2024).
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud Univ.—Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Mendoza, L.A.; Razo, L.M.D.; Barbier, O.; Saldaña, M.C.M.; González, F.J.A.; Juárez, F.J.; Sánchez, J.L.R. Potable Water Pollution with Heavy Metals, Arsenic, and Fluorides and Chronic Kidney Disease in Infant Population of Aguascalientes. In Water Resources in Mexico; Oswald Spring, Ú., Ed.; Hexagon Series on Human and Environmental Security and Peace; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7, pp. 231–238. [Google Scholar] [CrossRef]
- Ferrey, M.L.; Coreen Hamilton, M.; Backe, W.J.; Anderson, K.E. Pharmaceuticals and Other Anthropogenic Chemicals in Atmospheric Particulates and Precipitation. Sci. Total Environ. 2018, 612, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Pabón Guerrero, S.E.; Benítez Benítez, R.; Sarria Villa, R.A.; Gallo Corredor, J.A. Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre Cienc. E Ing. 2020, 14, 9–18. [Google Scholar] [CrossRef]
- Heredia, D. Metales Pesados y Salud. 2021. Available online: https://revcocmed.sld.cu/index.php/cocmed/article/view/3702/2024 (accessed on 18 June 2024).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2020. [CrossRef]
- Smith, D.; Solano, F.; Woodruff, L.G.; Cannon, W.F.; Ellefsen, K.J. Geochemical and Mineralogical Maps, with Interpretation, for Soils of the Conterminous United States: U.S. Geological Survey Scientific Investigations Report 2017-5118; Scientific Investigations Report; Scientific Investigations Report. 2019. Available online: https://pubs.usgs.gov/sir/2017/5118/sir20175118_geo.php (accessed on 8 August 2024).
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R. Abundance of Chemical Elements in the Continental Crust: A New Table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Mukherjee, A.B.; Kabata Pendias, A. Trace Elements from Soil to Human; Kabata-Pendias, A., Mukherjee, A.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Available online: https://www.sidalc.net/search/Record/KOHA-OAI-AGRO:15985/Description (accessed on 8 August 2024).
- US-EPA, Regional Screening Levels (RSLs) Generic Tables. United States Environmental Protection Agency (USEPA). Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 8 August 2024).
- Vodyanitskii, Y.N. Standards for the Contents of Heavy Metals in Soils of Some States. Ann. Agrar. Sci. 2016, 14, 257–263. [Google Scholar] [CrossRef]
- Raj, D.; Maiti, S.K. Sources, Bioaccumulation, Health Risks and Remediation of Potentially Toxic Metal(Loid)s (As, Cd, Cr, Pb and Hg): An Epitomised Review. Environ. Monit. Assess. 2020, 192, 108. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In Environmental Biotechnology: For Sustainable Future; Sobti, R.C., Arora, N.K., Kothari, R., Eds.; Springer: Singapore, 2019; pp. 103–125. [Google Scholar] [CrossRef]
- Isinkaralar, O.; Isinkaralar, K.; Ambade, B. Assessment of Societal Health Risks: Spatial Distribution and Potential Hazards of Toxic Metals in Street Dust Across Diverse Communities. Water Air Soil Pollut. 2024, 235, 302. [Google Scholar] [CrossRef]
- Orr, S.; Bridges, C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, C.; Glaser, J.; Rodríguez-Guzmán, J.; Weiss, I.; Lucas, R.; Peraza, S.; Da Silva, A.S.; Hansson, E.; Johnson, R.J.; Hogstedt, C.; et al. Chronic Kidney Disease of Non-Traditional Origin in Mesoamerica: A Disease Primarily Driven by Occupational Heat Stress. Rev. Panam. Salud Pública 2020, 44, e15. [Google Scholar] [CrossRef]
- Menz, J.; Götz, M.E.; Gündel, U.; Gürtler, R.; Herrmann, K.; Hessel-Pras, S.; Kneuer, C.; Kolrep, F.; Nitzsche, D.; Pabel, U.; et al. Genotoxicity Assessment: Opportunities, Challenges and Perspectives for Quantitative Evaluations of Dose–Response Data. Arch. Toxicol. 2023, 97, 2303–2328. [Google Scholar] [CrossRef]
- European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment: Chapter R.7a: Endpoint Specific Guidance; Publications Office: Luxembourg, 2017. [Google Scholar]
- EFSA Scientific Committee; Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; et al. Clarification of Some Aspects Related to Genotoxicity Assessment. EFS2 2017, 15, e05113. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development. Overview of the Set of OECD Genetic Toxicology Test Guidelines and Updates Performed in 2014–2015; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations. Chapter 4: Hazard Identification and Characterization: Toxicological and Human Studies. Section 4.5 Genotoxicity. Environmental Health Criteria 240: Principles and Methods for the Risk Assessment of Chemicals in Food. World Health Organization. 2020. Available online: https://www.who.int/docs/default-source/food-safety/publications/section4-5-genotoxicity.pdf (accessed on 8 August 2024).
Season | Community | Arsenic † µg L−1 | Mercury † µg L−1 | Cadmium † µg L−1 | Lead † µg L−1 | Vanadium ‡ µg L−1 | Silicon ‡ mg L−1 |
---|---|---|---|---|---|---|---|
Winter 2021 | Santa Rita | <0.10 | 0.12 ± 0.02 | <0.10 | 9.63 ± 0.23 | 1.69 ± 0.08 | 47.0 ± 2.1 |
Tulú | <0.10 | 0.22 ± 0.02 | <0.10 | 2.32 ± 0.20 | 2.73 ± 0.08 | 17.6 ± 0.8 | |
Coclé | 0.20 ± 0.04 | 0.12 ± 0.02 | <0.10 | 21.2 ± 0.41 | 0.91 ± 0.08 | 39.1 ± 1.8 | |
Nata | 0.31 ± 0.04 | 0.07 ± 0.02 | <0.10 | 5.91 ± 0.19 | 9.23 ± 0.12 | 43.3 ± 2.0 | |
El Caño | 0.63 ± 0.04 | 0.06 ± 0.02 | <0.10 | 3.29 ± 0.17 | 12.8 ± 0.2 | 28.7 ± 1.3 | |
Summer 2021 | Santa Rita | 1.15 ± 0.06 | <0.03 | <0.10 | <0.30 | 1.15 ± 0.06 | 11.1 ± 0.55 |
Tulú | <0.10 | <0.03 | <0.10 | <0.30 | 1.01 ± 0.05 | 10.60 ± 0.53 | |
Coclé | 0.52 ± 0.03 | <0.03 | <0.10 | <0.30 | 2.02 ± 0.10 | 30.3 ± 1.5 | |
Nata | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 7.93 ± 0.40 | |
El Caño | 0.41 ± 0.02 | <0.03 | <0.10 | <0.30 | 1.78 ± 0.09 | 10.20 ± 0.51 | |
Winter 2022 | Santa Rita | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 1.70 ± 0.3 |
Tulú | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 17.0 ± 2.0 | |
Coclé | 7.70 ± 0.9 | <0.03 | 2.1 ± 0.6 | 33.0 ± 4.0 | 11.0 ± 4.0 | 4.40 ± 0.3 | |
Nata | 5.30 ± 0.60 | <0.03 | <0.10 | <0.30 | <0.30 | 14.5 ± 0.4 | |
El Caño | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 7.00 ± 0.3 | |
Summer 2022 | Santa Rita | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 13.6 ± 0.4 |
Tulú | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 20.0 ± 2.0 | |
Coclé | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 4.6 ± 0.3 | |
Nata | 6.0 ± 0.7 | <0.03 | <0.10 | <0.30 | <0.30 | 4.6 ± 0.3 | |
El Caño | <0.10 | <0.03 | <0.10 | <0.30 | <0.30 | 0.8 ± 0.3 |
Metal | Minimum mg kg−1 | Maximum mg kg−1 | Mean mg kg−1 | Median mg kg−1 | SD | Unc | 95th Percentile * | GVH ** | GVC *** | MAC **** | EPA ***** |
---|---|---|---|---|---|---|---|---|---|---|---|
Arsenic | 1.86 | 106.01 | 11.81 | 4.99 | 20.80 | 0.02 | 13.1 | 50 | 1.80 | 15–20 | 0.68 |
Lead | 5.01 | 25.01 | 8.31 | 6.00 | 4.58 | 0.02 | 40.2 | 200 | 12.5 | 20–300 | 400 |
Chromium | 1.25 | 54.10 | 7.26 | 4.48 | 8.31 | 0.02 | 74.0 | 200 | 100 | 50–200 | 0.3 |
Vanadium | 12.3 | 440.01 | 69.21 | 41.6 | 74.30 | 0.02 | 139 | 150 | 135 | --- | 390 |
Rubidium | 5.01 | 185.01 | 45.80 | 28.0 | 46.01 | 1–7 | 122 | --- | 90 | --- | --- |
Nickel | 6.0 | 44.0 | 8.0 | 8.0 | 8.76 | 2–6 | 39.9 | 100 | 75 | 20 | --- |
Metal Concentration | Parameter | Arsenic | Lead | Chromium | |||
---|---|---|---|---|---|---|---|
Child | Adult | Child | Adult | Child | Adult | ||
Average | HQ Ingestion | 0.39 | 0.07 | 0.06 | 0.01 | 0.03 | 0.01 |
HQ Inhalation | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
HQ Dermal | 0.09 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | |
HI Total | 0.40 | 0.08 | 0.06 | 0.01 | 0.03 | 0.01 | |
Maximum | HQ Ingestion | 3.50 | 0.63 | 0.18 | 0.03 | 0.18 | 0.03 |
HQ Inhalation | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | |
HQ Dermal | 0.05 | 0.11 | 0.01 | 0.01 | 0.00 | 0.00 | |
HI Total | 3.60 | 0.74 | 0.18 | 0.04 | 0.18 | 0.04 |
Age Group | Metal | Delivered Dose (Ds) | Hazard Quotient (HQ) | Combined Hazard Index (HIc) |
---|---|---|---|---|
Child | Arsenic | 1.2 × 10−6 | 1.09 × 10−5 | 8.77 × 10−5 |
Lead | 2.82 × 10−7 | 2.57 × 10−6 | ||
Chromium | 6.11 × 10−7 | 5.55 × 10−6 | ||
Vanadium | 4.97 × 10−6 | 4.52 × 10−5 | ||
Rubidium | 2.09 × 10−6 | 1.90 × 10−5 | ||
Nickel | 4.97 × 10−7 | 4.52 × 10−6 | ||
Adult | Arsenic | 2.39 × 10−7 | 2.18 × 10−6 | 1.75 × 10−5 |
Lead | 5.65 × 10−8 | 5.13 × 10−7 | ||
Chromium | 1.22 × 10−7 | 1.11 × 10−6 | ||
Vanadium | 9.94 × 10−7 | 9.04 × 10−6 | ||
Rubidium | 4.18 × 10−7 | 3.80 × 10−6 | ||
Nickel | 9.94 × 10−8 | 9.04 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdés-Rodríguez, B.; Montero-Campos, V.; Siebecker, M.G.; Zimmerman, A.J.; Vega-Araya, M.; Ulate Chacón, S.P.; Rovira, D. Risk Assessment of Nephrotoxic Metals in Soil and Water in Areas with High Prevalence of Chronic Kidney Disease in Panama. Geosciences 2024, 14, 221. https://doi.org/10.3390/geosciences14080221
Valdés-Rodríguez B, Montero-Campos V, Siebecker MG, Zimmerman AJ, Vega-Araya M, Ulate Chacón SP, Rovira D. Risk Assessment of Nephrotoxic Metals in Soil and Water in Areas with High Prevalence of Chronic Kidney Disease in Panama. Geosciences. 2024; 14(8):221. https://doi.org/10.3390/geosciences14080221
Chicago/Turabian StyleValdés-Rodríguez, Benedicto, Virginia Montero-Campos, Matthew G. Siebecker, Amanda Jo Zimmerman, Mauricio Vega-Araya, Sharon P. Ulate Chacón, and Dalys Rovira. 2024. "Risk Assessment of Nephrotoxic Metals in Soil and Water in Areas with High Prevalence of Chronic Kidney Disease in Panama" Geosciences 14, no. 8: 221. https://doi.org/10.3390/geosciences14080221
APA StyleValdés-Rodríguez, B., Montero-Campos, V., Siebecker, M. G., Zimmerman, A. J., Vega-Araya, M., Ulate Chacón, S. P., & Rovira, D. (2024). Risk Assessment of Nephrotoxic Metals in Soil and Water in Areas with High Prevalence of Chronic Kidney Disease in Panama. Geosciences, 14(8), 221. https://doi.org/10.3390/geosciences14080221