Soil Erosion in a British Watershed under Climate Change as Predicted Using Convection-Permitting Regional Climate Projections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modelling Framework
2.2.1. Climate Projections
2.2.2. Soil Erosion Modeling
3. Results
3.1. Rainfall Erosivity
3.2. Soil Erosion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfieri, L.; Dottori, F.; Betts, R.; Salamon, P.; Feyen, L. Multi-Model Projections of River Flood Risk in Europe under Global Warming. Climate 2018, 6, 6. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change; Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; et al. Land–climate interactions. In IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change Desertification Land Degradation Sustainable Land Management Food Security and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 131–247. [Google Scholar] [CrossRef]
- Ciampalini, R.; Constantine, J.A.; Walker-Springett, K.J.; Hales, T.C.; Ormerod, S.J.; Hall, I.R. Modelling soil erosion responses to climate change in three catchments of Great Britain. Sci. Total Environ. 2020, 749, 141657. [Google Scholar] [CrossRef] [PubMed]
- Durán Zuazo, V.H.D.; Rodríguez Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Arneth, A. Uncertain future for vegetation cover. Nature 2015, 524, 44–45. [Google Scholar] [CrossRef]
- Davies-Barnard, T.; Valdes, P.J.; Singarayer, J.S.; Wiltshire, A.J.; Jones, C.D. Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways. Glob. Biogeochem. Cycles 2015, 29, 842–853. [Google Scholar] [CrossRef]
- Parsons, A.J. How Reliable Are Our Methods for Estimating Soil Erosion by Water? Sci Total Environ. 2019, 676, 215–221. [Google Scholar] [CrossRef]
- Shanshan, W.; Baoyang, S.; Chaodong, L.; Zhanbin, L.; Bo, M. Runoff and Soil Erosion on Slope Cropland: A Review. JRE 2018, 9, 461–470. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change; Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; et al. Land Degradation. In IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change Desertification Land Degradation Sustainable Land Management Food Security and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 345–436. [Google Scholar] [CrossRef]
- Le, T.; Ha, K.J.; Bae, D.H. Projected response of global runoff to El Niño-Southern oscillation. Environ. Res. Lett. 2021, 16, 084037. [Google Scholar] [CrossRef]
- Le, T.; Bae, D. Causal Impacts of El Niño-Southern Oscillation on Global Soil Moisture Over the Period 2015-2100. Eart’s Future 2022, 10, e2021EF002522. [Google Scholar] [CrossRef]
- Nearing, M.A.; Xie, Y.; Liu, B.; Ye, Y. Natural and anthropogenic rates of soil erosion. ISWCR 2017, 5, 77–84. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Gómez, J.A.; Infante Amate, J.; González de Molina, M.; Vanderlinden, K.; Guzmán, G.; Laguna, A.; Giráldez, J.V. Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene 2017, 17, 13–29. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Wang, T.; Li, J.; Yang, J.; Luo, M. Have anthropogenic factors mitigated or intensified soil erosion over the past three decades in South China? J. Environ. Manag. 2022, 302 Pt B, 114093. [Google Scholar] [CrossRef]
- Rothacker, L.; Dosseto, A.; Francke, A.; Chivas, A.R.; Vigier, N.; Kotarba-Morley, A.M.; Menozzi, D. Impact of climate change and human activity on soil landscapes over the past 12,300 years. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Mullan, D.; Matthews, T.; Vandaele, K.; Barr, I.D.; Swindles, G.T.; Meneely, J.; Boardman, J.; Murphy, C. Climate impacts on soil erosion and muddy flooding at 1.5 °C vs 2 °C warming. Land Degrad. Dev. 2018, 30, 94–108. [Google Scholar] [CrossRef]
- Perović, V.; Kadović, R.; Djurdjević, V.; Braunović, S.; Čakmak, D.; Mitrović, M.; Pavlović, P. Effects of changes in climate and land use on soil erosion: A case study of the Vranjska Valley Serbia. Reg. Environ. Change 2019, 19, 1035–1046. [Google Scholar] [CrossRef]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dynam. 2019, 10, 73–89. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Burt, T.; Boardman, J.; Foster, I.; Howden, N. More rain less soil: Long-term changes in rainfall intensity with climate change. Earth Surf Process Landf. 2015, 41, 563–566. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S.; Meena, P.K.; Mishra, P.K.; Shukla, R. Impact of climate change on future soil erosion in different slope, land use, and soil-type conditions in a part of the Narmada River Basin, India. J. Hydrol. Eng. 2015, 20, C5014003. [Google Scholar] [CrossRef]
- Zabaleta, A.; Meaurio, M.; Ruiz, E.; Antigüedad, I. Simulation Climate Change Impact on Runoff and Sediment Yield in a Small Watershed in the Basque Country, Northern Spain. J. Environ. Qual. 2014, 43, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hernandez, M.; Anson, E.; Nearing, M.A.; Wei, H.; Stone, J.J.; Heilman, P. Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with conservation practices. J. Soil Water Conserv. 2012, 67, 390–405. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; de Vente, J. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth Sci Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth Sci Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- IPCC. 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. 2019, 124, 5696–5723. [Google Scholar] [CrossRef]
- Karl, T.; Trenberth, K. Modern global change. Science 2003, 302, 1719–1722. [Google Scholar] [CrossRef]
- Kendon, E.J.; Roberts, N.M.; Senior, C.A.; Roberts, M.J. Realism of rainfall in a very high resolution regional climate model. JCLI 2012, 25, 5791–5806. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes under Global Warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Giorgi, F.B.C.; Hewitson, C.; Christensen, R.F.; Jones, R.G. (Eds.) Regional Climate Information: Evaluation and Projections. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; pp. 583–638. [Google Scholar]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections. African and Latin American Resilience to Climate Change (ARCC); Internal Report; Center for International Earth Science Information Network (CIESIN); Columbia Climate School, Columbia University: New York, NY, USA, 2014; 42p. [Google Scholar]
- Lee, T.; Singh, V.P. Statistical Downscaling for Hydrological and Environmental Applications; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Xu, Z.; Han, Y.; Yang, Z. Dynamical downscaling of regional climate: A review of methods and limitations. Sci. China Earth Sci. 2018, 62, 365–375. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Madsen, H.; Ang, P.H. A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res. 2012, 103, 119–128. [Google Scholar] [CrossRef]
- Routschek, A.; Schmidt, J.; Kreienkamp, F. Impact of climate change on soil erosion? A high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 2014, 121, 99–109. [Google Scholar] [CrossRef]
- Routschek, A.; Schmidt, J.; Kreienkamp, F. Climate Change Impacts on Soil Erosion: A High-Resolution Projection on Catchment Scale Until 2100. Eng. Geol. Soc. Territ. 2015, 1, 135–141. [Google Scholar]
- Pastor, A.V.; Nunes, J.P.; Ciampalini, R.; Koopmans, M.; Baartman, J.; Huard, F.; Calheiros, T.; Le Bissonnais, Y.; Keizer, J.J.; Raclot, D. Projecting Future Impacts of Global Change Including Fires on Soil Erosion to Anticipate Better Land Management in the Forests of NW Portugal. Water 2019, 11, 2617. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Szporak-Wasilewska, S.; Kardel, I. Assessment of soil erosion under long-term projections of climate change in Poland. J. Hydrol. 2022, 607, 127468. [Google Scholar] [CrossRef]
- Gianinetto, M.; Aiello, M.; Vezzoli, R.; Polinelli, F.N.; Rulli, M.C.; Chiarelli, D.; Bocchiola, D.; Ravazzani, G.; Soncini, A. Future Scenarios of Soil Erosion in the Alps under Climate Change and Land Cover Transformations Simulated with Automatic Machine Learning. Climate 2020, 8, 8. [Google Scholar] [CrossRef]
- Groppelli, B.; Bocchiola, D.; Rosso, R. Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: A case study in Italy. Water Resour. Res. 2011, 47, W03519. [Google Scholar] [CrossRef]
- Mullan, D.J.; Favis-Mortlock, D.T.; Fealy, R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric. Meteorol. 2012, 156, 18–30. [Google Scholar] [CrossRef]
- Mullan, D. Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on-site and off-site problems. Catena 2013, 109, 234–246. [Google Scholar] [CrossRef]
- UKCP09—Hadley Centre for Climate Prediction and Research. UKCP09: Probabilistic Projections Data of Climate Parameters over UK Land. Centre for Environmental Data Analysis. 2017. Available online: https://catalogue.ceda.ac.uk/uuid/31cebae359e643ca9dbd1a8d0235d6fe (accessed on 15 July 2023).
- Bussi, G.; Dadson, S.J.; Prudhomme, C.; Whitehead, P.G. Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). J. Hydrol. 2016, 542, 357–372. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.J.; Li, X. A Weather Generator-Based Statistical Downscaling Tool for Site-Specific Assessment of Climate Change Impacts. Trans. ASABE 2018, 61, 977–993. [Google Scholar] [CrossRef]
- Fullhart, A.T.; Nearing, M.A.; McGehee, R.P.; Weltz, M.A. Temporally downscaling a precipitation intensity factor for soil erosion modeling using the NOAA-ASOS weather station network. Catena 2020, 194, 104709. [Google Scholar] [CrossRef]
- Li, Z. A new framework for multi-site weather generator: A two-stage model combining a parametric method with a distribution-free shuffle procedure. Clim. Dyn. 2013, 43, 657–669. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Zhang, X.C. A multi-site stochastic weather generator for daily precipitation and temperature. Trans ASABE 2014, 57, 1375–1391. [Google Scholar]
- Borrelli, P.; Ballabio, C.; Yang, J.E.; Robinson, D.A.; Panagos, P. GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion. Sci. Data 2022, 9, 406. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Matthews, F.; Liakos, L.; Bezak, N.; Diodato, N.; Ballabio, C. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Coppola, E.; Sobolowski, S.; Pichelli, E.; Raffaele, F.; Ahrens, B.; Anders, I.; Ban, N.; Bastin, S.; Belda, M.; Belusic, D.; et al. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn. 2018, 55, 3–34. [Google Scholar] [CrossRef]
- Kendon, E.J.; Prein, A.F.; Senior, C.A.; Stirling, A. Challenges and outlook for convection-permitting climate modelling. Phil. Trans. R. Soc. A 2021, 379, 20190547. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations prospects and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed]
- Berthou, S.; Kendon, E.J.; Chan, S.C.; Ban, N.; Leutwyler, D.; Schär, C.; Fosser, G. Pan-European climate at convection-permitting scale: A model intercomparison study. Clim. Dyn. 2018, 55, 35–59. [Google Scholar] [CrossRef]
- Kay, A. Differences in hydrological impacts using regional climate model and nested convection-permitting model data. Clim. Change 2022, 173, 11. [Google Scholar] [CrossRef]
- Schaller, N.; Sillmann, J.; Müller, M.; Haarsma, R.; Hazeleger, W.; Hegdahl, T.J.; Kelder, T.; van den Oord, G.; Weerts, A.; Whan, K. The role of spatial and temporal model resolution in a flood event storyline approach in Western Norway. Weather. Clim. Extremes 2020, 29, 100259. [Google Scholar] [CrossRef]
- Ascott, M.J.; Christelis, V.; Lapworth, D.J.; Macdonald, D.M.J.; Tindimugaya, C.; Iragena, A.; Finney, D.; Fitzpatrick, R.; Marsham, J.H.; Rowell, D.P. On the application of rainfall projections from a convection-permitting climate model to lumped catchment models. J. Hydrol. 2023, 617, 129097. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y. Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations. Clim. Dyn. 2019, 53, 1613–1636. [Google Scholar] [CrossRef]
- Chapman, S.; Birch, C.E.; Galdos, M.V.; Pope, E.; Jemma, D.; Bradshaw, C.; Eze, S.; Marsham, J.H. Assessing the impact of climate change on soil erosion in East Africa using a convection-permitting climate model. Environ. Res. Lett. 2021, 16, 084006. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.A.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agricultural Handbook 703; US Department of Agriculture: Washington, DC, USA, 1997; p. 404. [Google Scholar]
- Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Senior, C.A. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 2014, 4, 570–576. [Google Scholar] [CrossRef]
- Chan, S.C.; Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Blenkinsop, S. The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model. Environ. Res. Lett. 2016, 11, 094024. [Google Scholar] [CrossRef]
- Chan, S.C.; Kahana, R.; Kendon, E.J.; Fowler, H.J. Projected changes in extreme precipitation over Scotland and Northern England using a high-resolution regional climate model. Clim. Dyn. 2018, 51, 3559–3577. [Google Scholar] [CrossRef]
- Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Evans, J.P.; Fosser, G.; Wilkinson, J.M. Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change? BAMS 2017, 98, 79–93. [Google Scholar] [CrossRef]
- Schmidt, J. A mathematical model to simulate rainfall erosion. Catena Suppl. 1991, 19, 101–109. [Google Scholar]
- Boardman, J. The value of Google Earth™ for erosion mapping. Catena 2016, 143, 123–127. [Google Scholar] [CrossRef]
- Boardman, J.; Vandaele, K.; Evans, R.; Foster, I.D.L. Off-site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates. Soil Use Manag. 2019, 35, 245–256. [Google Scholar] [CrossRef]
- Evans, J.L.; Foster, I.; Boardman, J.; Holmes, N. SMART—Sediment Mitigation Actions for the River Rother UK Proc. IAHS 2017, 375, 35–39. [Google Scholar] [CrossRef]
- Evans, R. Soils at risk of accelerated erosion in England and Wales. Soil Use Manag. 1990, 6, 125–131. [Google Scholar] [CrossRef]
- Met Office: Midhurst Climate. 2014. Available online: http://www.metoffice.gov.uk/public/weather/climate/gcp6p1zhh (accessed on 15 July 2023).
- Boardman, J.; Favis-Mortlock, D. The significance of drilling date and crop cover with reference to soil erosion by water with implications for mitigating erosion on agricultural land in South East England. Soil Use Manag. 2014, 30, 40–47. [Google Scholar] [CrossRef]
- South Downs National Park Authority. Land Use in the River Rother Catchment. Ord. Surv. 2015, 100050083. [Google Scholar]
- NSRI (National Soil Resources Institute). Available online: http://www.landis.org.uk/data/index.cfm (accessed on 1 February 2015).
- Cole, B.; King, S.; Ogutu, B.; Palmer, D.; Smith, G.; Balzter, H. Corine Land Cover 2012 for the UK Jersey and Guernsey; NERC Environmental Information Data Centre (Dataset); University of Leicester: Leicester, UK, 2015. [Google Scholar] [CrossRef]
- Best, M.J.; Pryor, M.; Clark, D.B.; Rooney, G.G.; Essery, R.L.H.; Ménard, C.B.; Edwards, J.M.; Hendry, M.A.; Porson, A.; Gedney, N.; et al. The Joint UK Land Environment Simulator (JULES) model description-Part1: Energy and water fluxes. Geosci. Model Dev. 2011, 4, 677–699. [Google Scholar] [CrossRef]
- Richards, L. Capilliary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Nat. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef] [PubMed]
- Cullen, M.J.P. The unified forecast/climate model. Meteorol. Mag. 1993, 122, 81–94. [Google Scholar] [CrossRef]
- Davies, T.; Cullen, M.J.P.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. QJR Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Essery, R.; Pomeroy, J. Sublimation of snow intercepted by coniferous forest canopies in a climate model. In Proceedings of the Soil-Vegetation-Atmosphere Transfer Schemes and Large-Scale Hydrological Models. Proceedings of an International Symposium, Held during the Sixth IAHS Scientific Assembly, Maastricht, The Netherlands, 18–27 July 2001; pp. 343–347. [Google Scholar]
- Lock, A.P.; Brown, A.R.; Bush, M.R.; Martin, G.M.; Smith, R.N.B. A New Boundary Layer Mixing Scheme. Part 1: Scheme Description and Single-Column Model Tests. Mon. Wea. Rev. 2000, 128, 3187–3199. [Google Scholar] [CrossRef]
- Gregory, D.; Rowntree, P.R. A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure. MWR 1990, 118, 1483–1506. [Google Scholar] [CrossRef]
- Wilson, R.W.; Ballard, S.P. A microphysically based precipitation scheme for the UK Meteorological Office Unified model. Q. J. R. Meteorol. Soc. 1999, 125, 1607–1636. [Google Scholar] [CrossRef]
- Brown, A.R.; Derbyshire, S.; Mason, P.J. Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Q. J. R. Meteorol. Soc. 1994, 120, 1485–1512. [Google Scholar] [CrossRef]
- Golding, B.W. Nimrod: A system for generating automated very short range forecasts. Meteorol. Appl. 1998, 5, 1–16. [Google Scholar] [CrossRef]
- Von Werner, M. GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung von Bodenerosion in kleinen Einzugsgebieten. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 1995. [Google Scholar]
- Von Werner, M. Erosion-3D User manual Ver. 3.0 Revision 0.88. 06.03.2003. GeoGnostics Software: Berlin, Germany, 2003. [Google Scholar]
- Michael, A. Anwendung des Physikalisch Begründeten Erosionsprognosemodells EROSION 2D/3D. Empirische Ansaetze zur Ableitung der Modellparameter. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2000; p. 147. [Google Scholar]
- Schindewolf, M.; Schmidt, J. Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation. Catena 2012, 91, 47–55. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on soil physics: Part I. The flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Hallett, S.; Hollis, J.; Keay, C.A. Derivation and Evaluation of a Set of Pedogenically-Based Empirical Algorithms for Predicting Bulk Density in British Soils. National Soil Resources Institute, School of Applied Science, Cranfield University. 2009. Available online: https://www.landis.org.uk (accessed on 1 February 2015).
- Huntington, T.G.; Johnson, C.E.; Johnson, A.H.; Siccama, T.G.; Ryan, D.F. Carbon, organic matter, and bulk density relationships in a forested spodosol. Soil Sci. 1989, 148, 380–386. [Google Scholar] [CrossRef]
- Michael, A.; Schmidt, J.; Schmidt, W.A. EROSION 2D/3D. A Computer Model for the Simulation of Soil Erosion by Water. Parameter Catalog Application (2D); Technische Universität Bergakademie: Freiberg, Germany, 1996; p. 169. [Google Scholar]
- Dotterweich, M.; Dreibrodt, S. Past land use and soil erosion processes in central Europe. PAGES News 2011, 19, 49–51. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Diodato, N.; Verstraeten, G.; Bellocchi, G. Decadal modelling of rainfall erosivity in Belgium. Land Degrad Dev. 2012, 25, 511–519. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Spinoni, J.; Ballabio, C.; Meusburger, K.; Beguería, S.; Klik, A.; Michaelides, S.; Petan, S.; Hrabalíková, M.; et al. Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments. Water 2016, 8, 119. [Google Scholar] [CrossRef]
- Evans, R.; Collins, A.L.; Foster, I.D.L.; Rickson, R.J.; Anthony, S.G.; Brewer, T.; Deeks, L.; Newell-Price, J.P.; Truckell, I.G.; Zhang, Y. Extent, frequency and rate of water erosion of arable land in Britain—Benefits and challenges for modelling. Soil Use Manag. 2016, 32, 149–161. [Google Scholar] [CrossRef]
- Boardman, J. Soil Erosion in Britain: Updating the Record. Agriculture 2013, 3, 418–442. [Google Scholar] [CrossRef]
- Boardman, J.; Shepheard, M.L.; Walker, E.; Foster, I.D.L. Soil erosion and risk-assessment for on- and off-farm impacts: A test case using the Midhurst area, West Sussex, UK. J. Environ. Manag. 2009, 90, 2578–2588. [Google Scholar]
- Shepheard, M.L. Soil Erosion and Off-Site Impacts from the Lower Greensand Soils and Arable Lands of the Rother River Valley. Master’s Thesis, Environmental Change Institute, University of Oxford, Oxford, UK, 2003. [Google Scholar]
- Boardman, J.; Burt, T.; Foster, I. Monitoring soil erosion on agricultural land: Results and implications for the Rother valley, West Sussex, UK. Earth Surf. Process. Landf. 2020, 45, 3931–3942. [Google Scholar] [CrossRef]
- Evans, R. Water erosion in British farmers’ fields- some causes, impacts, predictions. Prog. Phys. Geogr. Earth Env. 1990, 14, 199–219. [Google Scholar] [CrossRef]
- Milazzo, F.; Francksen, R.M.; Zavattaro, L.; Abdalla, M.; Hejduk, S.; Enri, S.R.; Pittarello, M.; Price, P.N.; Schils, R.L.M.; Smith, P.; et al. The Role of Grassland for Erosion and Flood Mitigation in Europe: A Meta-Analysis. Agric. Ecosyst. Environ. 2023, 348, 108443. [Google Scholar] [CrossRef]
- Benaud, P.; Anderson, K.; Evan, M.; Farrow, L.; Glendell, M.; James, M.R.; Quine, T.A.; Quinton, J.N.; Rawlins, B.; Rickson, R.J.; et al. National-scale geodata describe widespread accelerated soil erosion. Geoderma 2020, 371, 114378. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Keizer, J.J.; Ferreira, A.J.D. Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part II: Assessing impacts from changes in storm rainfall soil moisture and vegetation cover. Hydrol. Process. 2009, 23, 1212–1220. [Google Scholar] [CrossRef]
- Pruski, F.F.; Nearing, M.A. Runoff and soil loss responses to changes in precipitation: A computer simulation study. JSWC 2002, 57, 7–16. [Google Scholar]
- Dunkerley, D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrol. Proc. 2008, 22, 5024–5036. [Google Scholar] [CrossRef]
- Dunkerley, D. Rainfall intensity in geomorphology: Challenges and opportunities. Prog. Phys. Geogr. Earth Env. 2020, 45, 488–513. [Google Scholar] [CrossRef]
- Kampf, S.K.; Brogan, D.J.; Schmeer, S.; MacDonald, L.H.; Nelson, P.A. How do geomorphic effects of rainfall vary with storm type and spatial scale in a post-fire landscape? Geomorphology 2016, 273, 39–51. [Google Scholar] [CrossRef]
- Berteni, F.; Grossi, G. Water soil erosion evaluation in a small alpine catchment located in northern Italy: Potential effects of climate change. Geosciences 2020, 10, 38. [Google Scholar] [CrossRef]
- Maurya, S.; Srivastava, P.; Yaduvanshi, A.; Anand, A.; Petropoulos, G.; Zhuo, L.; Mall, R. Soil erosion in future scenario using CMIP5 models and earth observation datasets. J. Hydrol. 2021, 594, 125851. [Google Scholar] [CrossRef]
- Vantas, K.; Sidiropoulos, E.; Loukas, A. Estimating Current and Future Rainfall Erosivity in Greece Using Regional Climate Models and Spatial Quantile Regression Forests. Water 2020, 12, 687. [Google Scholar] [CrossRef]
- Almagro, A.; Oliveira, P.T.S.; Nearing, M.A.; Hagemann, S. Projected climate change impacts in rainfall erosivity over Brazil. Sci. Rep. 2017, 7, 8130. [Google Scholar] [CrossRef] [PubMed]
- Kendon, E.J.; Fischer, E.M.; Short, C.J. Variability conceals emerging trend in 100yr projections of UK local hourly rainfall extremes. Nat. Commun. 2023, 14, 1133. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.; Kendon, E.J.; Berthou, S.; Fosser, G.; Lewis, E.; Fowler, H.J. Europe-wide precipitation projections at convection permitting scale with the Unified Model. Clim. Dyn. 2022, 55, 409–428. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.; Caillaud, C.; Coppola, E.; Pichelli, E.; Sobolowski, S.; Adinolfi, M.; Ahrens, B.; Alias, A.; Anders, I.; Bastin, S.; et al. The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, Part I: Evaluation of precipitation. Clim. Dyn. 2021, 57, 275–302. [Google Scholar] [CrossRef]
- Pichelli, E.; Coppola, E.; Sobolowski, S.; Ban, N.; Giorgi, F.; Stocchi, P.; Alias, A.; Belušić, D.; Berthou, S.; Caillaud, C.; et al. The first multi-model ensemble of regional climate simulations at kilometer-scale resolution Part 2: Historical and future simulations of precipitation. Clim. Dyn. 2021, 56, 3581–3602. [Google Scholar] [CrossRef]
Land Use | Surface | Elevation m. a.s.l. | Slope % | |
---|---|---|---|---|
km2 | % | |||
Arable | 112.1 | 31.4 | 64.4 | 5.4 |
Grassland | 143.9 | 40.3 | 76.2 | 6.9 |
Forest | 89.5 | 25.0 | 87.6 | 10.2 |
Urban | 12.0 | 3.4 | 66.7 | 4.8 |
Total | 357.6 | 100 | 75.0 | 7.2 |
(a) | D95 R-Factor (MJ mm ha−1 h−1 y−1) | |
1996–2009 | ~2100 | |
average | 364.0 ± 22.8 | 387.0 ± 26.5 |
variation | +23.05 (+5.6%) | |
D05/D50/D95 | 327.0/363.6/405.0 | 350.1/385.6/433.9 |
variation | −23.1/+22.02/+28.9 (−3.76%/+5.27%/+14.88%) | |
(b) | D95 R-factor increase (MJ mm ha−1 h−1 y−1; %) | |
D50 threshold | +22.02; +5.27% | |
Subset | <D50 | >D50 |
Average (%) | +1.1% | +10.1% |
1996–2009 | ~2100 | Avg. Var. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Land Use | Average | St. Dev. | D05 * | Med * | D95 * | Average | St. Dev. | D05 * | Med * | D95 * | % |
Arable | 0.660 | 0.196 | −0.005 | 0.555 | 9.151 | 0.930 | 0.396 | -1 × 10−4 | 0.533 | 9.167 | 40.9 |
Grassland | −0.076 | 0.022 | −1.44 × 10−6 | −0.169 | −12.891 | −0.106 | 0.044 | −2.1 × 10−6 | −0.190 | −11.451 | 39.5 |
Forest | −0.058 | 0.016 | −2 × 10−7 | −0.253 | −13.563 | −0.078 | 0.036 | −3 × 10−7 | −0.241 | −11.278 | 34.5 |
Urban | 0.440 | 0.070 | −0.033 | 0.379 | 10.766 | 0.354 | 0.080 | −0.031 | 0.273 | 7.958 | −19.5 |
Total | 0.176 | 0.048 | −1.224 | 0.298 | 8.231 | 0.252 | 0.097 | −0.879 | 0.342 | 7.969 | 43.2 |
Er ∩ D50(R95) (Erosion Incr., Value, %) | Eravg ∩ D50(R95) (Surface, %) | |||
---|---|---|---|---|
D50 R95-threshold | 5.27 (whole basin) | Overlapping surface | ||
Subset | <D50(R95) | >D50(R95) | <D50(R95) | >D50(R95) |
Average erosion increase | 0.052/+29.3% of the whole basin | 0.103/+58.0% of the whole basin | 16.4% | 29.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciampalini, R.; Kendon, E.J.; Constantine, J.A.; Schindewolf, M.; Hall, I.R. Soil Erosion in a British Watershed under Climate Change as Predicted Using Convection-Permitting Regional Climate Projections. Geosciences 2023, 13, 261. https://doi.org/10.3390/geosciences13090261
Ciampalini R, Kendon EJ, Constantine JA, Schindewolf M, Hall IR. Soil Erosion in a British Watershed under Climate Change as Predicted Using Convection-Permitting Regional Climate Projections. Geosciences. 2023; 13(9):261. https://doi.org/10.3390/geosciences13090261
Chicago/Turabian StyleCiampalini, Rossano, Elizabeth J. Kendon, José A. Constantine, Marcus Schindewolf, and Ian R. Hall. 2023. "Soil Erosion in a British Watershed under Climate Change as Predicted Using Convection-Permitting Regional Climate Projections" Geosciences 13, no. 9: 261. https://doi.org/10.3390/geosciences13090261
APA StyleCiampalini, R., Kendon, E. J., Constantine, J. A., Schindewolf, M., & Hall, I. R. (2023). Soil Erosion in a British Watershed under Climate Change as Predicted Using Convection-Permitting Regional Climate Projections. Geosciences, 13(9), 261. https://doi.org/10.3390/geosciences13090261