Holocene Deformations at the Po Plain–Southern Alps Transition (Lake Maggiore, Italy): Inferences on Glacially vs. Tectonic-Induced Origin
Abstract
:1. Introduction
2. Geological Setting
2.1. Geomorphology
2.2. Tectonic Setting
3. Methodology
3.1. Digital Outcrop Model Development
3.2. Digital Outcrop Model Mapping
4. Results
4.1. Stratigraphy
4.2. Deformation Structures
- At the eastern corners (section limit B), the bedding has a mean orientation of 255° N/46° (dip direction/dip);
- At the corners in the middle of the north wall (section limits B′ and B″), the bedding shows a mean orientation of 216° N/32°;
- At the corner between the north and west walls (section limit B‴), the bedding shows a mean orientation of 194° N/44°.
4.3. Radiocarbon Dating
5. Interpretation and Discussion
5.1. Glaciotectonic Deformation Structures
5.2. Gravity-Driven Deformation
5.3. Tectonic Structures
6. Conclusions
- A general tilting of about of 30–60° towards S to WSW;
- A series of SSDSs, such as slumping and funnel-shaped structures;
- Three sets of faults (the two most frequent dip about 30° toward 346° N and 129° N) that cross-cut the previous deformation structures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zieliński, T.; Van Loon, A.J. Characteristics and genesis of moraine-derived flowtill varieties. Sediment. Geol. 1996, 101, 119–143. [Google Scholar] [CrossRef]
- Van Loon, A.J. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos 2009, 1270, 3–55. [Google Scholar]
- Owen, G.; Moretti, M.; Alfaro, P. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sediment. Geol. 2011, 235, 133–140. [Google Scholar] [CrossRef]
- Mueller, P.; Tamburelli, S.; Menegoni, N.; Perozzo, M.; Amadori, C.; Crispini, L.; Federico, L.; Seno, S.; Maino, M. Soft-sediment deformation structures in the Finale Ligure Basin mixed carbonate-siliciclastic coastal wedge: Evidence for Miocene seismicity on the Liguro-Provençal Basin margin. Mar. Pet. Geol. 2023; in print. [Google Scholar]
- Mills, P.C. Genesis and diagnostic value of soft-sediment deformation structures—A review. Sediment. Geol. 1983, 35, 83–104. [Google Scholar] [CrossRef]
- Seilacher, A. Fault-graded beds interpreted as seismites. Sedimentology 1969, 13, 155–159. [Google Scholar] [CrossRef]
- Obermeier, S.F. Use of liquefaction induced features for paleoseismic analysis—An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng. Geol. 1996, 44, 1–76. [Google Scholar] [CrossRef]
- Molina, J.M.; Alfaro, P.; Moretti, M.; Soria, J.M. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova 1998, 10, 145–150. [Google Scholar] [CrossRef]
- Fossen, H. Deformation bands formed during soft-sediment deformation: Observations from SE Utah. Mar. Pet. Geol. 2010, 27, 215–222. [Google Scholar] [CrossRef]
- Moretti, M.; Sabato, L. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant‘Arcangelo Basin (Southern Italy): Seismic shock vs. overloading. Sediment. Geol. 2007, 196, 31–45. [Google Scholar] [CrossRef]
- Brandes, C.; Winsemann, J. Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. Int. J. Earth Sci. 2013, 102, 2255–2274. [Google Scholar] [CrossRef]
- Shanmugam, G. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems. J. Palaeogeogr. 2017, 6, 251–320. [Google Scholar] [CrossRef]
- Van Loon, A.J.; Pisarska-Jamroży, M.; Woronko, B. Sedimentological distinction in glaciogenic sediments between load casts induced by periglacial processes from those induced by seismic shocks. Geol. Q. 2020, 64, 626–640. [Google Scholar] [CrossRef]
- Varejão, F.G.; Warren, L.V.; Simões, M.G.; Cerri, R.I.; Alessandretti, L.; Santos, M.G.M.D.; Assine, M.L. Evaluation of distinct soft-sediment deformation triggers in mixed carbonate-siliciclastic systems: Lessons from the Brazilian Pre-Salt analogue Crato Formation (Araripe Basin, NE Brazil). Mar. Pet. Geol. 2022, 140, 105673. [Google Scholar] [CrossRef]
- Van Vliet-Lanoë, B.; Magyari, A.; Meilliez, F. Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Glob. Planet. Chang. 2004, 43, 103–127. [Google Scholar] [CrossRef]
- Gehrmann, A.; Harding, C. Geomorphological mapping and spatial analyses of an Upper Weichselian glacitectonic complex based on LiDAR data, Jasmund Peninsula (NE Rügen), Germany. Geosciences 2018, 8, 208. [Google Scholar] [CrossRef]
- Müller, K.; Winsemann, J.; Pisarska-Jamroży, M.; Lege, T.; Spies, T.; Brandes, C. The Challenge to Distinguish Soft-Sediment Deformation Structures (SSDS) Formed by Glaciotectonic, Periglacial and Seismic Processes in a Formerly Glaciated Area: A Review and Synthesis. In Glacially-Triggered Faulting; Steffen, H., Olesen, O., Sutinen, R., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 67–88. [Google Scholar] [CrossRef]
- Fossen, H.; Schultz, R.A.; Shipton, Z.K.; Mair, K. Deformation bands in sandstone: A review. J. Geol. Soc. 2007, 164, 755–769. [Google Scholar] [CrossRef]
- Ballas, G.; Fossen, H.; Soliva, R. Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. J. Struct. Geol. 2015, 76, 1–21. [Google Scholar] [CrossRef]
- Cashman, S.M.; Baldwin, J.N.; Cashman, K.V.; Swanson, K.; Crawford, R. Microstructures developed by coseismic and aseismic faulting in near-surface sediments, San Andreas fault, California. Geology 2007, 35, 611–614. [Google Scholar] [CrossRef]
- Brandes, C.; Steffen, H.; Sandersen, P.B.E.; Wu, P.; Winsemann, J. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: Implications for neotectonics and Lateglacial fault-bound basin formation. Quat. Sci. Rev. 2018, 189, 149–168. [Google Scholar] [CrossRef]
- Brandes, C.; Igel, J.; Loewer, M.; Tanner, D.C.; Lang, J.; Müller, K.; Winsemann, J. Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: Implications for paleoseismological studies. Sediment. Geol. 2018, 367, 135–145. [Google Scholar] [CrossRef]
- Brandes, C.; Tanner, D.C.; Fossen, H.; Halisch, M.; Müller, K. Disaggregation bands as an indicator for slow creep activity on blind faults. Commun. Earth Environ. 2022, 3, 99. [Google Scholar] [CrossRef]
- Bertran, P.; Font, M.; Giret, A.; Manchuel, K.; Sicilia, D. Experimental soft-sediment deformation caused by fluidization and intrusive ice melt in sand. Sedimentology 2019, 66, 1102–1117. [Google Scholar] [CrossRef]
- Moran, S.R. Glaciotectonic structures in drift. In Till: A symposium; Ohio State University Press: Columbus, OH, USA, 1971; pp. 127–148. ISBN 9780814201480. Available online: http://hdl.handle.net/1811/81923 (accessed on 1 June 2023).
- Croot, D.G. Glacio-tectonic structures: A mesoscale model of thin-skinned thrust sheets? J. Struct. Geol. 1987, 9, 797–808. [Google Scholar] [CrossRef]
- Pedersen, S.A.S. Superimposed deformation in glaciotectonics. Bull. Geol. Soc. Den. 2000, 46, 125–144. [Google Scholar] [CrossRef]
- Benediktsson, Í.Ö. End Moraines and Ice Marginal Processes of Surge-Type Glaciers. Brúarjökull and Eyjabakkajökull, Iceland. Ph.D. Thesis, University of Iceland, Reykjavík, Iceland, 2010. Available online: http://hdl.handle.net/1946/7731 (accessed on 1 June 2023).
- Pedersen, S.A.S. Architecture of glaciotectonic complexes. Geosciences 2014, 4, 269–296. [Google Scholar] [CrossRef]
- Włodarski, W. Geometry and kinematics of glaciotectonic deformation superimposed on the Cenozoic fault-tectonic framework in the central Polish Lowlands. Quat. Sci. Rev. 2014, 94, 44–61. [Google Scholar] [CrossRef]
- Widera, M. Tectonic and glaciotectonic deformations in the areas of Polish lignite deposits. Civ. Environ. Eng. Rep. 2018, 28, 182–193. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Giles, K.A. Foreland basin systems. Basin Res. 1996, 8, 105–123. [Google Scholar] [CrossRef]
- Naylor, M.; Sinclair, H.D. Pro-vs. retro-foreland basins. Basin Res. 2008, 20, 285–303. [Google Scholar] [CrossRef]
- Vail, P.R.; Mitchum, R.M.; Thompson, S.I.I.I. Seismic stratigraphy and global changes of sea level, part 3: Relative changes of sea level from coastal onlap. In Seismic Stratigraphy—Applications to Hydrocarbon Exploration; Charles, E., Ed.; Payton AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS: Tulsa, OK, USA, 1977. [Google Scholar] [CrossRef]
- Castellarin, A.; Vai, G.B. Southalpine versus Po plain Apenninic arcs. In Developments in Geotectonics; Wezel, F.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1986; Volume 21, pp. 253–280. [Google Scholar] [CrossRef]
- Miall, A.D. Cycles with Million-Year Episodicities. In The Geology of Stratigraphic Sequences; Springer: Berlin, Germany, 1997; pp. 99–138. [Google Scholar]
- Hinderer, M. Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodin. Acta 2001, 14, 231–263. [Google Scholar] [CrossRef]
- Garzanti, E.; Vezzoli, G.; Andò, S. Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, northern Italy). Earth-Sci. Rev. 2011, 105, 25–48. [Google Scholar] [CrossRef]
- Amadori, C.; Garcia-Castellanos, D.; Toscani, G.; Sternai, P.; Fantoni, R.; Ghielmi, M.; Di Giulio, A. Restored topography of the Po Plain-Northern Adriatic region during the Messinian base-level drop—Implications for the physiography and compartmentalization of the palaeo-Mediterranean basin. Basin Res. 2018, 30, 1247–1263. [Google Scholar] [CrossRef]
- Amadori, C.; Toscani, G.; Di Giulio, A.; Maesano, F.E.; D’Ambrogi, C.; Ghielmi, M.; Fantoni, R. From cylindrical to non-cylindrical foreland basin: Pliocene–Pleistocene evolution of the Po Plain–Northern Adriatic basin (Italy). Basin Res. 2019, 31, 991–1015. [Google Scholar] [CrossRef]
- Toscani, G.; Bonini, L.; Ahmad, M.I.; Bucci, D.D.; Giulio, A.D.; Seno, S.; Galuppo, C. Opposite verging chains sharing the same foreland: Kinematics and interactions through analogue models (Central Po Plain, Italy). Tectonophysics 2014, 633, 268–282. [Google Scholar] [CrossRef]
- Pieri, M.; Groppi, G. Subsurface Geological Structure of the Po Plain, Italy, CNR Publicazione No. 414 del Progetto Finalizzato Geodinamico; Consiglio Nazionale delle Ricerche: Roma, Italy, 1981; pp. 1–11. [Google Scholar]
- Muttoni, G.; Carcano, C.; Garzanti, E.; Ghielmi, M.; Piccin, A.; Pini, R.; Rogledi, S.; Sciunnach, D. Onset of major Pleistocene glaciations in the Alps. Geology 2003, 31, 989–992. [Google Scholar] [CrossRef]
- Guzzetti, F.; Marchetti, M.; Reichenbach, P. Large alluvial fans in the north-central Po Plain (Northern Italy). Geomorphology 1997, 18, 119–136. [Google Scholar] [CrossRef]
- Marchetti, M. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities. Geomorphology 2002, 44, 361–373. [Google Scholar] [CrossRef]
- Fontana, A.; Mozzi, P.; Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sediment. Geol. 2014, 301, 150–171. [Google Scholar] [CrossRef]
- Forno, M.G.; Gianotti, F.; Storti, U. Geomorphology of the Po fluvial terraces in Turin deduced by new subsoil data (NW Italy). Water 2022, 14, 2872. [Google Scholar] [CrossRef]
- Scaramuzzo, E.; Livio, F.A.; Granado, P.; Di Capua, A.; Bitonte, R. Anatomy and kinematic evolution of an ancient passive margin involved into an orogenic wedge (Western Southern Alps, Varese area, Italy and Switzerland). Swiss J. Geosci. 2022, 115, 4. [Google Scholar] [CrossRef]
- Bresciani, I.; Perotti, C.R. An active deformation structure in the Po Plain (N Italy): The Romanengo anticline. Tectonics 2014, 33, 2059–2076. [Google Scholar] [CrossRef]
- Fantoni, R.; Bersezio, R.; Forcella, F. Alpine structure and deformation chronology at the Southern Alps-Po Plain border in Lombardy. Boll. Soc. Geol. Ital. 2004, 123, 463–476. [Google Scholar]
- Michetti, A.; Giardina, F.; Livio, F.; Mueller, K.; Serva, L.; Sileo, G.; Vittori, E.; Devoti, R.; Riguzzi, F.; Carcano, C.; et al. Active compressional tectonics, Quaternary capable faults, and the seismic landscape of the Po Plain (N Italy). Ann. Geophys. 2012, 55, 969–1001. [Google Scholar] [CrossRef]
- Devoti, R.; Esposito, A.; Pietrantonio, G.; Pisani, A.R.; Riguzzi, F. Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet. Sci. Lett. 2011, 311, 230–241. [Google Scholar] [CrossRef]
- Farolfi, G.; Bianchini, S.; Casagli, N. Integration of GNSS and Satellite InSAR Data: Derivation of Fine-Scale Vertical Surface Motion Maps of Po Plain, Northern Apennines, and Southern Alps, Italy. IEEE Trans. Geosci. Remote Sens. 2018, 57, 319–328. [Google Scholar] [CrossRef]
- Zanchi, A.; Ravazzi, C.; Cavallin, A.; Deaddis, M.; De Amicis, M.; Arosio, T.; Marchetti, M.; Vezzoli, G. Interplay of Holocene surface faulting and climate in the Central Po Plain, Italy. Quat. Res. 2022, 107, 71–86. [Google Scholar] [CrossRef]
- Desio, A. I Rilievi Isolati Della Pianura Lombarda ed i Movimenti Tettonici del Quaternario. Rend. Ist. Lom. Acc. Sci. Lett. 1965, 99, 881–894. [Google Scholar]
- Livio, F.; Berlusconi, A.; Michetti, A.M.; Sileo, G.; Zerboni, A.; Trombino, L.; Cremaschi, M.; Mueller, K.; Vittori, E.; Carcano, C.; et al. Active fault-related folding in the epicentral area of the December 25, 1222 (Io = IXMCS) Brescia earthquake (Northern Italy): Seismotectonic implications. Tectonophysics 2009, 476, 320–335. [Google Scholar] [CrossRef]
- Zuffetti, C.; Bersezio, R.; Contini, D.; Petrizzo, M.R. Geology of the San Colombano hill, a Quaternary isolated tectonic relief in the Po Plain of Lombardy (Northern Italy). J. Maps 2018, 14, 199–211. [Google Scholar] [CrossRef]
- Zuffetti, C.; Bersezio, R. Morphostructural evidence of late quaternary tectonics at the Po Plain-Northern Apennines border (Lombardy, Italy). Geomorphology 2020, 364, 107245. [Google Scholar] [CrossRef]
- Bernoulli, D.; Bertotti, G.; Zingg, A. Northward thrusting of the Gonfolite Lombarda (South-Alpine Molasse) onto the Mesozoic sequence of the Lombardian Alps: Implications for the deformation history of the Southern Alps. Eclogae Geol. Helv. 1989, 82, 841–856. [Google Scholar] [CrossRef]
- Di Giulio, A.; Carrapa, B.; Fantoni, R.; Gorla, L.; Valdisturlo, A. Middle Eocene to Early Miocene sedimentary evolution of the western Lombardian segment of the South Alpine foredeep (Italy). Int. J. Earth Sci. 2001, 90, 534–548. [Google Scholar] [CrossRef]
- Burrato, P.; Ciucci, F.; Valensise, G. An inventory of river anomalies in the Po Plain, Northern Italy: Evidence for active blind thrust faulting. Ann. Geophys. 2003, 46, 3459. Available online: http://hdl.handle.net/2122/993 (accessed on 1 July 2023). [CrossRef]
- Maesano, F.E.; D’Ambrogi, C.; Burrato, P.; Toscani, G. Slip-rates of blind thrusts in slow deforming areas: Examples from the Po Plain (Italy). Tectonophysics 2015, 643, 8–25. [Google Scholar] [CrossRef]
- Vannoli, P.; Burrato, P.; Valensise, G. The seismotectonics of the Po Plain (northern Italy): Tectonic diversity in a blind faulting domain. Pure Appl. Geophys. 2015, 172, 1105–1142. [Google Scholar] [CrossRef]
- Kamleitner, S.; Ivy-Ochs, S.; Monegato, G.; Gianotti, F.; Akçar, N.; Vockenhuber, C.; Christl, M.; Synal, H.A. The ticino-toce glacier system (Swiss-Italian Alps) in the framework of the alpine last glacial maximum. Quat. Sci. Rev. 2022, 279, 107400. [Google Scholar] [CrossRef]
- Bini, A.; Cita, M.B.; Gaetani, M. Southern Alpine lakes—Hypothesis of an erosional origin related to the Messinian entrenchment. Mar. Geol. 1978, 27, 271–288. [Google Scholar] [CrossRef]
- Finckh, P.; Kelts, K.; Lambert, A. Seismic stratigraphy and bedrock forms in perialpine lakes. Geol. Soc. Am. Bull. 1984, 95, 1118–1128. [Google Scholar] [CrossRef]
- Preusser, F.; Blei, A.; Graf, H.; Schlüchter, C. Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: Methodological aspects and stratigraphical conclusions. Boreas 2007, 36, 130–142. [Google Scholar] [CrossRef]
- Cazzini, F.F.; Amadori, C.; Bosino, A.; Fantoni, R. New seismic evidence of the Messinian paleomorphology beneath Lake Maggiore area (Italy). Ital. J. Geosci. 2020, 139, 195–211. [Google Scholar] [CrossRef]
- Bini, A. Geologia del Quaternario e geomorfologia della Piana di Como. In Carta Archeologica della Lombardia; Uboldi, A., Ed.; Museo Civico Archeologico P. Giovio: Como, Italy, 1993; Volume III. [Google Scholar]
- Montrasio, A.; Bigioggero, B.; Maino, A.; Cirese, E.; Tacchiao, D. Carta Geologica della Lombardia: Scala, Vol. 1, 250.000; Servizio Geologico Nazionale: Roma, Italy, 1990; Available online: https://www.cartografia.servizirl.it/cargviewer/ (accessed on 1 July 2023).
- Bini, A.; Bussolini, C.; Turri, S.; Zuccoli, L. Carta geologica alla scala 1:100.000 dell’anfiteatro morenico del Verbano. Sibrium 2014, 28, 24–81. [Google Scholar]
- Piana, F.; Fioraso, G.; Irace, A.; Mosca, P.; D’atri, A.; Barale, L.; Falletti, P.; Monegato, G.; Morelli, M.; Tallone, S.; et al. Geology of Piemonte region (NW Italy, Alps–Apennines interference zone). J. Maps 2017, 13, 395–405. [Google Scholar] [CrossRef]
- Castiglioni, B. L’Italia nell’eta quaternaria. Plate No. 3. In Atlante Fisico-Economico d’ Italia; Consociazione Turistica Italiana: Milano, Italy, 1940. [Google Scholar]
- Bini, A.; Schlüchter, C.; Burkhalter, R.M.; Urech, M. Die Schweiz Wahrend des Letzteiszeitlichen Maximums (LGM); Bundesamt für Landestopografie Swisstopo: Wabern, Germany, 2009; Available online: https://opendata.swiss/de/perma/f1455593-7571-48b0-8603-307ec59a6702@bundesamt-fur-landestopografie-swisstopo (accessed on 1 July 2023).
- Tarquini, S.; Isola, M.I.; Favalli, A.; Battistini, G.; Dotta, M. TINITALY, a Digital Elevation Model of Italy with a 10 Meters Cell Size (Version 1.1); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2023. [Google Scholar] [CrossRef]
- Doglioni, C.; Bosellini, A. Eoalpine and mesoalpine tectonics in the Southern Alps. Geol. Rundsch. 1987, 76, 735–754. [Google Scholar] [CrossRef]
- Mittempergher, S.; Zanchi, A.; Zanchetta, S.; Fumagalli, M.; Gukov, K.; Bistacchi, A. Fault reactivation and propagation in the northern Adamello pluton: The structure and kinematics of a kilometre-scale seismogenic source. Tectonophysics 2021, 806, 228790. [Google Scholar] [CrossRef]
- Massari, F.; Grandesso, P.; Stefani, C.; Jobstraibizer, P.G. A small polyhistory foreland basin evolving in a context of oblique convergence: The Venetian basin (Chattian to Recent, Southern Alps, Italy). In Foreland Basins; Allen, P.A., Homewood, P., Eds.; The International Association of Sedimentogists: London, UK, 1986; pp. 141–168. [Google Scholar] [CrossRef]
- Gelati, R.; Napolitano, A.; Valdisturlo, A. La” Gonfolite Lombarda”: Stratigrafia e significato nell’evoluzione del margine sudalpino. Riv. Ital. Paleontol. Stratigr. 1988, 94, 285–332. Available online: https://riviste.unimi.it/index.php/RIPS/article/view/13171 (accessed on 1 July 2023).
- Gelati, R.; Napolitano, A.; Valdisturlo, A. Results of studies on the Meso-Cenozoic succession in the Monte Olimpino 2 tunnel. the tectono-sedimentary significance of the “Gonfolite lombarda”. Riv. Ital. Paleontol. Stratigr. 1991, 97, 565–598. [Google Scholar] [CrossRef]
- Stefani, C.; Fellin, M.G.; Zattin, M.; Zuffa, G.G.; Dalmonte, C.; Mancin, N.; Zanferrari, A. Provenance and paleogeographic evolution in a multi-source foreland: The Cenozoic Venetian–Friulian Basin (NE Italy). J. Sediment. Res. 2007, 77, 867–887. [Google Scholar] [CrossRef]
- Zanchi, A.; Bini, A.F.; Felber, M.R.; Rigamonti, I.; Uggeri, A. Neotectonic evidences along the lombardian foothills of the Southern Alps. Geol. Insubrica 1997, 2, 99–112. [Google Scholar]
- Arca, S.; Beretta, G.P. Prima sintesi geodetico-geologica sui movimenti verticali del suolo nell’Italia settentrionale (1897–1957). Boll. Geod. Sci. Affini 1985, 44, 125–156. [Google Scholar]
- Sileo, G.; Giardina, F.; Livio, F.; Michetti, A.M.; Mueller, K.; Vittori, E. Remarks on the Quaternary tectonics of the Insubria Region (Lombardia, NW Italy, and Ticino, SE Switzerland). Boll. Soc. Geol. Ital. 2007, 126, 411. [Google Scholar]
- Fantoni, R.; Franciosi, R. Tectono-sedimentary setting of the Po Plain and Adriatic foreland. Rend. Lincei 2010, 21, 197–209. [Google Scholar] [CrossRef]
- Fantoni, R.; Bello, M. Evoluzione cenozoica del settore occidentale dell’avampaese padano tra Alpi ed Appennini. In 81 Riunione Estiva della Società Geologica Italiana; Cinmatiche collisionali: Tra esumazione e sedimentazione; Riassunti: Torino, Italy, 2002; pp. 146–147. [Google Scholar]
- Bello, M.; Fantoni, R. Deep oil plays in Po Valley: Deformation and hydrocarbon generation in a deformed foreland. In Deformation History, Fluid Flow Reconstruction and Reservoir Appraisal in Foreland Fold and Thrust Belts; American Association of Petroleum Geologists: Hedberg Germany, 2002; Available online: https://www.searchanddiscovery.com/pdfz/documents/2003/bello/images/bello.pdf.html (accessed on 1 July 2023).
- DISS Working Group. Database of Individual Seismogenic Sources (DISS). Version 3.3.0: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- ITHACA Working Group. ITHACA (ITaly HAzard from CApable Faulting). A Database of Active Capable Faults of the Italian Territory. 2019. Available online: https://diss.ingv.it/ithdiss/ (accessed on 15 August 2023).
- Panara, Y.; Menegoni, N.; Carboni, F.; Inama, R. 3D digital outcrop model-based analysis of fracture network along the seismogenic Mt. Vettore Fault System (Central Italy): The importance of inherited fractures. J. Struct. Geol. 2022, 161, 104654. [Google Scholar] [CrossRef]
- Panara, Y.; Khanna, P.; Chandra, V.; Finkbeiner, T.; Vahrenkamp, V. 3D Digital Outcrop Model-Based Fracture Network Analysis of Reservoir Outcrop Analogue, Upper Jubaila Formation, Saudi Arabia. 83rd EAGE Annu. Conf. Exhib. 2022, 2022, 1–5. [Google Scholar] [CrossRef]
- Menegoni, N.; Inama, R.; Crozi, M.; Perotti, C. Early deformation structures connected to the progradation of a carbonate platform: The case of the Nuvolau Cassian platform (Dolomites-Italy). Mar. Pet. Geol. 2022, 138, 105574. [Google Scholar] [CrossRef]
- Menegoni, N.; Inama, R.; Panara, Y.; Crozi, M.; Perotti, C. Relations between Fault and Fracture Network Affecting the Lastoni di Formin Carbonate Platform (Italian Dolomites) and Its Deformation History. Geosciences 2022, 12, 451. [Google Scholar] [CrossRef]
- Fedorik, J.; Delaunay, A.; Losi, G.; Panara, Y.; Menegoni, N.; Afifi, A.M.; Arkadakskiy, S.; Al Malallah, M.; Oelkers, E.; Gislason, S.R.; et al. Structure and fracture characterization of the Jizan group: Implications for subsurface CO2 basalt mineralization. Front. Earth Sci. 2023, 10, 946532. [Google Scholar] [CrossRef]
- Thiele, S.T.; Grose, L.; Samsu, A.; Micklethwaite, S.; Vollgger, S.A.; Cruden, A.R. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data. Solid Earth 2017, 8, 1241–1253. [Google Scholar] [CrossRef]
- Gambari, F.M.; Valle, G.; Vercesi, P.L. Elementi geoarcheologici e proposta intepretativa dell’evoluzione territoriale in età golassecchiana nella zona di Castelletto Ticino. Sibrium 1995, 22, 163–177. [Google Scholar]
- Gambari, F.M. Gli abitati della prima età del Ferro nell’area del Basso Verbano e dell’Ovest Ticino. In I Leponti tra Mito e Realtà (Catalogo Della Mostra); De Marinis, R.C., Biaggio Simona, S., Eds.; Dado editore: Locarno, Switzerland, 2000; pp. 195–202. [Google Scholar]
- Gambari, F.M. Le dinamiche territoriali nella Preistoria e Protostoria del Novarese. In Tra Terra e Acque. Carta Archeologica della Provincia di Novara; Spagnolo Garzoli, G., Gambari, F.M., Eds.; AGES Arti Grafiche: Torino, Italy, 2004; pp. 43–57. [Google Scholar]
- De Marinis, R.C. Il periodo Golasecca III A in Lombardia. Studi Archeol. 1981, 43, 75–96. [Google Scholar]
- Ruffa, M. L’abitato golasecchiano di Cascina Riviera a Castelletto Ticino. In Quaderni della Soprintendenza per i Beni Archeologici del Piemonte; Soprintendenza Archeologia del Piemonte: Torino, Italy, 2001; Volume 18, pp. 13–28. [Google Scholar]
- Tziavou, O.; Pytharouli, S.; Souter, J. Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results. Eng. Geol. 2018, 232, 12–21. [Google Scholar] [CrossRef]
- Ramsey, C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Ramsey, C.; Lee, S. Recent and Planned Developments of the Program OxCal. Radiocarbon 2013, 55, 720–730. [Google Scholar] [CrossRef]
- Ramsey, C. Methods for Summarizing Radiocarbon Datasets. Radiocarbon 2017, 59, 1809–1833. [Google Scholar] [CrossRef]
- Reimer, P.; Austin, W.; Bard, E.; Bayliss, A.; Blackwell, P.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Heaton, T.; Blaauw, M.; Blackwell, P.; Bronk Ramsey, C.; Reimer, P.; Scott, E. The IntCal20 Approach to Radiocarbon Calibration Curve Construction: A New Methodology Using Bayesian Splines and Errors-in-Variables. Radiocarbon 2020, 62, 821–863. [Google Scholar] [CrossRef]
- Rutten, M.G. Ice-pushed ridges, permafrost and drainage. Am. J. Sci. 1960, 258, 293–297. [Google Scholar] [CrossRef]
- Van der Wateren, F.M. A model of glacial tectonics, applied to the ice-pushed ridges in the Central Netherlands. Bull. Geol. Soc. 1985, 34, 55–74. [Google Scholar] [CrossRef]
- Astakhov, V.I.; Kaplyanskaya, F.A.; Tarnogradsky, V.D. Pleistocene permafrost of West Siberia as a deformable glacier bed. Permafr. Periglac. Process. 1996, 7, 165–191. [Google Scholar] [CrossRef]
- Boulton, G.S. The origin of till sequences by subglacial sediment deformation beneath mid-latitude ice sheets. Ann. Glaciol. 1996, 22, 75–84. [Google Scholar] [CrossRef]
- Etzelmüller, B.; Hagen, J.O.; Vatne, G.; Ødegård, R.S.; Sollid, J.L. Glacier debris accumulation and sediment deformation influenced by permafrost: Examples from Svalbard. Ann. Glaciol. 1996, 22, 53–62. [Google Scholar] [CrossRef]
- Boulton, G.S.; Van der Meer, J.J.M.; Beets, D.J.; Hart, J.K.; Ruegg, G.H.J. The sedimentary and structural evolution of a recent push moraine complex: Holmstrømbreen, Spitsbergen. Quat. Sci. Rev. 1999, 18, 339–371. [Google Scholar] [CrossRef]
- Hiemstra, J.F.; Evans, D.J.; Cofaigh, C.Ó. The role of glacitectonic rafting and comminution in the production of subglacial tills: Examples from southwest Ireland and Antarctica. Boreas 2007, 36, 386–399. [Google Scholar] [CrossRef]
- Huuse, M.; Lykke-Andersen, H. Large-scale glaciotectonic thrust structures in the eastern Danish North Sea. Geol. Soc. Lond. Spec. Publ. 2000, 176, 293–305. [Google Scholar] [CrossRef]
- Lee, J.R.; Phillips, E.R. Progressive soft sediment deformation within a subglacial shear zone—A hybrid mosaic–pervasive deformation model for Middle Pleistocene glaciotectonised sediments from eastern England. Quat. Sci. Rev. 2008, 27, 1350–1362. [Google Scholar] [CrossRef]
- Waller, R.; Murton, J.; Whiteman, C. Geological evidence for subglacial deformation of Pleistocene permafrost. Proc. Geol. Assoc. 2009, 120, 155–162. [Google Scholar] [CrossRef]
- Waller, R.; Phillips, E.; Murton, J.; Lee, J.; Whiteman, C. Sand intraclasts as evidence of subglacial deformation of Middle Pleistocene permafrost, North Norfolk, UK. Quat. Sci. Rev. 2011, 30, 3481–3500. [Google Scholar] [CrossRef]
- Szuman, I.; Ewertowski, M.; Kasprzak, L. Thermo-mechanical facies representative of fast and slow flowing ice sheets: The Weichselian ice sheet, a central west Poland case study. Proc. Geol. Assoc. 2013, 124, 818–833. [Google Scholar] [CrossRef]
- Aber, J.S. Model for glaciotectonism. Bull. Geol. Soc. Den. 1982, 30, 79–90. [Google Scholar] [CrossRef]
- Brandes, C.; Le Heron, D.P. The glaciotectonic deformation of Quaternary sediments by fault-propagation folding. Proc. Geol. Assoc. 2010, 121, 270–280. [Google Scholar] [CrossRef]
- Cotterill, C.; Phillips, E.; James, L.; Forsberg, C.F.; Tjelta, T.I. How understanding past landscapes might inform present-day site investigations: A case study from Dogger Bank, southern central North Sea. Near Surf. Geophys. 2017, 15, 403–414. [Google Scholar] [CrossRef]
- Vaughan-Hirsch, D.P.; Phillips, E.R. Mid-Pleistocene thin-skinned glaciotectonic thrusting of the Aberdeen Ground Formation, Central Graben region, central North Sea. J. Quat. Sci. 2017, 32, 196–212. [Google Scholar] [CrossRef]
- Bennett, M.R. The morphology, structural evolution and significance of push moraines. Earth-Sci. Rev. 2001, 53, 197–236. [Google Scholar] [CrossRef]
- Kalin, M. The Active Push Moraine of the Thompson Glacier, Axel Heiberg Island, Canadian Arctic Archipelago, Canada. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, McGill University, Montreal, QC, Canada, 1971. [Google Scholar] [CrossRef]
- Murton, J.B.; Kolstrup, E. Ice-wedge casts as indicators of palaeotemperatures: Precise proxy or wishful thinking? Prog. Phys. Geogr. 2003, 27, 155–170. [Google Scholar] [CrossRef]
- Scapozza, C.; Giacomazzi, D.; Czerski, D.; Kamleitner, S.; Ivy-Ochs, S.; Mazzaglia, D.; Patocchi, N.; Antognini, M. Timing of deglaciation and Late Glacial and Holocene infilling of the Ticino valley between Biasca and Lago Maggiore (Southern Switzerland). In Proceedings of the 10th International Conference on Geomorphology, Coimbra, Portugal, 12–16 September 2022. ICG2022-118. [Google Scholar] [CrossRef]
- Allen, J.R.L. Sedimentary Structures: Their Character and Physical Basis; Elsevier: Amsterdam, The Netherland, 1982; Volume II, ISBN 9780080869445. [Google Scholar]
- Owen, G. Load structures: Gravity-driven sediment mobilization in the shallow subsurface. Geol. Soc. Lond. Spec. Publ. 2003, 216, 21–34. [Google Scholar] [CrossRef]
- Ekwenye, O.; Mode, A.; Oha, I.; Onah, F. Soft-Sediment Deformation in the Campanian-Maastrichtian Deltaic Deposits of the Afikpo Sub-basin, South-eastern Nigeria: Recognition of Endogenic Trigger. Jordan J. Earth Environ. Sci. 2020, 11, 1–11. Available online: http://jjees.hu.edu.jo/files/Vol11No1/JJEES_Vol_11_No_1_P1.pdf (accessed on 1 July 2023).
- Bann, K.L.; Fielding, C.R. An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia. Geol. Soc. Lond. Spec. Publ. 2004, 228, 273–310. [Google Scholar] [CrossRef]
- Montone, P.; Mariucci, M.T.; Pierdominici, S. The Italian present-day stress map. Geophys. J. Int. 2012, 189, 705–716. [Google Scholar] [CrossRef]
- Montone, P.; Mariucci, M.T.; Pondrelli, S.; Amato, A. An improved stress map for Italy and surrounding regions (central Mediterranean). J. Geophys. Res. Solid Earth 2004, 109, B10. [Google Scholar] [CrossRef]
- Montone, P.; Mariucci, M.T. The new release of the Italian contemporary stress map. Geophys. J. Int. 2016, 205, 1525–1531. [Google Scholar] [CrossRef]
# | Year | Month | Day | Epicentral Area | MwDef | Maximum Intensity |
---|---|---|---|---|---|---|
1 | 1304 | 12 | 18 | Lombardy plain | 4.4 | 5–6 |
2 | 1396 | 11 | 26 | Monza | 5.33 | 7–8 |
3 | 1473 | 5 | 7 | Milanese | 3.7 | 5 |
4 | 1606 | 8 | 22 | Bergamo | 4.86 | 6–7 |
5 | 1642 | 6 | 13 | Lombardy plain | 4.92 | 6–7 |
6 | 1771 | 8 | 15 | Lombardy plain | 4.16 | 5 |
7 | 1781 | 9 | 10 | Lombardy plain | 4.93 | 6–7 |
8 | 1786 | 4 | 7 | Lombardy plain | 5.22 | 7–8 |
9 | 1887 | 5 | 20 | Lecchese | 3.97 | 5 |
10 | 1918 | 1 | 13 | Lombardy plain | 4.62 | 4–5 |
11 | 1918 | 4 | 24 | Lecchese | 4.95 | 6 |
12 | 1961 | 11 | 23 | Bergamasc Pre-Alps | 4.86 | 6 |
13 | 1979 | 2 | 9 | Bergamasco | 4.78 | 6 |
Set Name | Fault Number | Mean Orientation (Dip Direction and Dip) | K-Fisher Coefficient | Apparent Offset |
---|---|---|---|---|
F1 | 6 | 346° N/36° | 34.8 | Inverse |
F2 | 4 | 129° N/28 | 35.9 | Inverse |
F3 | 2 | 238° N/33° | 15.6 | Inverse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menegoni, N.; Maino, M.; Toscani, G.; Mordeglia, L.I.; Valle, G.; Perotti, C. Holocene Deformations at the Po Plain–Southern Alps Transition (Lake Maggiore, Italy): Inferences on Glacially vs. Tectonic-Induced Origin. Geosciences 2023, 13, 286. https://doi.org/10.3390/geosciences13090286
Menegoni N, Maino M, Toscani G, Mordeglia LI, Valle G, Perotti C. Holocene Deformations at the Po Plain–Southern Alps Transition (Lake Maggiore, Italy): Inferences on Glacially vs. Tectonic-Induced Origin. Geosciences. 2023; 13(9):286. https://doi.org/10.3390/geosciences13090286
Chicago/Turabian StyleMenegoni, Niccolò, Matteo Maino, Giovanni Toscani, Lucia Isabella Mordeglia, Gianfranco Valle, and Cesare Perotti. 2023. "Holocene Deformations at the Po Plain–Southern Alps Transition (Lake Maggiore, Italy): Inferences on Glacially vs. Tectonic-Induced Origin" Geosciences 13, no. 9: 286. https://doi.org/10.3390/geosciences13090286
APA StyleMenegoni, N., Maino, M., Toscani, G., Mordeglia, L. I., Valle, G., & Perotti, C. (2023). Holocene Deformations at the Po Plain–Southern Alps Transition (Lake Maggiore, Italy): Inferences on Glacially vs. Tectonic-Induced Origin. Geosciences, 13(9), 286. https://doi.org/10.3390/geosciences13090286